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Unlike the previous maintenance models of multi-unit systems which considered condition-based maintenance
(CBM) or age information separately, we propose a novel optimization model which is characterized by a
combination of CBM and age information using proportional hazards model. The preventive maintenance is
applied for the main two units, where one unit is the core part of the system and subject to CM, and only the age
information for the second main unit is available. Also, the other units are adjusted or replaced each time when
the system is maintained. The objective is to find an optimal opportunistic maintenance policy minimizing the
long-run expected average cost per unit time. The problem is formulated and solved in the semi-Markov decision
process framework. The formula for the mean residual life of the system is derived, which is an important statistic
in practical applications. A practical example of a multi-unit system from a mining company is provided, and a
comparison with other policies shows an outstanding performance of the new model and the control policy
proposed in this paper.

Journal of the Operational Research Society (2017). doi:10.1057/s41274-016-0160-9

Keywords: condition-based maintenance; multi-unit series system; proportional hazards model

1. Introduction

Production facilities are subject to deterioration and failure as

the result of usage and age, which considerably reduce the

efficiency of the production systems. To overcome this

deficiency, different maintenance models have been developed

depending on various assumptions such as historical data

availability, optimization criterion, and perfect or imperfect

maintenance actions.

Among different approaches, CBM has been applied widely

in various industries depending on the collected CM data,

including oil data in Wang and Hussin (2009) and Kim et al

(2011) or vibration data in Yam et al (2001) and Tian et al

(2014). In a CBM program, maintenance action is chosen

based on the information collected through CM (Jardine et al,

2006). Recently, Rosmaini and Shahrul (2012) reviewed and

compared CBM and time-based maintenance (TBM). They

investigated the challenges of implementing each technique

from a practical point of view and concluded that the

application of CBM is more realistic and more worthwhile.

CBM models are classified into two main categories (Si et al,

2011): (1) Directly Observed CBM Models, such as regression-

based models, Markovian-based models, or Gamma processes

describing system deterioration and (2) Indirectly Observed

CBM Models, e.g., proportional hazards models with imperfect

information and hidden Markov or semi-Markov models. The

existing literature has formed primarily on determining the

optimal CBM policy for single-unit systems, while develop-

ment of CBM for multi-unit systems is in its infancy.

An extensive review on maintenance modeling and opti-

mization of multi-unit systems has been presented by Thomas

(1986), Cho and Parlar (1991), Dekker et al (1997), Wang

(2002), Nicolai and Dekker (2006) and Nowakowski and

Werbinka (2009). Interaction among different working units of

a multi-unit system is an important factor when developing

maintenance policies which differentiate the problems encoun-

tered in these models from the problems when dealing with

single-unit systems. In the early maintenance literature

(Thomas, 1986), three types of interactions have been

introduced: (1) economic dependence, (2) structural depen-

dence, and (3) stochastic dependence. In this paper, we assume

that the multi-unit series system has economic dependence.

To develop an effective maintenance model, CBM is one of

the appropriate approaches; however, the age of the unit

should not be neglected. To overcome this deficiency, Cox

(1972) introduced the PHM in 1972. An extensive literature

review on PHM also can be found in Kumar and Klefsjo

(1994). PHM has gained popularity as a useful model for

different applications, such as steel and mining industry

(Zuashkiani et al, 2009), oil and petrochemical industry (Vlok

et al, 2002; Makis et al, 2006). Since there are usually several
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covariates in real applications, Lin et al (2006) proposed an

approach using principal component analysis instead of the

original covariates to build the PHM and got reasonable results

by reducing the number of variables included in the model.

Also, Makis et al (2006) applied the dynamic principle

component analysis to take into account both the cross- and

autocorrelation to reduce the number of covariates in the

PHM.

Maintenance problems in multi-unit systems are consider-

ably more complicated when compared to single-unit systems

maintenance policies. Such systems are more applicable to

real-world situations, but there has been very limited research

especially using PH model. For example, Zheng and Fard

(1991) studied the combination of age-based and opportunistic

maintenance for a multi-unit system consisting of n identical

units with increasing hazard rates. A unit is replaced at failure

or at a predetermined age, whichever occurs first. The other

units are replaced opportunistically if their ages are within the

specified limits. The optimal limits are obtained by minimiz-

ing the mean total replacement cost rate. Another example can

be found in Tian and Liao (2011), where the authors built a PH

model for a multi-unit system and they supposed that there is

economic dependence among units. They introduced two

thresholds d1 and d2. If the hazard rate of unit 1 crosses the

first threshold, PM action will be performed. To take

advantage of the economic dependency among different units,

the second threshold will be used. If the hazards functions of

the other units exceed d2 then opportunistic maintenance will

be performed on those units as well. More related papers for

multi-unit systems using PHM can be found in Marseguerra

et al (2002), Barata et al (2002), Castanier et al (2005), Saunil

et al (2009), and Koochaki et al (2012).

In this paper, we propose a joint optimization of mainte-

nance policy and inspection interval for a multi-unit series

system with economic dependence. One unit is the core part of

the system, so it is subject to CM and PHM is used to describe

the hazard function of this unit. The second main unit is

considered to be less critical; however, its failure may cause

substantial damage to the system; therefore, its age informa-

tion is available. The other units are adjusted or simply

replaced upon performing maintenance on the two main units.

The distinguishing feature of the proposed model is that we

utilize the combination of CM and age information in

maintenance decision-making for a multi-unit series system

using PHM. This is the first contribution of this paper, which

has not been considered before and it is applicable in many

real situations. The motivation for choosing this assumption in

our modeling is that in many real systems, spending money on

CM for all the units is not economical and reasonable.

Companies are interested in spending less money on non-

value-added activities such as CM and simultaneously mini-

mize interruptions caused by system failure. This model is

more realistic than the one-unit models, and substantial

savings can be achieved by applying the model in various

situations, such as considering steam generator as a critical

unit in a nuclear power plant, gearbox in the hauler trucks, or

crude oil export pump on an oil rig, the cracker in an oil

refinery, or gearbox in the wind turbine (Kumar and Jain

2012). For instance, a gearbox of the heavy hauler truck is

considered as a main unit, subject to CM. The second

important unit can be a clutch for which just the age

information is available, and its failure can make considerable

damage to the system. When system maintenance is per-

formed, the other units such as bearings, engine belt, radial

shaft seal, and rings can be replaced or adjusted. This kind of

application will be considered later in experimental results

section using real data.

