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We study different possibilities to use adaptive optics (AO) and phase diversity (PD) together in a jointly
optimized system. The potential of the joint system is demonstrated through numerical simulations. We
find that the most significant benefits are obtained from the improved deconvolution of AO-corrected
wavefronts and the additional wavefront sensor (WFS) information that reduces the computational de-
mands of PD algorithms. When applied together, it is seen that the image error can be reduced by 20%
compared to traditional PD, working with one focused and one defocused camera image, and the
computational load is reduced by a factor of 20 compared to a more reliable PD algorithm requiring more
camera images. In addition, we find that the system performance can be optimized by adjusting the
magnitude of the applied diversity wavefronts. © 2011 Optical Society of America
OCIS codes: 100.3010, 100.3190, 100.1830, 010.1080.

1. Introduction

When distant objects are imaged through turbulent
air, such as in ground-based astronomy or with long-
range surveillance cameras, the image quality suf-
fers from distortions of the wavefronts after having
passed through the turbulent atmosphere. Well-
established techniques exist to compensate these
distortions: a set of short-exposure images can be
postprocessed to achieve higher image quality, or
the distortions can be corrected in real-time using
adaptive optics (AO) [1].

These two methods to improve the image quality
rely on different principles: one tries to estimate
the point-spread functions (PSF) of the distorted
images to reconstruct the original object through de-
convolution, and the other uses techniques to obtain
a better PSF by correcting the distorted wavefront

(WF) in real-time. Both the PSF estimation techni-
ques and AO have been developed independently
over several decades with good results.

Both techniques can be applied in a wide range of
conditions: from pointlike dim sources of nighttime
astronomy to bright, extended objects confronted
when imaging the solar surface. However, particu-
larly in the latter case, the current state-of-the-art
systems are still having difficulties reaching the dif-
fraction limited image quality in difficult circum-
stances, at visible wavelengths and when imaging
wide fields of view.

Postprocessing techniques matured before technol-
ogy had advanced enough to realize the more de-
manding real-time AO. One of the most powerful
techniques, applicable also for infinitely extended
sources, is phase diversity (PD). It makes it possible
to invert the imaging problem—solve for the dis-
torting WFs and PSFs from intensity images—by
introducing known phase differences between simul-
taneous images. The technique was proposed in the
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1980s [2], originally to be used with two images, one
focused and another having a known defocus. How-
ever, in many cases, two images are not sufficient,
since the observed images do not necessarily contain
information to reconstruct the original object for all
spatial frequencies.

Therefore, the PD methods have been developed
further by several authors to include information
also from multiple frames [3–5] and multiple objects
(in practice the solar surface at different wave-
lengths) [6,7]. In addition, recent work has been done
by others, for instance, to illustrate how the WF a
priori information can be taken into account to in-
crease the robustness of the reconstruction [8], or
to demonstrate that the PD methods can be im-
proved also by modeling the scintillation [9]. How-
ever, PD techniques remain computationally very
demanding, and thus their use is mostly restricted
to postprocessing.

Although AO has been successfully used in solar
astronomy [10], difficult issues are faced to further
improve AO performance. For instance, to measure
the WF accurately, it is necessary to increase
the sampling, most often by decreasing the Shack–
Hartman wavefront sensor (SH-WFS) subaperture
size. This, however, increases the blurring of the
SH-WFS spots, and thus the correlation tracking be-
comes more difficult since the solar granules cannot
be resolved. Therefore, solar AO has a fundamental
limit in improving the image contrast. Besides, a
simple, single conjugate AO system is also limited
by the size of the anisoplanatic patch, which makes
it difficult to correct a large field of view without com-
plicated systems like multiconjugate adaptive optics
(MCAO) [11].

The combination of AO and postprocessing techni-
ques like PD, however, has not been well studied
before. A simple AO system typically works in a
closed-loop operation, where the incoming WF, after
being reflected by a deformable mirror (DM), is di-
vided between wavefront sensor (WFS) and imaging
camera. TheWF is reconstructed from theWFSmea-
surements, and iterative DM corrections are applied
to minimize the residual WF variations. Attempts
have been made to deconvolve the long-exposure
scientific images with PSFs reconstructed from the
control data [12], and image restoration techniques
have been applied independently to AO-corrected
images [13–16].

However, several possibilities exist to enhance the
capabilities of a combined AO and PD system. For
instance, the DM itself can be used to introduce
the diversity shape, as demonstrated in calibrating
the noncommon path errors in AO systems [17]
and also suggested by [18,19]. This makes it possible
to dynamically introduce adjusted diversity shapes,
based on current seeing conditions, and these are
not restricted to defocus only. It is also not necessary
to correct all the turbulence with the DM—the AO
control algorithm should operate such that the out-
come of the PD will provide an optimal result. In

addition, the WFS information can be fed into the
PD algorithms to provide useful knowledge of theWF
shapes and reduce the computational demands.

This work is a first step to investigate issues when
designing jointly optimized AO systems using PD.
We investigate the potential to improve the image
quality toward the diffraction limit, in particular in
cases where infinitely extended, bright sources are
imaged through a turbulent medium.

Section 2 presents the details of our PD algorithm,
incorporating most of the advances of recent years.
Then, in Section 3, we demonstrate through numer-
ical simulations the potential of the joint optimiza-
tion. Finally, Section 4 discusses our results and
presents ideas for future efforts.