Surprisingly, little research has been done on the combined

CM and age-based models of multi-unit systems, which

appears to be a good representation of real systems. A related

model for a one-unit system was developed, for example in

Makis and Jardine (1992) which presented the optimal

maintenance policy for a PH model minimizing the long-run

expected average cost per unit time. They considered a PHM

with a Markov covariate process and periodic monitoring.

Later, Wu and Ryan (2010) extended their work by consid-

ering possible state transitions between sampling epochs. We

have further extended the assumption of transitions in the

covariate process made in Wu and Ryan (2010) by relaxing the

sequential degradation from state i to iþ 1 considered in their

paper, to a general type of degradation.

Another contribution of the paper is using the SMDP

framework to obtain the optimal maintenance policy which is

again a novel approach to maintenance modeling of multi-unit

series systems using PHM. Such a maintenance policy has a

direct practical value as it can be readily implemented for

online decision-making. The decision maker can decide when

the CM information should be collected, as well as when to

initiate preventive and opportunistic maintenance.

The remainder of the paper is organized as follows. The

details of the proposed model are summarized in model

formulation section. Then, a computational algorithm in the

SMDP framework based on the policy iteration algorithm is

developed. The derivation and computation of the mean

residual life are presented in residual life prediction sec-

tion. The effectiveness of the proposed model is demonstrated

by using a practical example from a mining company in

experimental results section. Finally, we discuss possible

extensions of our model and provide concluding remarks.

2. Model formulation

Consider a system consisting of N operating units with two

main units or modules. One main unit (unit 1) is the core part

of the system, it is assumed to be more expensive than the

other units, and it is subject to CM. Only the age information

of another main unit (unit 2) is available, and ðN � 2Þ
remaining units are cheaper units which can be adjusted or

replaced easily when the system is maintained. There is an
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economic dependence among these units, i.e., upon perform-

ing jointly maintenance actions, economies of scales are

incorporated.

To describe the behavior of the unit 1 deterioration process

properly, the value of the covariate process is determined

through inspections. This CM information and the age of the

unit are incorporated into the PH model. The hazard rate is the

product of a baseline hazard rate h0ðtÞ dependent on the age of

unit 1 and a positive function wðZtÞ dependent only on the

values of the covariate process. Let Z be a continuous-time

Markov chain with the state space X ¼ f0; 1; 2; . . .; Jg, where
some subsets of states represent healthy and warning (un-

healthy) conditions, and the last state (J) is an absorbing state.

The mathematical derivations are based on these coded values.

We also assume that there is no deterioration at time zero, i.e.,

Z0 ¼ 0. Thus, the hazard rate at time t can be expressed as

follows:

hðt; ZtÞ ¼ h0ðtÞwðZtÞ; ð1Þ

and the survival function is given by

Pðn1 [ tjZs; 0� s� tÞ ¼ exp
�
�
Z t

0

h0ðsÞwðZsÞds
�
; ð2Þ

where n1 is the failure time of unit 1.

Only age information of the second main unit (unit 2) is

available, and its lifetime distribution is of a general type

denoted by f2ðtÞ, and n2 represents its failure time. Therefore,

the failure time of the system is denoted by n ¼ minðn1; n2Þ.
Unit 1 covariate process values (Z) are known only at

discrete time epochs ðD; 2D; . . .; nDÞ, where D is the inspection

interval. Using Eq. (1), the hazard rate at the nth inspection

epoch is given by:

hðnD; ZnDÞ ¼ h0ðnDÞwðZnDÞ: ð3Þ

The Z process is a continuous-time Markov chain, and its

instantaneous transition rates qij; i; j 2 X are defined by

qij ¼ lim
u!0þ

PðZtþu ¼ jjZt ¼ iÞ
u

\þ1; i 6¼ j 2 X

qii ¼ �
X
i 6¼j

qij:
ð4Þ

To model monotonic system deterioration, we assume that the

state process is non-decreasing with probability 1, i.e., qij ¼ 0

for all j\i.

We will show a detailed development for 3 states, which can

be further extended to a larger number of states. We assume

two operational states and one absorbing state for the covariate

process. In most practical applications (see, for example, Kim

et al, 2011), considering only two operational states is

sufficient for fault detection and CBM. The first phase is the

normal or healthy phase where the measurements of the

covariate process obtained from CM behave approximately as

a stationary process. However, when the degradation exceeds

certain level, the behavior of the CM measurements changes

substantially.

For our Markov covariate process with 3 states, the

transition rate matrix is given by:

Q ¼
�ðq01 þ q02Þ q01 q02

0 �q12 q12

0 0 0

2
64

3
75: ð5Þ

where qij ¼ miPij, for i 6¼ j: The transition probability matrix

PðtÞ ¼ ðPijðtÞÞi;j2X is obtained by solving the Kolmogorov

backward differential equations (Tijm, 1994), where

PðtÞ¼ ½PijðtÞ�

¼
e�m0t

q01ðe�m1t� e�m0tÞ
m0� m1

1� e�m0t�q01ðe�m1t�e�m0tÞ
m0� m1

0 e�m1t 1�e�m1t

0 0 1

2
6664

3
7775:

ð6Þ

After collecting the covariate value Z at each inspection epoch

and processing the information, the hazard rate of unit 1 is

obtained using Eq. (3), and then, proper action is taken. If the

hazard rate does not cross the preventive maintenance level

(U), then unit 1 is left operational without any intervention

until the next inspection epoch. Once the hazard rate exceeds

the preventive maintenance level (U) or when the age of unit 1

exceeds the predetermined maximum useful operating age T1,

then all units will be opportunistically replaced. Unit 1 failure

can occur at any time, and upon its failure, failure replacement

of unit 1 and preventive replacements of all the other units are

performed. The second main unit is preventively maintained

considering the age-based replacement policy. When unit 2

fails, or it is preventively replaced at the optimal maintenance

time T2, unit 1 hazard rate is updated at these times. If the

updated hazard rate exceeds the opportunistic maintenance

level (W), then unit 1 is opportunistically maintained; other-

wise, it is left operational. We consider the following cost

components in the model:

• CI : Inspection cost incurred whenever we take an

inspection.

• CP1: Preventive maintenance cost of unit 1, which takes TP
time units.

• CF1: Corrective maintenance cost of unit 1, which takes TF
time units.

• CP2: Preventive maintenance cost of unit 2.

• CF2: Replacement cost of unit 2.

• COP: Adjustment cost of (N � 2Þ units.
• CLP: Cost rate related to the loss of production incurred

when the production is stopped to perform preventive, or

corrective maintenance.