2. Applied PD Method

Several implementations of PD have been published
in the past [3,4,7–9,20], and some of them are freely
available, for instance [7].

In our work, we have followed the approach of
Löfdahl and Scharmer [4] and incorporated some
of the recent PD improvements. Themain differences
and additions are the following:

• We include multiple images and phase diversi-
ties in the same manner as in [3].
• We include a priori information of the WFs as

done by [8].
• Instead of simultaneous imaging channels,

images are collected at subsequent time steps,
and thus it can be necessary to estimate the WFs
independently.

Our implementation of PD permits us to explicitly
and conveniently include most of the functionality
presented in the multiobject multiframe blind decon-
volution (MOMFBD) code [7]. In particular, we can
easily include additional WF information to aid
the algorithm. The details of the algorithm are de-
scribed in the following.

A. Notations and Assumptions

We assume that instead of multiple imaging chan-
nels, the intensity images (di) are taken with a single
camera at different time steps (ti), and the diversity
is produced by a DM. We collect N short-exposure
images, and each is assumed to represent the same
object (f ) with a unique PSF. The resulting images
are then smeared by unknown WFs (ϕi) and known
diversity components (ψ i). The WFs are partially
known from the real-time WFS information obtained
from an AO system.

The data collection scheme is illustrated in Fig. 1,
and the notations are summarized in Table 1.

As shown in Fig. 1, the most general approach for
the PD problem is to assume N arbitrary WFs for N
intensity images. Unfortunately, this would result in
a problem that cannot be fully inverted. However, if
the frame-rate of the imaging camera is sufficiently
fast, it is an acceptable approximation that a few
sequential WFs are assumed to be identical
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(ϕ1 � ϕ2 � � � � � ϕN)—an approach we mostly use in
this work. When collecting multiple images, it is also
possible to decide which particular WFs should be es-
timated independently.

At this moment, our algorithm does not define any
fixed strategy to determine how to select the number
of used images or the number of independently
estimated WFs (K). Instead, we will use different ap-
proaches to test which parameters are most promis-
ing. For instance, as we have done in this work in one
scenario, we collect four images (N � 4) and estimate
two WFs independently (K � 2) such that ϕ1 � ϕ2
and ϕ3 � ϕ4.

B. Numerical Approach to Invert the Imaging Problem

We follow the conventional approach and solve the
estimation problem by minimizing the error metric
similarly to that proposed by [2],

L �
XN
k�1

X
u;v

γkjDk − F̂T̂kj2 � Z; (1)

where �u; v� are the Fourier space coordinates, γk � 1
σ2k

(σk being the rms of noise in the kth observed image),
F is the Fourier transform of the object (̂ denoting an
estimate), Tk is the transfer function of the PSF in
the kth image, and Z is the adjustment to take into
account a priori knowledge of the WF.

The first term in Eq. (1) describes the sum of
squared differences between the observed images
and their estimates, derived from object and PSFs,
exactly as done in [3]. The second term takes into ac-
count the a priori information in the same manner as
done in [8],

Z �
XK
l�1

XM
i�1

r2i c
2
il; �2�

where r2i is the a priori known variance of the ith
mode in the WF, M is the number of modes used
by the PD algorithm, and cil is the estimate of the ith
modal component in the lth estimated WF. The cov-
ariances of WFs are neglected, which makes sense if
the used modal base is close enough to Karhunen–
Loeve (KL) modes known to be statistically indepen-
dent [21].

The transfer functions Tk are defined as Fourier
transforms of the PSFs, which wemodel as a function
of the WF distortions as

tk�x; y� � jF fP�x; y� exp�i�ϕl�x; y� � ψk�x; y���gj2; (3)

where P�x; y� is a constant pupil function, ψk�x; y� is
the kth known introduced diversity shape, ϕl�x; y� is
the corresponding unknownWFaberration, and F f·g
denotes the Fourier transform.

The estimatedWF, ϕl�x; y�, is assumed to be known
partially via other means, in practice by recons-
truction from the WFS signal. Thus, using a modal
composition, the WF can be written as

ϕl�x; y� �
XM
i�1

Mi�x; y�cil �
XM0

i0�1

M0
i0 �x; y�c0i0l; �4�

where M and M0 are the number of used modes (es-
timated by PD and known from WFS signal), and
Mi�x; y� and M0

i�x; y� are the corresponding modal
shapes. The first term describes the component esti-
mated by PD, and the second component is known
from the WFS information. In our work, we use a
set of KL modes such that M0

i�x; y� are typically 0–
20 first modes containingmainly low spatial frequen-
cies, and Mi�x; y� are the subsequent higher-order
modes.

In the following, we assume that the coefficients
estimated from the WFS signal are treated as
constants. This is reasonable since the WF recon-
struction using conventional AO techniques is com-
putationally very fast compared to the PD.
Therefore, the PD algorithm needs to estimate only
M coefficients.

Fig. 1. Data collection scheme in our PD algorithm.