• Cs: Set-up cost incurred whenever the system is stopped.

Leila Jafari et al—Joint optimization of maintenance policy and inspection interval for a multi-unit series system



The objective is to find the optimal value of the opportunistic

and preventive maintenance levels ðW�;U�Þ, preventive

maintenance time of unit 2 (T2), as well as the inspection

interval D� such that the long-run expected average cost per

unit time is minimized. In the next section, we develop an

efficient computational algorithm in the semi-Markov decision

process (SMDP) framework to determine the optimal decision

variables ðW�;U�; T�
2 ;D

�Þ.

3. Computational algorithm in the SMDP framework

In this section, we develop the computational algorithm in the

SMDP framework. We start monitoring unit 1 at equidistant

inspection epochs. Suppose that at inspection time nD, unit 1 is
operational, i.e., n1 [ nD. Then, we compute unit 1 hazard rate

hðnD; ZnDÞ using Eq. (3). We partition the hazard rate interval

[0, H] into L subintervals, where H is a suitably selected upper

bound for the hazard rate. The number of subintervals

(L) should also be selected properly. The larger number of

subintervals causes more accurate results; however, it also

increases the computational time, so it should not be selected

very small to get sufficiently precise results in a reasonable

time.

Now, the definition of the state space in the SMDP is

required. We define the set S1 ¼ fð0; 0; 0Þg when both units

are new or ‘‘as good as new,’’ and S2 ¼ fðz; n; rÞ j z 2
X; n; r 2 N; hðnD; ZnDÞ\Ug, where the first component indi-

cates the value of the covariate at time nD and the second and

third components represent the age of unit 1 and unit 2,

respectively, i.e., (nD) and (rD), when unit 1 hazard rate is

below the preventive maintenance level. If the hazard rate of

unit 1 exceeds the preventive maintenance level (U), the

SMDP is defined to be in state PM2, and we define the set

S3 ¼ fPM2g. Similarly, when unit 2 failure occurs or upon its

preventive maintenance time (T2), then the hazard rate of unit

1 is updated. If the updated hazard rate crosses the oppor-

tunistic maintenance level, then the SMDP is defined to be in

state PM1, where S4 ¼ fPM1g.
Thus, the state space of the SMDP is given by

S ¼ S1 [ S2 [ S3 [ S4. Now, the following quantities should

be determined to obtain the optimal long-run expected average

cost (Tijm, 1994):

Pm;k ¼ the probability that unit 1 hazard rate will be in state

k given the current state is m, where m; k 2 S.

sm ¼ the expected sojourn time until the next decision

epoch given the current state is m 2 S.

Cm ¼ the expected cost incurred until the next decision

epoch given the current state is m 2 S.

Once all these quantities are defined, for a fixed preventive

maintenance level U, opportunistic maintenance level W, unit

2 preventive maintenance time T2, and inspection interval D,

the long-run expected average cost gðW ;U; T2;DÞ can be

obtained by solving the following system of linear equations

(Tijm, 1994):

Vm ¼ Cm � gðW ;U; T2;DÞsm þ
X
k2S

Pm;kVk; for m 2 S

Vl ¼ 0; for an arbitrarily selected state l 2 S:

ð7Þ

So, the optimal decision variables ðW�;U�; T�
2 ;D

�Þ and the

corresponding minimum long-run expected average cost per

unit time gðW�;U�; T�
2 ;D

�Þ can be found by iteratively solving

Eq. (7).

To derive the closed-form expressions for the SMDP

quantities, the calculation of the conditional reliability func-

tion is required. The conditional reliability function of unit 1

can be obtained by:

R1ðn; z; tÞ ¼ Pðn1 [ nDþ tjn1 [ nD; Z1D; . . .; ZnD ¼ zÞ: ð8Þ

Since the degradation state process is only observable at each

inspection epoch, it may transit at any time between two

inspection epochs (Wu and Ryan, 2010). We suppose that

covariate process can make transition from healthy state to

other states, whereas Wu and Ryan (2010) considered the

sequential degradation, i.e., the covariate process can only

make transitions from state i to iþ 1. Therefore, conditional

reliability function can be rewritten as follows:

R1ðn; z; tÞ ¼ E
h
exp

�
�
Z nDþt

nD
h0ðsÞwðZsÞds

�
jZnD ¼ z

i
: ð9Þ

The above equation can be evaluated based on the different

values of z and conditioning on the covariate process

sojourn times in the healthy and unhealthy states (see

‘‘Appendix 1’’).

3.1. Transition probabilities

This section is devoted to the derivation of the transition

probabilities for the system states.

1. Assume that the system is in the state ðz; ðn� 1Þ; ðr � 1ÞÞ,
where hððn� 1ÞD; zÞ\U, nD\T1, and rD\T2. Then, the

transition probability to the state ðz0; n; rÞ where

hðnD; z0Þ\U and unit 2 works properly, is given by:

Pðz;ðn�1Þ;ðr�1ÞÞ;ðz0;n;rÞ ¼ PðZnD ¼ z0; n1 [ nD; n2 [ rD j
nD\T1; rD\T2; n1 [ ðn� 1ÞD; n2 [ ðr � 1ÞD;
Zðn�1ÞD ¼ zÞ:

ð10Þ

It is the probability that the value of the hazard rate will

not exceed the preventive maintenance level U and the

system will not fail in the next inspection interval. Then,

this probability can be calculated as follows:
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Pðz;ðn�1Þ;ðr�1ÞÞ;ðz0;n;rÞ ¼ PðZnD ¼ z0; n1 [ nD; n2 [ rD j

� Pðn1 [ nDjZnD ¼ z0; n1 [ ðn� 1ÞDÞ � R2ðrDÞ
R2ððr � 1ÞDÞ

¼ Pz;z0 ðDÞ � R1ððn� 1Þ; z;DÞ � R2ðrDÞ
R2ððr � 1ÞDÞ ;

ð11Þ

where the first term can be derived from Eq.(6) and the

second and third terms are reliability functions of unit 1

and unit 2, respectively.