Table 1. Used Notations

N number of observed images
K number of considered WF estimations
M number of modes used by PD algorithm
M0 number of modes estimated from WFS signal
Mk�x; y� mode shape
dk, Dk observed image, same in Fourier space
tk PSF
Tk optical transfer function
f , F object, same in Fourier space
σk rms of noise in observed image
γ 1∕σ2
cil modal coefficient (ith mode, lth WF)
ri a priori known modal rms in WF
P�x; y� pupil shape
ϕk�x; y� unknown WF distortion
ψk�x; g� known WF diversity
ϵr, ϵs relative reconstruction/image error
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As shown by [2,3], the object expressed as a func-
tion of observations and transfer functions,

FM � Q2
XN
k�1

γkDkT̂
�
k; (5)

where

Q �
�XN

k�1

γkjTkj2
�−1∕2

; (6)

can be substituted into Eq. (1) to obtain an the error
metric with a radically lower number of unknown
parameters,

LM �
XN−1

j�1

XN
k�j�1

X
u;v

Q2γjγkjDjT̂k −DkT̂jj2

�
XK
l�1

XM
i�1

r2i c
2
il: (7)

This error metric can be considered as a sum of pair-
wise formed subtractions,

LM �
XN−1

j�1

XN
k�j�1

X
u;v

jEjkj2 �
XK
l�1

XM
i�1

r2i c
2
il; (8)

where

Ejk � Q�γjγk�1∕2�DjT̂k −DkT̂j�: (9)

In the same manner as done in [4], we can compute
the partial derivatives of Ejk with respect to the
unknown parameters,

∂Ejk

∂cil
� �γjγk�1∕2

�
Dj

�
Q
∂T̂k

∂cil
� ∂Q

∂cil
T̂k

�

−Dk

�
Q
∂T̂j

∂cil
� ∂Q

∂cil
T̂j

��
; (10)

where

∂Q
∂cil

� −Q3 Re
�XN

k�1

γkT̂�
k
∂T̂k

∂cil

�
(11)

and

∂T̂k

∂cil
� 0 if k ≠ l: (12)

The parameters minimizing the error metric can
then be found by iterative updating. We use, due
to the simplicity of the implementation, the method
suggested in [4], where the updatesΔcil are designed
to minimize the formula

XN−1

j�1

XN
k�j�1

X
u;v

����Ejk �
XK
l�1

XM
i�1

∂Ejk

∂cil
Δcil

����
2

�
XK
l�1

XM
i�1

r2i �cil �Δcil�2: (13)

This yields the matrix equation,

AΔc� b � 0; (14)

where the elements of A and b can be computed as

A�m;m0� �
XN−1

j�1

XN
k�j�1

�
∂Ejk

∂cil

���� ∂Ejk

∂ci0l0

�
� δ�m;m0�r2i (15)

and

b�m� �
XN−1

j�1

XN
k�j�1

�
∂Ejk

∂cil

����Ejk

�
� r2i cil; (16)

where �·j·� denotes an inner product, δ�m;m0� is
Kronecker’s delta, m � i�M�l − 1�, and m0 �
i0 �M�l0 − 1�. Indices i, i0 enumerate the estimated
modes �1 ≤ i; i0 ≤ M�, and indices l, l0 enumerate the
independently estimated WFs �1 ≤ l; l0 ≤ K�. Thus
matrix A has a size of KM × KM.

When N � 2, K � 1, M0 � 0, and ri � 0 (two
images, one unknown WF, no WFS or a priori infor-
mation available), the algorithm is identical to what
is described by Löfdahl and Scharmer in [4].

To prevent abrupt changes of the coefficients, we
always did the inversion of A via singular value de-
composition and filtered out eigenvalues below 10−2.
The simulations showed that this method worked
well in all practical cases we encountered.

Our approaches to cope with the fast Fourier trans-
form (FFT) border effects and image noise also follow
the principles presented in [4]. The subimages are
low-pass filtered to remove sharp edges, and the in-
ner products in A and b are computed in image space:
the values of ∂Ejk

∂cil
are computed as shown by Eq. (10),

and then the image space errors are obtained by
FFTs. When performing the deconvolution in Eq. (5),
a modified Wiener filter was applied with the same
parameters as used in [4].

3. Simulation Results

In this section, we show our simulation results de-
monstrating the capabilities of the PD combined
with AO. We will select a few relevant scenarios,
and then determine the system performance by com-
paring the reconstruction performance with the
original object.

A typical AO setup and our flexible PD algorithm
offer many possibilities to use PD. In this work, we
will use two options:

• 2-image PD: conventional PD with two images,
one focused and another defocused
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• 4-image PD: phase diversity with four images,
the first focused and the other having diversity
shapes following the low-order KL modes, similar
to the static Zernike polynomials such as astigma-
tism and coma [22]

The magnitudes of the applied diversities will be
optimized for the given WF statistics, as discussed
in Subsection 3.A. We tested other options (different
shapes and number of used images) as well, but no
particular method proved more promising.

Our approach also requires that the number of
modes estimated from the WFS information is ad-
justed manually before running the PD algorithm.
We will demonstrate the system performance with
two options:

• traditional PD, where only tip/tilt information
is obtained via other means, as it cannot be detected
by the error metric in Eq. (1) (M0 � 0)
• a case representative of a low-order SH-WFS—

the first 20 lowest-order modal coefficients are
obtained from the WFS signal (M0 � 20)

The quality of the system performance will be as-
sessed by comparing the PD reconstruction with the
original object. We use a relative image error,

ϵ �
�P �Ir − I�2P

I2

�1∕2
; (17)

where the summation is done over the pixels, Ir is the
reconstructed (or seeing-limited) image, and I is the
original object.