2. If the hazard rate crosses the preventive maintenance level

hðnD; z0Þ �U, or the age of unit 1 exceeds the predetermined

ageT1,where rD\T2, then the systemgoes toPM2 state and

the corresponding transition probability is given by:

Pðz;ðn�1Þ;ðr�1ÞÞ;ðPM2Þ

¼

P
z0PðZnD¼z0jn1[nD;n1[ðn�1ÞD;Zðn�1ÞD¼zÞ

�R1ððn�1Þ;z;DÞ� R2ðrDÞ
R2ððr�1ÞDÞ; nD\T1

R1ððn�1Þ;z;DÞ� R2ðrDÞ
R2ððr�1ÞDÞ; nD�T1:

8>>>>>><
>>>>>>:

¼

P
z0Pz;z0 ðDÞ�R1ððn�1Þ;z;DÞ� R2ðrDÞ

R2ððr�1ÞDÞ;

nD\T1

R1ððn�1Þ;z;DÞ� R2ðrDÞ
R2ððr�1ÞDÞ; nD�T1:

8>>>>><
>>>>>:

ð12Þ

where z0 are the covariate values that cause the hazard rate

to exceed the preventive maintenance level.

3. When the age of unit 2 exceeds its preventive maintenance

time T2, and if the hazard rate of unit 1 crosses the

opportunistic maintenance level W, then all units are

preventively replaced, and we have:

Pðz;ðn�1Þ;ðr�1ÞÞ;ðPM1Þ ¼ PðPM1; n1 [ nD; n2 [ rD j
nD\T1; rD�T2; n1 [ ðn� 1ÞD; n2 [ ðr � 1ÞD;
Zðn�1ÞD ¼ zÞ ¼

X
z0

Pz;z0 ðDÞ � R1ððn� 1Þ; z; tÞ

� R2ðrDÞ
R2ððr � 1ÞDÞ

ð13Þ

where z0 are the covariate values that cause the hazard rate

to exceed the opportunistic maintenance level. Otherwise,

unit 1 is left operational, and the rest of units are

preventively maintained. The corresponding transition

probability is obtained as below:

Pðz;ðn�1Þ;ðr�1ÞÞ;ðz0;n;1Þ ¼ PðZnD ¼ z0; n1 [ nD; n2 [ rD j
nD\T1; rD� T2; n1 [ ðn� 1ÞD; n2 [ ðr � 1ÞD;
Zðn�1ÞD ¼ zÞ ¼ Pz;z0 ðDÞ � R1ððn� 1Þ; z; tÞ

� R2ðrDÞ
R2ððr � 1ÞDÞ ð14Þ

where z0 is the covariate value that causes the hazard rate

not to exceed the opportunistic maintenance level.

4. When unit 2 failure occurs, the hazard rate is updated, and

two possibilities can occur:

(a) If the updated hazard rate is above the opportunistic

maintenance level (W), then the transition probability

is given by:

Pðz;ðn�1Þ;ðr�1ÞÞ;ðPM1Þ ¼ PðPM1; n02\n01; n2\rD j
nD\T1; rD\T2; n1 [ ðn� 1ÞD; n2 [ ðr � 1ÞD;

Zðn�1ÞD ¼ zÞ ¼
Z D

0

X
z0

Pz;z0 ðtÞ � R1ððn� 1Þ; z; tÞ

� f2ðtjðr � 1ÞÞdt;
ð15Þ

where n01 ¼ n1 � ðn� 1ÞD; n02 ¼ n2 � ðr � 1ÞD, z0

are the covariate values that cause the hazard rate

to exceed the opportunistic maintenance level and

f2ðt j ðr � 1ÞÞ

¼ d

dt
Pðn2 �ððr � 1ÞDþ tÞ j n2 [ ðr � 1ÞDÞ:

ð16Þ

(b) When the updated hazard rate is below the oppor-

tunistic maintenance level (W), the transition proba-

bility is obtained as follows:

Pðz;ðn�1Þ;ðr�1ÞÞ;ðz0;n;1Þ ¼ PðZnD ¼ z0; n02\n01; n2\rD j
nD\T1; rD\T2; n1 [ ðn� 1ÞD; n2 [ ðr � 1ÞD;

Zðn�1ÞD ¼ zÞ ¼
Z D

0

Pz;z0 ðtÞ � R1ððn� 1Þ; z; tÞ

� f2ðtjðr � 1ÞÞdt;
ð17Þ

where z0 is the covariate value that causes the hazard

rate not to exceed the opportunistic maintenance

level.

5. When unit 1 is in the PM1 or PM2 state, then mandatory

replacement of unit 1 is performed and the system goes

back to state (0, 0, 0). We have:

PðPM1Þ;ð0;0;0Þ ¼ PðPM2Þ;ð0;0;0Þ ¼ 1: ð18Þ

6. When unit 1 failure happens, then the next state will be

(0, 0, 0) and the transition probability Pðz;ðn�1Þ;ðr�1ÞÞ;ð0;0;0Þ
from state ðz; ðn� 1Þ; ðr � 1ÞÞ to state (0, 0, 0), where

hððn� 1ÞD; zÞ\U, can be calculated as follows:

Pðz;ðn�1Þ;ðr�1ÞÞ;ð0;0;0Þ ¼ 1� R1 ðn� 1Þ; z; tð Þ: ð19Þ

In the next two sections, the formulas for the calculation

of the expected sojourn times and expected cost are

developed.
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3.2. Expected sojourn times

The expected sojourn time incurred until the next decision

epoch for the state (z, n, r) where hðnD; zÞ\U can be obtained

by using Theorem 1.

Theorem 1 The expected sojourn time given the state is

(z, n, r) where hðnD; zÞ\U is given by:

sðz;n;rÞ ¼ D �
X
z0

Pðz;n;rÞ;ðz0;ðnþ1Þ;ðrþ1ÞÞ þ D

�
X
z0

Pðz;n;rÞ;ðz0;ðnþ1Þ;1Þ þ
Z D

0

t �
X
z0

Pz;z0 ðtÞ � R1ðn; z; tÞ

� f2ðtjrÞdt þ D
�X

z0
Pz;z0 ðDÞ � R1ðn; z;DÞ �

R2ððr þ 1ÞDÞ
R2ðrDÞ

� Iðnþ1ÞD\T1 þ R1ðn; z;DÞ �
R2ððr þ 1ÞDÞ

R2ðrDÞ
� Iðnþ1ÞD� T1

�

þ D �
X
z0

Pz;z0 ðDÞ � R1ðn; z;DÞ �
R2ððr þ 1ÞDÞ

R2ðrDÞ
þ D

� Pðz;n;rÞðz0;ðnþ1Þ;1Þ þ
Z D

0

ðt þ TFÞ � 1� R1 n; z; tð Þ
� �

dt:

Proof See ‘‘Appendix 2.’’ h

If the age of unit 1 exceeds the predetermined age (T1) or

hazard rate crosses the preventive maintenance level, then the

sojourn time in PM2 state will be:

sPM2 ¼ TP; ð20Þ

whereas upon unit 2 failure or its preventive maintenance time

ðT2Þ, if unit 1 updated hazard rate is between the opportunistic

and preventive maintenance level, then the opportunistic

maintenance will be performed and the sojourn time in PM1

state will be as follows:

sPM1 ¼ TP: ð21Þ

3.3. Expected cost

The average cost incurred until the next decision epoch for

state (z, n, r) where it does not cross the preventive mainte-

nance level, can be obtained by using Theorem 2.

Theorem 2 The average cost given the state is (z, n, r)

where hðnD; zÞ\U is given by:

Cðz;n;rÞ ¼CI �
X
z0

Pðz;n;rÞðz0;ðnþ1Þ;ðrþ1ÞÞ þðCsþCF2þCOPÞ

�
X
z0

Pðz;n;rÞðz0;ðnþ1Þ;1Þ þðCsþCF2þCOPÞ �
Z D

0

X
z0

Pz;z0 ðtÞ

�R1ðn;z;tÞ � f2ðt j rÞdtþðCsþCP1þCOPÞ �
�X

z0
Pz;z0 ðDÞ

�R1ðn;z;DÞ �
R2ððrþ1ÞDÞ

R2ðrDÞ
þR1ðn;z;DÞ �

R2ððrþ1ÞDÞ
R2ðrDÞ

�

þðCsþCP2þCOPÞ � ð
X
z0

Pz;z0 ðDÞ �R1ðn;z;DÞ

�R2ððrþ1ÞDÞ
R2ðrDÞ

þðCsþCP2þCOPÞ �Pðz;n;rÞðz0;ðnþ1Þ;1Þ

þðCsþCF1þCP2þCOPþCLPTFÞ �
Z D

0

1�R1 n;z; tð Þ
� �

dt:

ð22Þ

Proof See ‘‘Appendix 3.’’ h

The average cost incurred in PM2 state is as follows:

CPM2 ¼ CLP:TP þ CP2: ð23Þ

Upon unit 1 opportunistic maintenance, the system will be in

PM1 state with the expected cost:

CPM1 ¼ CLP:TP þ CP1: ð24Þ

Now, all the SMDP quantities have been determined. In order

to find the optimal policy in the SMDP framework, different

approaches have been introduced. One of the approaches

which is widely used in various applications is the policy

iteration algorithm which has been applied widely [e.g., in

health care (Schaefer et al, 2004), queuing systems (Xia et al,

2009), and airline industry (Gosavi, 2004)]. The policy

iteration algorithm is an efficient algorithm that enables to

obtain the optimal policy very fast (see Tijm, 1994, p. 171).

We will apply this algorithm by choosing the initial policy to

find the corresponding relative values and the average cost and

then iteratively repeat the algorithm until the optimal policy is

found.

Before proceeding to experimental section where we use

real data, we first derive a formula for the mean residual life

which is an important statistic in practical applications.

4. Residual life prediction

In this section, we derive the explicit formula for the system

mean residual time to failure.

Lemma 1 For any state (z, n, r), the mean residual life

MRLðz;n;rÞ is given by:

MRLðz;n;rÞ ¼
Z 1

0

R1ðn; z; tÞ �
R2ðrDþ tÞ
R2ðrDÞ

dt: ð25Þ

Proof Suppose n02 ¼ n2 � rD and n01 ¼ n1 � nD, then for any

t 2 Rþ, the mean residual life is given by:

Journal of the Operational Research Society



E
n
n j n1 [ nD; n2 [ rD; z

o

¼
Z 1

0

P
�
n01 [ t; n02 [ t j n01 [D; n02 [D; z

�
dt

¼
Z 1

0

R1ðn; z; tÞ �
R2ðrDþ tÞ
R2ðrDÞ

dt:

where n ¼ minðn1; n2Þ and term Eð�Þ denotes expectation
operator. The conditional reliability function of unit 1 is

provided by Eq. (9). h

5. Experimental results

We study real diagnostic data of the heavy hauler trucks in a

mining company considering transmission and clutch as the

two main units. Transmission caused frequent unpredicted

failures and was therefore subject to CM, and the age

information of the second main unit (clutch) is available.

The remaining units such as bearings, engine belt, radial shaft

seal, and rings are considered cheaper and easily adjustable or

replaceable units when the opportunity occurs. During the

operational life of the transmissions, oil data measurements

were collected. The total number of recorded histories was 51

which consists of 20 failure and 31 suspension histories.

The application of the EXAKT software (Banjevic and

Jardine, 2006) suggested that iron was the most significant

covariate in the PH model. The baseline hazard rate is Weibull,

h0ðtÞ ¼ b1t
b1�1

a
b1
1

, where a1 ¼ 21632:3 and b1 ¼ 1:78563 and

wðZtÞ ¼ expð0:0468681zðtÞÞ.
The iron covariate values are determined through CM at

equidistant inspection epochs, and the deterioration process

is described by a continuous-time Markov process with

state space X ¼ f0; 1; 2g. The coded states 0 and 1 represent

the healthy and warning operational states, respectively, and

state 2 corresponds to the degraded absorbing state. The

following ranges for iron values were considered: {0–20, 20–

70, 70 and over} where the coded values 0, 1, and 2

represent the values 10, 45, and 85, respectively. The

transition rate matrix of the iron covariate is obtained based

on the modified states and the analysis which was performed

in Banjevic and Jardine (2006), Makis et al (2006) and Kim

et al (2011) as follows:

Q� 104 ¼
�3:506 3:586 0:004

0 �6:414 6:414

0 0 0

2
64

3
75:

The age information of clutch is available, and its lifetime

distribution is Weibull with parameters a2 ¼ 18730 and

b2 ¼ 2:88. The system preventive and replacement time

parameters are given by: TP ¼ 1 and TF ¼ 1 hour, where TP
is the time to perform preventive maintenance and TF is the

time to recover the system upon transmission failure.

The following costs will be considered in the experiment:

CI ¼ 10;CLP ¼ 100;CF1 ¼ 6780;

CP1 ¼ 1560;CP2 ¼ 500;CF2 ¼ 1200;COP ¼ 100;Cs ¼ 350.

We have computed the optimal inspection interval and the

opportunistic and preventive maintenance levels minimizing

the long-run expected average cost per unit time. The

maximum value of the hazard rate H ¼ 6:4� 10�3 is derived

based on z ¼ 2 and the age of a transmission equal to 34500

hours when it is working in the healthy state (z ¼ 0) and its

reliability function at this age is 0.1. Then, the discretization

level 30 is chosen (L ¼ 30). The results are obtained using

Eq. (7), and the policy iteration algorithm is shown in Table 1.