In this work, we use a low-contrast object (rms con-
trast [23] is 0.19), shown later in Subsection 3.C. It is
a synthetic image of the solar surface, derived from
the simulation described in [24]. The observed
images (dimension of 512 × 512) are simulated by
convolving the object with a PSF that depends on
the WF distortions. Then, we add random noise hav-
ing an rms of 0.33% of the mean image intensity of
the simulated images.

We have assumed that the DM is able to produce
known diversity shapes with an error that is negligi-
ble compared to other sources.

The a priori known modal rms (ri), as in Eq. (2), is
used both for open and closed-loop data, and we ob-
tain the rms values through a numerical approach.
At first, the power spectral density of the residual
WF is estimated using a method described in [25].
Then, we project several random realizations of cor-
responding WFs on the used modes and estimate
their modal variance.

The final reconstruction is then compiled bymosai-
cing the subimages, which, due to the guard-band,
has a dimension of 384 × 384 pixels. In this work,
where all the subimages share the same aberrations,
the mosaicing is not vital for dealing with anisopla-
natism. However, since the subimages have different
scenes, the mosaicing works as an additional robust-
ness check of the PD algorithms. When evaluating

the reconstruction quality, we use only the subi-
mages to obtain more samples for the relevant
statistics.

The simulation parameters are shown in Table 2.
We consider a 1 meter telescope with a simple
SH-WFS and a DM capable of correcting the 35 first
Zernike modes.

Subsections 3.A and 3.B study the theoretical
upper limit of the performance. We create random
WF realizations, both with atmospheric turbulence
and AO-corrected characteristics. As PD cannot de-
tect tip/tilt, it is removed before the PD algorithm.
We will assume that there is no time-lag between dif-
ferent diversity realizations (both in the simulated
data and PD computations) and no error is made
when WFs are estimated from WFS information.

Subsection 3.C demonstrates the performance
with more realistic AO data. We will use images ty-
pical for a simple AO system, and we see how good
performance can be reached. We include both time-
lag and typical WFS errors.

A. Optimal Diversity Magnitude and Shape

At first, we studied what kind of diversity shape
would be optimal when the unknown WF is a typical
Kolmogorov-style atmospheric distortion. As the DM
is able to provide arbitrary diversity shapes, it could
theoretically be possible to find shapes that outper-
form the conventional defocus diversity. However, we
concluded that it would be extremely challenging to
find such shapes. A similar problem has been ad-
dressed earlier by [26], and it was concluded that
no particular diversity shape is a priori better than
the others.

Regarding the diversity magnitude, a few studies
can be found in the literature dealing with, for
instance, an optimal defocus distance in the conven-
tional PD [27–29]. However, less attention has been
paid on how the multi-image PD will change the re-
quirements for optimality and robustness. We made
a few simulations and concluded that the PD

Table 2. AO Simulation Parameters

Telescope diameter 1 m
Central obstruction no
λWFS 800 nm
λIMG 550 nm
PSF resolution λ∕D ∼ 2 pixels
WFS type SH-WFS
Subapertures 8 × 8, 52 active
Frame-rate 400 Hz
Servo lag 2 frames
Controller simple integrator
DM 35 Zernike modes corrected
Turbulence model von Karman
r0 at 0.5 μm 0.08 m
Outer scale L0 20 m
Number of layers 2
Wind speeds 5 m∕s
Evolution time τ0 3.1 ms
Simulated time steps 256
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algorithm is very robust in a wide range of applied
diversity magnitudes.

Figure 2 shows the results, where the PD per-
formance in atmospheric turbulence is plotted as a
function of applied diversity rms. We have tested
both the 2-image and 4-image PD, and used three
seeing values (r0 is 0.05, 0.08, and 0.15 m at
500 nm). In those seeing conditions, the rms values
of the turbulence inducedWFs were 7	 3, 5	 2, and
3	 1 radians, respectively.

The smallest image error is always about 2∕3 of
the seeing-limited case, independent of the seeing.
The ratio depends on the proportion of the high
and low spatial frequencies in the WF. The more
nonestimable high spatial frequency components—
acting as a noise in the reconstruction algorithm—

the worse the PD performance. However, it is
possible to improve the optimal reconstruction qual-
ity at the cost of increased computational demand, as
will be shown in Subsection 3.B.

The upper plot in Fig. 2 shows that as long as the
applied diversity rms is approximately between 5–
17 rad, an optimal image reconstruction performance
is obtained. The reconstruction is more robust with
the 4-image PD, in particular in the sense that the
applied diversity magnitude is not very important.
We did similar studies also with other KL modes
as diversity, but the results were quantitatively
not different than what is shown here. The lower plot
in Fig. 2 shows that similar, very robust reconstruc-
tions at a wide range of diversity magnitudes can
easily be obtained for r0 (at 500 nm) in the range
of 0.05–0.15 m.

It can be concluded that the applied diversity rms
should be approximately as big as the unknown WF
rms. However, as long as the diversity falls into a
wide, slightly seeing-dependent interval, the recon-
structions will be good. In extremely good seeing,
the optimal results are obtained with magnitudes
of 3–8 rad, while in bad seeing, higher magnitudes
(8–15 rad) are needed.

We also tested what happens if similar simulations
are made with more estimated modes (M up to 126).
It was observed that the diversity magnitude ranges,
where optimal reconstruction is obtained, will get
narrower as the number of estimated modes is
increased—in particular, at large diversity magni-
tudes, the reconstructions will fail more often. Thus,
it might be necessary to optimize the applied diver-
sity magnitude to guarantee optimal reconstruction
performance.