An example of the hazard rate plot with the opportunistic

and preventive maintenance levels is shown in Figure 1 for

one of the failure histories.

The green stars show the values of the hazard rate at each

inspection epoch. Clutch failure occurs before the eighth

inspection epoch, and then, the hazard rate is updated at this

epoch, as shown by red circle in Figure 1. The updated hazard

rate exceeds the opportunistic maintenance level (W), so all

units are replaced opportunistically.

Figure 2 shows the value of the reliability function at each

inspection epoch, which is decreasing and it goes to zero upon

clutch failure. Also, the reliability function decreases consid-

erably from inspection epoch 5 to 6, because the oil analysis

revealed that the covariate (iron) is in the warning state.

Finally, Figure 3 illustrates the MRL of the system. As it is

shown, when the updated hazard rate of the transmission

exceeds the opportunistic maintenance level, the MRL value is

low and it is the time to opportunistically maintain both units

in the system.

Since the exact values of the cost components may be

difficult to determine in practical applications, sometimes the

estimates are provided. Therefore, to investigate the perfor-

mance of the proposed model, using different cost parameters,

a designed experiment is performed. The long-run expected

average cost per unit time is the response variable to identify

which cost parameters and their interactions are significant

using a 2k factorial design. We have selected five cost

parameters which include inspection cost CI , lost sales cost

CLP, failure cost ratio of transmission CF1

CP1
, failure cost ratio of

clutch CF2

CP2
, and set-up cost Cs. We included the adjustment cost

of ðN � 2Þ units in the set-up cost parameter to decrease the

Table 1 Optimal maintenance policy for a multi-unit series
system using PHM

Decision variables Optimal value

Opportunistic maintenance level (W�) 8.5315 �10�4

Preventive maintenance level (U�) 0.0013
Inspection interval (D�) 590
Preventive maintenance time of unit 2 (T�

2 ) 8260
Optimal average cost (g�) 0.3797

Leila Jafari et al—Joint optimization of maintenance policy and inspection interval for a multi-unit series system



number of factors and performed a full factorial designed

experiment. We choose two levels for each factor which are

summarized in Table 2.

We obtained the response variable values considering

different combinations of the factor levels using the proposed

SMDP algorithm. The designed experiment analysis reveals

that none of the third- and higher-order interactions is

significant. Figure 4 shows the normal probability plot of all

the factors and their interactions.

The plot indicates that the cost ratio of the first unit

(transmission), set-up cost, and interaction between the first

unit failure cost ratio with the second unit (clutch) cost ratio,

and the lost sales cost are identified as significant factors and

the rest are nonsignificant ones. However, the second-order

interactions (CD and CE) are very close to the noise line in the

normal plot, and clearly, the first unit cost ratio and the set-up

cost are more significant. Thus, it is interesting to further

investigate the effect of these factors on the decision variables

by performing sensitivity analysis.

Table 3 shows the optimal policies and the average costs for

varying set-up cost. When the set-up cost increases, the

opportunistic maintenance occurs more frequently to jointly

maintain both units. The results indicate that the inspection

frequency increases, and the opportunistic maintenance level

decreases. It is interesting to observe that for the values of the

set-up cost greater than 600, the opportunistic level remains

constant, but the inspection interval decreases because the

stopping of the system becomes more costly.

Another significant factor is the failure cost ratio of the first

main unit (transmission). The results in Table 4 indicate that

when this ratio increases, inspection is performed more

frequently and the preventive maintenance level decreases as

well to reduce costly failures, because the higher ratio means

that the failure cost is considerably higher than the preventive

maintenance cost.

5.1. Comparison with other policies

In this section, we compare the performance of our proposed

maintenance policy with other policies, (1) considering just a

preventive maintenance policy without opportunistic mainte-

nance and (2) the corrective maintenance policy.

First, we investigate the effect of the opportunistic main-

tenance level on the optimal maintenance cost for the proposed

system.

For the policy without opportunistic maintenance level,

there is no opportunity to perform PM on transmission upon
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Figure 2 Plot of the reliability function at each inspection
epoch.
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Figure 3 Mean residual life (MRL) of the proposed maintenance
model.

Table 2 Factors used in the designed experiment

Design factors

Level A B C D E
CI CLP

CF1

CP1

CF2

CP2
Cs

Low (-) 2 20 3 1.5 200
High (+) 20 200 6 4 1000

Figure 1 Graphical representation of the hazard rate evolution
using the proposed maintenance model.
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clutch failure. As shown in Table 5, the minimum long-run

expected average cost is equal to 0.4602 so the results show

that the policy with the opportunistic maintenance level is

more economical than the optimal maintenance policy without

the opportunistic maintenance level.

Next, we compare the proposed approach with the well-

known corrective maintenance policy which does not take the

CM information into account. In this case, the maintenance

activities are performed on each unit separately, without

considering economic dependency between the units. Since the

actions are performed independently, the set-up cost is

incurred each time when a maintenance action is performed

and also the lack of the condition monitoring information

causes that the deterioration level of transmission is not taken

into account when making maintenance decisions. The optimal

average cost for the corrective maintenance policy is 0.6182,

which is a significant increase (38.57%) and again confirms

the superiority of the proposed maintenance policy using

PHM.

6. Conclusions and future research

In this paper, we have developed a model and a computational

algorithm that can be used to determine the optimal mainte-

nance policy for a multi-unit series system where one unit is

subject to condition monitoring, while just the age information

is available for unit 2, which has a general distribution. The

other units are adjusted or replaced each time the system is

maintained. Unit 1 deterioration is described by a PH model,

where the covariate evolution is modeled as a continuous-time

Markov process. We have developed a computational algo-

rithm in the SMDP framework to minimize the long-run

expected average cost per unit time for the whole system. A

real application of the proposed model using oil data from a

mining company has been provided. Also, the comparison of

the opportunistic maintenance policy using PHM with other

policies (with no opportunistic maintenance level and the

corrective maintenance policy) confirms the superiority of the

proposed model.