These conclusions are in good agreement with the
literature.

B. Reconstruction Quality Versus Computational Needs

The PD algorithm has two main parameters that can
be adjusted to improve the reconstruction quality at
the expense of higher computational demands: the
number of estimated modes (M) and the number of
used images (N). Unfortunately, it is not trivial to pre-
dict how these parameters will change the PD out-
come in practice. The PD algorithm is, in essence,
trying to invert a complex and partially ambiguous
imaging process. When estimating more WF coeffi-
cients, the reconstruction should, in principle, be
more accurate, but it will work only up to a certain
limit depending on thenumber andquality of theused
recorded images. However, the additional images will
also increase the computational demands, and when
only moderate reconstruction quality is desired, two
images with classical PD could be sufficient.

Next, we will illustrate in a few examples how the
PD parameters and reconstruction error are coupled.

The PD algorithm is run with different numbers of
estimated modal coefficients (M �M0); values of 26,
36, 66, and 126 are used. We test the impact of addi-
tional WF information withM0 � 0 andM0 � 20, and
we assume that there is no error when the WF co-
efficients are estimated from the WFS signal. In
addition, two kinds of WFs are used: normal atmo-
spheric turbulence with r0 � 0.08 m at 0.5 μm and

Fig. 2. Relative image reconstruction error as a function of ap-
plied diversity rms.M � 36,M0 � 0. Horizontal lines show the ori-
ginal image error. Error bars show the range of image error in
terms of rms computed from different realizations (9 WFs times
9 images). Thin lines: 2-image PD used. Thick gray lines: 4-image
PD used. Upper plot: r0 is 0.08 m (the range of original image error
shown by dashed lines). Lower plot: r0 is 0.05, 0.08, and 0.15 m.
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an AO-corrected WF. The AO correction is modeled
by removing 40% of the WF rms contained in the 14
lowest KL modes.

We evaluate the PD performance by plotting the
required number of FFTs versus image error. The im-
age error is obtained by comparing the reconstruc-
tion and the original nonperturbed object as shown
by Eq. (17). The results are shown in Fig. 3.

From the results, we highlight the following
points:

• When the classical 2-image PD is used without
additional WF information, it is not necessary to es-
timate more than 36modal coefficients to achieve the
best possible image reconstruction (ϵr ≈ 0.075) while
seeing-limited error is ϵs ≈ 0.11.
• With the 4-image PD, and also when additional

WF information is used, the image quality can be sig-

nificantly improved by increasing the number of es-
timated coefficients. The optimal quality is ϵr ≈ 0.06
without the WF knowledge and ϵr ≈ 0.04 with the
WF knowledge. However, the computational costs in-
crease exponentially with the image quality.
• To achieve a similar reconstruction quality to

what the WFS-aided 2-image PD can optimally
achieve (ϵr ≈ 0.05), the conventional PD would
require more than four images.
• The AO correction is able to improve the PD

performance, in terms of rms image error, only by
a negligible amount compared to the results obtained
with additional WF information.
• Both 4-image PD and additional WF informa-

tion, and also the AO correction, significantly im-
prove the reliability of the image reconstruction: the
rms of the achieved image quality is reduced by a fac-
tor of 2–3 compared to the conventional 2-image PD.
Besides eliminating the worst cases, these techni-
ques also remove the cases where the image error
is the lowest.
• The additional WF information is extremely

useful in reducing the computational demand of
PD. Here, the computational load is reduced by a
factor of ∼20. It is seen that the additional WF knowl-
edge enables a reliable use of the 2-image PD, which
is the major reason for the lower computational need.
However, the other reasons are also significant: less
WF coefficients have to be estimated by the laborious
PD algorithm, and the PD algorithm converges fas-
ter, when full knowledge of the low-order modal com-
ponents in the WF is assumed.

In addition, we also tested different extents of AO
correction by removing 10–100% of the WF rms con-
tained by the lowest 14 KL modes. It was found that
the results were always very similar to what is
shown in the lower plot in Fig. 3. The reliability of
the classical 2-image PD was greatly improved,
and the ultimate image reconstruction quality re-
mained the same. Thus, the PD will work better with
AO-corrected WFs, even when no lower spatial fre-
quencies are present. Besides, this beneficial effect
can be obtained with a very modest correction—it
was enough to remove only 20% of the rms that
was contained by low KL modes.

Based on these results, the best way to design a
system using jointly AO and PD seems straightfor-
ward: correct as much turbulence as possible with
the DM, and try to obtain as much WF information
as possible with a WFS. If reliable WFS information
is available, the quality of the DM correction is less
important.

However, this analysis neglects two crucial issues:
WF estimation errors and WF evolution between the
instants when different diversities are applied. The
next section will briefly cover these.

C. Performance on realistic AO data

The previous section has shown that the most advan-
tageous scheme to jointly use PDwith AO is applying
PD directly for images that have been corrected by

Fig. 3. The number of required FFTs as a function of reconstruc-
tion error. Solid lines show the pure PD; dashed lines are made
with additionalWF information. Thin lines aremade with 2-image
PD, thick lines with 4-image PD. The lines connect points with 26–
126 estimated modal coefficients with the other simulation param-
eters fixed. The circles around the points show the rms computed
over 32 random WF realizations and nine different subimages of
the object. Upper plot: Kolmogorov-style turbulence (r0 � 0.08 m
at 0.5 μm). Seeing-limited image error ϵs ≈ 0.11. Lower plot: WFs
typical for an AO system. AO-corrected image error ϵs ≈ 0.09.
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AO as much as possible. Unfortunately, with this
strategy, it can be difficult to use additional WF in-
formation to aid the PD.