We also suggest a few possible directions for future

research. First, a more general model can be developed by

considering a larger number of states for unit 1 covariate

process and increasing the number of units to which preventive

maintenance is applied. Another extension could be to

consider more general distributions for the sojourn times of

the covariate process in the operational states, such as Erlang

or Weibull distribution. We also assumed that the preventive

maintenance actions bring the system back to the ‘‘as good as

new’’ condition, while there are some papers considering

different assumptions, e.g., Wang and Christer (2000) where a

preventive action as a maintenance activity may restore the

system to a better or possibly worse condition depending on

the quality and nature of the action, or Makis and Jardine

(1992) considered a model incorporating imperfect repair to

find the optimal replacement policy. Although the cost models

are more common in the maintenance literature, availability

Figure 4 Normal probability plot of the effect estimates for all
factors and their interactions.

Table 3 Results of the sensitivity analysis considering varying
set-up cost

CS 200 400 600 800 1000

W� � 10�4 8.5315 8.5315 6.3986 6.3986 6.3986

U� � 10�4 13 13 13 11 11

D� 620 590 560 520 500
T�
2 8060 8260 7840 8320 8500

g� 0.3670 0.3714 0.3846 0.4012 0.4253

Table 4 Results of the sensitivity analysis considering varying
first unit failure cost ratio

CF1
CP1

3 4 5 6

W� � 10�4 8.5315 8.5315 8.5315 6.3986

U� � 10�4 15 13 11 11

D� 550 560 530 480
T�
2 7700 7840 7950 8160

g� 0.2741 0.3431 0.4189 0.5086

Table 5 Comparison with other policies

Proposed model No opportunistic maintenance Corrective maintenance policy

Preventive maintenance level (U�) 0.0013 0.0015 –
Optimal inspection interval (D�) 590 550 –
Optimal average cost (g�) 0.3797 0.4602 0.6182

Leila Jafari et al—Joint optimization of maintenance policy and inspection interval for a multi-unit series system



models are preferable in some situations where it is difficult to

estimate the cost parameters. (e.g., Jiang et al, 2013), which

can be another direction for future research.
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Appendix 1: Reliability function of unit 1

Let assume that the sojourn time of the covariate process Z in

the healthy and unhealthy states i ¼ 0; 1 is exponentially

distributed with parameters mi.

R1ðn; z; tÞ ¼ Pðn[ nDþ t j n[ nD; Z1D; . . .; ZnD; ZnD ¼ zÞ

¼ E
h
exp

�
�
Z nDþt

nD
h0ðsÞwðZsÞds

�
j ZnD ¼ z

i

ð26Þ

If z ¼ 0, then Eq. (26) can be written as follows:

R1ðn;0; tÞ ¼
Z 1

0

E
h
exp

�
�
Z nDþt

nD
h0ðsÞwðZsÞds

�
j t0 ¼ u

i

� p01 � m0e�m0udu

þ
Z 1

0

E
h
exp

�
�
Z nDþt

nD
h0ðsÞwðZsÞds

�
j t0 ¼ u

i

� p02 � m0e�m0udu

ð27Þ

where t0 is the time that the covariate process is in the healthy

state. The first part of the above equation can be extended by

splitting the integral, as follows:

Z 1

t

E
h
exp

�
�
Z nDþt

nD
h0ðsÞwðZsÞds

�
jt0¼u

i
�p01 �m0e�m0udu

þ
Z t

0

E
h
exp

�
�
Z nDþt

nD
h0ðsÞwðZsÞds

�
jt0¼u

i
�p01 �m0e�m0udu

¼
Z 1

t

exp
�
�
Z nDþt

nD
h0ðsÞwð0Þds

�
�p01 �m0e�m0udu

þ
Z t

0

E
h
exp

�
�
Z nDþt

nD
h0ðsÞwðZsÞds

�
j t0¼u;Zt0 ¼1

i

�p01 �m0e�m0udu

ð28Þ

The second part of Eq. (28) can be determined by conditioning

on the sojourn time in the warning state, so we have:

Z t

0

Z 1

u

E
h
exp

�
�
Z nDþt

nD
h0ðsÞwðZsÞds

�
j t0 ¼ u;Zt0 ¼ 1;

t1 ¼ v
i
�p01 � m0e�m0u � m1e�m1vdvdu

¼
Z t

0

Z t

u

exp
�
�ð

Z nDþu

nD
h0ðsÞwð0Þdsþ

Z nDþv

nDþu

h0ðsÞwð1Þds

þ
Z nDþt

nDþv

h0ðsÞwð2ÞdsÞ
�
�p01 � m0e�m0u � m1e�m1vdvdu

þ
Z t

0

Z 1

t

exp
�
�ð

Z nDþu

nD
h0ðsÞwð0Þdsþ

Z nDþt

nDþu

h0ðsÞwð1ÞdsÞ
�

�p01 � m0e�m0u � m1e�m1vdvdu

The second part of Eq. (27) can be written by splitting the

integral as follows:

Z 1

t

E
h
exp

�
�
Z nDþt

nD
h0ðsÞwðZsÞds

�
jt0 ¼ u

i
�p02 � m0e�m0udu

þ
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0
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�

�p02 � m0e�m0udu

So, the reliability function in Eq. (27) is given by:

R1ðn;0; tÞ¼ exp �
Z nDþt

nD
h0ðsÞwð0Þds

� �
e�m0t

þ
Z t

0

Z t

u

exp �
Z nDþu

nD
h0ðsÞwð0Þdsþ

Z nDþv

nDþu

h0ðsÞwð1Þds
��

þ
Z nDþt

nDþv

h0ðsÞwð2Þds
��

�p01 � m0e�m0u � m1e�m1vdvdu

þ
Z t

0

exp �
Z nDþu

nD
h0ðsÞwð0Þdsþ

Z nDþt

nDþu

h0ðsÞwð1Þds
� �� �

�p01 � m0e�m0ue�m1tdu

Z t

0

exp �
Z nDþu

nD
h0ðsÞwð0Þds

��

þ
Z nDþt

nDþu

h0ðsÞwð2Þds
��

�p02 � m0e�m0udu

where p01 ¼ q01
q01þq02

, and p02 ¼ q02
q01þq02

.

When z ¼ 1, then Eq. (26) is given by:

R1ðn; 1; tÞ ¼
Z 1

0

E
h
exp

�
�
Z nDþt

nD
h0ðsÞwðZsÞds

�
jt1 ¼ v

i
� m1

e�m1vdv ¼
Z 1

t

exp
�
�
Z nDþt

nD
h0ðsÞwð1Þds

�
� m1 � e�m1vdv

þ
Z t

0

E
h
exp

�
�
Z nDþt

nD
h0ðsÞwðZsÞds

�
jt1

¼ v; Zt1 ¼ 2
i
m1 � e�m1vdv

¼ exp
�
�
Z nDþt

nD
h0ðsÞwð1Þds

�
� e�m1t

þ
Z t

0

exp
�
�
�Z nDþv

nD
h0ðsÞwð1Þds

þ
Z nDþt

nDþv

h0ðsÞwð2Þds
��

m1 � e�m1vdv:
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Finally, the conditional reliability when z ¼ 2 is as follows:

R1ðn; 2; tÞ ¼ E
h
exp

�
�
Z nDþt

nD
h0ðsÞwðZsÞds

�
j Zs ¼ 2

i

¼ exp
�
�
Z nDþt

nD
h0ðsÞwð2Þds

�
:

Appendix 2: Proof of Theorem 1

Suppose n01 ¼ n1 � nD; and n02 ¼ n2 � rD, the expected

sojourn time given the state is (z, n, r) where hððn�
1ÞD; zÞ\U is given by:

sðz;n;rÞ ¼EðSojourn timejn1[nD;n2[rD;nD\T1;

rD\T2;hðnD;zÞ\UÞ¼
X
z0

EðSojourn timejn1[nD;

n2[rD;nD\T1;rD\T2;hðnD;zÞ\U;n1[ðnþ1ÞD;
n2[ðrþ1ÞD;ðnþ1ÞD\T1;ðrþ1ÞD\T2;

hððnþ1ÞD;z0Þ\UÞ �Pðz;n;rÞðz0;ðnþ1Þ;ðrþ1ÞÞ þ
X
z0

EðSojourn

timejn1[nD;n2[rD;hðnD;zÞ\U;nD\T1;rD\T2;

n02\n01;n2\ðrþ1ÞD;ðnþ1ÞD\T1;ðrþ1ÞD\T2;

hðnDþn02;z
0Þ\WÞ �Pðz;n;rÞðz0 ;ðnþ1Þ;1Þ þEðSojourn timej

n1[nD;n2[rD;nD\T1;rD\T2;hðnD;zÞ\U;n02\n01;

n2\ðrþ1ÞD;ðnþ1ÞD\T1;ðrþ1ÞD\T2;hðnDþn02;z
0Þ�WÞ

�Pðz;n;rÞðPM1Þ þEðSojourn timejn1[nD;n2[rD;

hðnD;zÞ\U;n1[ðnþ1ÞD;n2[ðrþ1ÞD;ðnþ1ÞD\T1;

ðrþ1ÞD\T2;hððnþ1ÞD;z0Þ�UÞ �Pðz;n;rÞðPM2Þ þEðSojourn
timejn1[nD;n2[rD;nD\T1;rD\T2;hðnD;zÞ\U;

n1[ðnþ1ÞD;n2[ðrþ1ÞD;ðnþ1ÞD�T1;ðrþ1ÞD\T2Þ
�Pðz;n;rÞðPM2Þ þEðSojourn timejn1[nD;n2[rD;nD\T1;

rD\T2;n1[ðnþ1ÞD;n2[ðrþ1ÞD;ðnþ1ÞD\T1;

ðrþ1ÞD�T2;hððnþ1ÞD;zÞ�WÞ �Pðz;n;rÞðPM1Þþ
EðSojourn timejn1[nD;n2[rD;nD\T1;rD\T2;

n1[ðnþ1ÞD;n2[ðrþ1ÞD;ðnþ1ÞD\T1;ðrþ1ÞD�T2;

hððnþ1ÞD;zÞ\WÞ �Pðz;n;rÞðz0;ðnþ1Þ;1Þ þEðSojourn
timejn1[nD;n2[rD;nD\T1;rD\T2;hðnD;zÞ\U;

n01\n02;n1\ðnþ1ÞD;ðnþ1ÞD\T1Þ �Pðz;n;rÞð0;0;0Þ

¼D �
X
z0

Pðz;n;rÞðz0;ðnþ1Þ;ðrþ1ÞÞ þD �
X
z0

Pðz;n;rÞðz0;ðnþ1Þ;1Þ

þ
Z D

0

t �
X
z0

Pz;z0 ðtÞ �R1ðn;z;tÞ � f2ðtjrÞdt

þD �
�X

z0
Pz;z0 ðDÞ �R1ðn;z;DÞ �

R2ððrþ1ÞDÞ
R2ðrDÞ

� Iðnþ1ÞD\T1

þR1ðn;z;DÞ �
R2ððrþ1ÞDÞ

R2ðrDÞ
� Iðnþ1ÞD�T1

�
þD �

X
z0

Pz;z0 ðDÞ
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R2ððrþ1ÞDÞ

R2ðrDÞ
þD �

X
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þ
Z D

0

ðtþTFÞ � 1�R1 n;z;tð Þ
� �

dt:

Appendix 3: Proof of Theorem 2

Suppose n01 ¼ n1 � nD; and n02 ¼ n2 � rD, then the expected

cost given the state is (z, n, r) wherehððn� 1ÞD; zÞ\U is

given by:

Cðz;n;rÞ ¼EðCostjn1[nD;n2[rD;nD\T1;rD\T2;

hðnD;zÞ\UÞ¼
X
z0

EðCostjn1[nD;n2[rD;nD\T1;

rD\T2;hðnD;zÞ\U;n1[ðnþ1ÞD;n2[ðrþ1ÞD;
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n2[ðrþ1ÞD;ðnþ1ÞD\T1;ðrþ1ÞD\T2;hððnþ1ÞD;z0Þ�UÞ
�Pðz;n;rÞðPM2Þ þEðCostjn1[nD;n2[rD;nD\T1;rD\T2;

hðnD;zÞ\U;n1[ðnþ1ÞD;n2[ðrþ1ÞD;ðnþ1ÞD�T1;

ðrþ1ÞD\T2Þ �Pðz;n;rÞðPM2Þ þEðCostjn1[nD;n2[rD;

nD\T1;rD\T2;n1[ðnþ1ÞD;n2[ðrþ1ÞD;
ðnþ1ÞD\T1;ðrþ1ÞD�T2;hððnþ1ÞD;zÞ�WÞ
�Pðz;n;rÞðPM1Þ þEðCostjn1[nD;n2[rD;nD\T1;rD\T2;

n1[ðnþ1ÞD;n2[ðrþ1ÞD;ðnþ1ÞD\T1;ðrþ1ÞD�T2;

hððnþ1ÞD;zÞ\WÞ �Pðz;n;rÞðz0;ðnþ1Þ;1Þ þEðCostj
n1[nD;n2[rD;nD\T1;rD\T2;hðnD;zÞ\U;
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