When working in a traditional, well-optimized,
closed-loop operation, the single WFSmeasurements
are very error-prone—the DM has already corrected
most of the detectable aberrations, and a measure-
ment of a residual phase thus represents the actual
WF only with a limited accuracy.

However, it is also possible to run an AO system
such that the DM introduces only diversities, but
does not correct the turbulence—the upper plot in
Fig. 3 illustrates an idealized case of this. In this
way, the PD must deal with low-quality images,
but relatively more accurate WF estimates are avail-
able, and they can potentially be used to reduce the
computational demands of the PD task.

Next, we will illustrate through simulations
how a realistic AO system would affect the PD
performance. We simulate the AO with the CAOS
software [30] and use the simulation data as the
input for the PD algorithms. Two cases will be con-

sidered, both with and without WFS assistance in
the PD:

• PD based on pure atmospheric residuals. DM
used only to create diversities. The WFs recon-
structed using WFS information have WF rms errors
of 27	 7%.
• Closed-loop AO. A typical AO loop is fully opti-

mized. The estimated residualWFs have relativeWF
rms errors of 73	 12%, and the WF error compared
to uncompensated WFs is 19	 5%.

In the latter case, the WFs are estimated with very
poor relative accuracy, but on the other hand, the
aberrations are much smaller.

The AO-corrected images have Strehl ratios of
0.26	 0.05 at 550 nm, while the ratios in seeing
are 0.05	 0.01. The WF error between consecutive
frames, caused by the time-lag of 2.5 ms, is typically
∼0.45 rad rms in the simulated seeing conditions.

In a low-order AO system like this, most of the
WFS errors come from sources difficult to pre-
cisely characterize (aliasing, saturation) and from

Fig. 4. Illustration of performance. All images have a dimension of 384 × 384 pixels, showing the region PD has reconstructed. Upper row:
original object (having no spatial frequencies above the system diffraction limit), seeing-limited image, and AO-
corrected image. Images 1–6 show examples of PD performance. See text for details.
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modal components the WFS misdetects. We have
simulated the WF reconstruction with the standard
CAOS software using point-sources, but we be-
lieve this also represents, with sufficient accuracy,
the typical errors in our scenarios. A realistic sys-
tem observing extended sources should implement
the WFS as a correlation tracking, but we have
postponed a more detailed analysis for a later
stage.

We demonstrate the performance of the 2-image
and 4-image PDs similar to how we did in the pre-
vious section. In addition, we study three modifica-
tions to the PD algorithm: no a priori information
applied, WF coefficients initialized to values ob-
tained from previous time-step, and also when the
WF coefficients are estimated independently in two
WFs (K � 2, ϕ1 � ϕ2, ϕ3 � ϕ4). In the independent
estimation, we have two times more unknown WF
coefficients, but the data collection is done identically
to the 4-image PD.

We study the PD performance in terms of a few
measures: improvement compared to seeing (ϵr∕ϵs),
WF reconstruction error, fail rate (definition of fail-
ure defined in Table 3), number of required FFTs,
and PD iterations. The performance measures and
their ranges, defined as rms over 256 consecutive
time steps and the 3 × 3 reconstructed subimages,
are shown in Table 3.

It is seen that PD is working well also in the pre-
sence of significant time-lag (delay between the
sequential images). With 2-image PD, the relative
image error, 0.50–0.63, falls exactly into the
range expected from the ideal assumptions in
Subsection 3.B—the performance loss is negligible.

The fail rates, however, describe the situation
slightly better. If 5–10% of the frames will be incor-
rectly reconstructed, the usefulness of the system be-
comes questionable. Conventional 2-image PD has
serious issues even when WFS information is avail-
able. This happens both with and without the a priori
information of the WFs.

When the 4-image PD is used, we again reach the
performance exactly as expected based on the ideal
simulations. We see that the error drops down to
0.42, and 0% fail rate can be achieved. This happens
even though the WF estimation errors caused by
phase-lag increase when more images are used.

It is also seen that the PD is working extremely
well with the AO residuals. In that regime, the
WFS-aided PD also produces excellent results: the
image error is reduced well below what is achieved
by pure AO alone—although the low-order modal
coefficients, estimated from WFS information, have
a huge estimation error of 73	 12% in WF rms.
This happens because the PD error metric does
not optimize the WF, but the image quality.

Table 3. PD Performance on AO Sequences

schema N M �M0 AOa WFSb ϵr∕ϵs(c) WF reconst. errord failse failsf failsg required FFTsh PD iterationsi

standard 2 36 0.63	 0.12 0.60	 0.12 0.7 1.7 12.3 1397	 432 7.1	 2.2
standard 2 36 x 0.54	 0.10 0.44	 0.11 0.1 1.1 7.1 422	 145 4.8	 1.6
standard 2 36 x 0.57	 0.08 0.95	 0.20 0.0 0.0 0.0 1117	 455 5.5	 2.2
standard 2 36 x x 0.50	 0.08 1.10	 0.20 0.0 0.0 0.0 474	 153 5.5	 1.8
no priori 2 36 0.69	 0.39 0.73	 0.16 9.5 11.5 35.6 1542	 532 7.9	 2.7
no priori 2 36 x 0.54	 0.11 0.46	 0.11 0.3 1.8 11.1 502	 183 5.9	 2.1
no priori 2 36 x 0.55	 0.08 1.00	 0.22 0.0 0.0 0.0 1050	 465 5.1	 2.2
no priori 2 36 x x 0.49	 0.08 1.13	 0.22 0.0 0.0 0.0 513	 199 6.0	 2.3
coef. init 2 36 0.60	 0.10 0.53	 0.17 0.0 0.1 1.2 822	 253 3.7	 1.1
coef. init 2 36 x 0.54	 0.11 0.47	 0.12 0.1 1.9 10.3 365	 156 4.0	 1.7
coef. init 2 36 x 0.54	 0.08 1.14	 0.31 0.0 0.0 0.0 894	 379 4.2	 1.8
coef. init 2 36 x x 0.50	 0.08 1.10	 0.21 0.0 0.0 0.0 431	 177 4.9	 2.0
standard 4 36 0.57	 0.07 0.37	 0.13 0.0 0.0 0.0 4296	 1505 7.8	 2.7
standard 4 36 x 0.54	 0.08 0.38	 0.09 0.0 0.0 0.4 1071	 300 4.2	 1.2
standard 4 36 x 0.55	 0.07 0.86	 0.20 0.0 0.0 0.0 3438	 1331 6.1	 2.3
standard 4 36 x x 0.55	 0.07 0.96	 0.16 0.0 0.0 0.0 1113	 495 4.4	 1.9
indep. est. 4 36 0.57	 0.07 0.55	 0.13 0.0 0.0 0.0 6232	 1592 8.0	 2.0
indep. est. 4 36 x 0.51	 0.08 0.42	 0.10 0.0 0.0 0.4 1836	 521 5.3	 1.5
standard 4 66 0.51	 0.07 0.45	 0.12 0.0 0.2 1.6 8647	 2605 8.5	 2.6
standard 4 66 x 0.42	 0.08 0.44	 0.09 0.0 0.1 0.8 4318	 1088 5.9	 1.5
indep. est. 4 66 0.57	 0.08 0.59	 0.11 0.0 0.0 0.0 11856	 2908 8.2	 2.0
indep. est. 4 66 x 0.43	 0.08 0.45	 0.10 0.0 0.0 0.4 6568	 1510 6.4	 1.5
aPD applied to closed-loop WF residuals
bWFS aid used in PD
cPD reconstruction error (ϵr) compared to original seeing-limited error (ϵs)
dRelative error in reconstructed WF, ϕ̂r∕ϕ; only M �M0 modal components considered
eFail rate, percentage of cases when ϵr > ϵs
fFail rate, percentage of cases when ϵr > �~ϵs � ~ϵr�∕2, where ~· denotes a momentary temporal average
gFail rate, percentage of cases when the condition f is fulfilled at least in one subimage at a given time-step
hNumber of FFTs for each considered subimage with a size of 256 × 256
iNumber of PD iterations for each considered subimage
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A similar phenomenon has been reported by [4,31]:
PD can find better reconstructions compared to what
is obtained when the deconvolution is done using a
perfect modal WF representation being truncated
to as many coefficients. Here, we observe a variation
of the same effect. The PD-estimated high-order
coefficients (KL modes higher than 20) can also com-
pensate the errors of the lowest modes—we verified
this by checking that the perfect truncated WFs gave
worse performance. This is also reflected in the
large errors of estimated WFs: they can be esti-
mated at best with an accuracy of ∼40%, although
PD can be successful even with errors greater
than 100%.

Thus, it can be concluded that, in the regime we
are studying here, the loss of information in the non-
invertible imaging process is the dominant error
source in PD by a huge margin. A typical phase-
lag will not significantly disturb the PD outcome,
and the PD does ssignificantlybenefit from the WFS
aid, although the used phase-estimates can have
very significant WFS errors.

Therefore, it is not surprising that when the WFs
at different time steps are estimated independently,
the PD results are not improved. However, we can
see that the reconstruction is slightly more robust
with a large number of estimated modes (66): the
strictest fail rate is reduced to zero from 0.8–1.6%.

Regarding the computational demand, it is seen
that again, the WFS information and closed-loop
AO can simplify the task significantly. If the goal
is 50% reduction in the image error, the computa-
tional costs are reduced by a factor of almost 20.

The most significant factor in the reduction is the
lower amount of modal coefficients that need to be
estimated by PD. The number of PD iterations is also
reduced, from ∼8 to 4–5, and thus it can reduce the
number of required FFTs by a factor of 2. However,
the possibility to initialize the modal coefficients to
values obtained from a previous frame seems not
to be a huge factor in the case we are studying. When
WFS-aided PD is used with closed-loop AO, the initi-
alization helps to reduce the computational costs
only by 10–20%. If no WFS or AO is used, the initi-
alization is more helpful, and it can reduce the
needed FFTs by ∼40%.

Finally, we illustrate the image quality after PD
through a few practical examples. The upper row
in Fig. 4 shows the original object and how it is
observed in seeing-limited (ϵs � 0.118) and AO-
corrected (ϵs � 0.079) conditions. The parameters
are the same as in Table 2. The next two rows illus-
trate how well the image can be reconstructed in six
selected cases:

1. traditional 2-image PD, M � 36 (ϵr � 0.070,
ϵr∕ϵs � 0.59),

2. WFS aid used with 2-image PD, M � 16, M0 �
20 (ϵr � 0.070, ϵr∕ϵs � 0.59),

3. AO closed-loop residual and WFS aid used
with 2-image PD, M � 16, M0 � 20 (ϵr � 0.052,
ϵr∕ϵs � 0.44),

4. the 4-image PD, M � 66 (ϵr � 0.061,
ϵr∕ϵs � 0.51),

5. and WFS aid used with 4-image PD, M � 46,
M0 � 20 (ϵr � 0.047, ϵr∕ϵs � 0.39).

6. Two WFs are estimated independently with
the 4-image PD, M � 46, M0 � 20 (ϵr � 0.050,
ϵr∕ϵs � 0.42).

AO, when applied alone, significantly improves the
image resolution, but based on visual inspection, it is
not reaching the same quality as the PD. Even tradi-
tional 2-image PD has more details available in the
image (image 1). However, the traditional PD has
serious sinusoidal artifacts, in particular at the top
and right of the example image. Similar phenomena
have been observed, for instance, by [4].

When WFS information is included (image 2), the
number of artifacts is significantly reduced, although
on average the relative image error (ϵ) does not im-
prove for the particular frame shown in Fig. 4. Also,
visual inspection does not reveal any significant
improvement in the image resolution.

When the 2-image PD is applied to AO-corrected
closed-loop images (image 3), clearly the best result
is obtained. Visual inspection does not reveal any
ignificant artifacts, and the image resolution is com-
parable to the original object.

If no AO or WFS aid is available, a comparable im-
age error, in terms of rms, can be reached by the 4-
image PD and 66 estimated modes. One example is
illustrated by image 4. It has no artifacts, but the vi-
sual inspection reveals slightly more smearing of the
small details compared to image 3. In addition, it re-
quires 15–20 times more computation to reconstruct.

Image 5, obtained with WFS-aided 4-image PD,
has the lowest relative image error (ϵr � 0.047).
However, it is seen that small artifacts emerge again
in the top-right corner of the image. This probably
happens because of the incorrect WFS estimates,
as no artifacts were seen in image 4. Similar artifacts
are also present in image 6, which shows the result
when the WFs were estimated independently.

4. Conclusions

This work demonstrates, through numerical simula-
tions, the potential that PD and AO can have, when
used together sequentially. We have seen that such
potential indeed exists in the cases we studied: both
AO and PD applied together will produce better
results than one of them alone.

In addition, we identified a few areas where
the benefits of the joint optimization should be the
easiest to realize.

First, it was seen that the PD also works extremely
well with AO-corrected phase residuals. The AO cor-
rection helps to make the reconstruction robust,
although not much can be gained in the reconstruc-
tion error in terms of rms. In addition, only a small
amount of correction is needed: it was necessary to
correct only 20% of the low-order modes to obtain
a near-optimal performance. Correcting more still
improves results, but only slightly.
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Second, the additional WFS information was
observed to be extremely useful in both making
the image reconstruction more robust and reducing
the computational demands. In the case we studied,
it was possible to reduce the computational costs by a
factor of ∼20 without loss in performance, minor ar-
tifacts excluded. This will be extremely important
when using PD in real-time, or close to real-time.

Third, the magnitude of the applied diversity, cre-
ated by the DM, can be adjusted based on the seeing
conditions. The simulations indicate that within a
seeing range of 0.65–2 arcsec, where the WF distor-
tions are on the order of 3–7 rad rms, a good recon-
struction can be obtained with all diversity shapes
having an rms of 4–10 rad. However, this requires
the computationally demanding 4-image PD. With
the computationally less demanding 2-image PD, or
when more modal components are estimated, more
care should be taken to optimize the applied diver-
sity magnitude—otherwise the image error can be
5–20% higher.

Finally, it was shown that the error sources typical
for a realistic AO system appear negligible. All the
important performance gains were obtained in spite
of the large WFS errors and the time-lag between
subsequent images.

Our future work will concentrate on demonstrat-
ing the results in a laboratory setup. Several possible
issues can still prove challenging in implementing a
successful AO-PD system. For instance, the DM ac-
curacy when producing the diversity is crucial for
PD algorithms to work. Based on the results, how-
ever, we believe that minor errors in theWFaccuracy
will not cause dramatic problems.

If the imaging is recorded with a wide wavelength
bandwidth, some modifications of the models might
be necessary to take into account the additional blur-
ring of the speckles in the PSF. In addition, more
work is needed to fine-tune the algorithms to opti-
mize the performance. Reliable methods are needed
to select the PD parameters such as the number of
coefficients and the number of independent WFs.
Besides, more detailed analysis on the WFS errors
should be included to optimize the number of WFS-
estimated coefficients.

Regarding the final system performance, however,
the most critical issue might be the anisoplanatic er-
rors. The WFS measures the distortions only in one
direction, and thus the WF estimates are valid only
in a small subregion of the corrected field. Similarly,
the DM corrections would not improve, but rather de-
grade, the image quality outside of the direction
where the AO is locked. This issue will be addressed
in our future work, including experiments at rele-
vant sites.

We thank A. Vögler and N. Vitas for providing the
synthetic solar images.
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