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Abstract—Management of complex network services requires
flexible and efficient service provisioning as well as optimized
handling of continuous changes in the workload of the service.
To adapt to changes in the demand, service components need
to be replicated (scaling) and allocated to physical resources
(placement) dynamically. In this paper, we propose a fully
automated approach to the joint optimization problem of scaling
and placement, enabling quick reaction to changes. We formalize
the problem, analyze its complexity, and develop two algorithms
to solve it. Extensive empirical results show the applicability and
effectiveness of the proposed approach.

I. INTRODUCTION

Large-scale cloud and data center networks are typically

hosting several network services (e.g., video streaming) com-

posed of different (virtualized) components, serving a contin-

uously changing demand. For managing these services, fast,

flexible, and automatic deployment and scaling mechanisms

are required, which has led to concepts like network function

virtualization [1].

Such technologies provide the basic mechanisms to flexibly

adapt to changing demands, such as the addition and removal

of services or fluctuations in the resource demand of a service.

In particular, (i) services can be scaled by adding or remov-

ing instances of service components, (ii) the placement and

resource allocation of service components can be modified,

and (iii) network flows between the service components can

be re-routed through other network paths.

Having so many degrees of freedom also means a huge

search space so that finding the best adaptation requires a

complex strategy. Consider a provider hosting a dynamically

changing set of services, where each service serves a dy-

namically changing set of request and data sources, each

with dynamically changing data rates. Trade-offs between the

conflicting goals can be highly non-trivial, for example:

• Placing a data processing component on a node with lim-

ited resources near the source, thus minimizing latency,

versus placing it on a more powerful node further away

in the network, thus minimizing processing time.

• Letting a single instance of a processing component

serve multiple sources, thus minimizing compute resource

consumption, versus using dedicated instances near the

sources, thus minimizing network load.

• Changing the current configuration to a better one that

will hopefully pay off in the long run, versus keeping the

current configuration, thus avoiding reconfiguration costs.

• Fulfilling the resource requirements of one service versus

the requirements of another service.

Given the complexity of this optimization problem and the

pace with which changes in the demand may occur, automation

is indispensable. Today, however, only very limited computer

support is available for some partial aspects (e.g., scaling

without placement, or placement without scaling).

We argue that a more comprehensive approach is necessary.

In our proposed solution, each service is described by a service

template, containing information about the components of the

service, the interconnections between the components, and the

resource requirements of the components. Both the resource

requirements and the outgoing data rates of a component are

specified as functions of the incoming data rates. These func-

tions can be specified by the service developers or determined

using service profiling methods [2]. Service developers can

focus their attention on building services from components,

without having to worry about the instantiation and placement

of the components.

Our optimization approach takes care of the rest: based

on the location and current data rate of the data sources,

the templates are scaled by replicating service components

as necessary, the placement of components on physical nodes

is determined, and data flows are routed along network paths.

Node and link capacity constraints are automatically taken into

account, and the solution is optimized along multiple objec-

tives, including minimization of resource usage, minimization

of latency, and minimization of deployment adaptation costs.

Our main contributions can be summarized as follows:

• Formalizing the template embedding process as a joint

optimization problem for scaling and placing service

templates in the network, where demands of service

components are determined as a function of the incoming

data rate to each instance.

• Proving the NP-hardness of the problem.

• Presenting two algorithms for solving the template em-

bedding problem, one based on mixed integer program-

ming, the other a custom heuristic.

• Detailed evaluation of both algorithms to determine their

strengths and weaknesses.

With the proposed approach, service developers obtain a

flexible way to define services on a high level of abstraction

while providers obtain powerful methods to optimize the
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scaling and placement of multiple services in a single step,

fully automatically.

II. PREVIOUS WORK

Template embedding has similar properties to virtual net-

work embedding. Both problems deal with mapping virtual

nodes and virtual links of a graph into another graph. Fischer

et al. [3] have published a survey of different approaches to this

problem, including static and dynamic embedding algorithms.

In contrast to static virtual network embedding solutions, in

this paper we also deal with optimizing and modifying already

embedded templates, in addition to the initial mapping process.

Our approach is different from dynamic solutions as well. For

example, Houidi et al. [4] present a mixed integer program that

can modify the mapping in reaction to node or link failures.

The modifications, however, are limited to recalculating the

location for the embedded virtual network, i.e., migrating some

of the nodes and changing the corresponding paths among

them. In addition to relocating the embedded nodes and links,

our approach can also determine and modify the structure in

the template (the graph to be embedded) by adding/removing

nodes and links if necessary.

This problem has recently gained importance also in the

field of Network Function Virtualization (NFV), where ser-

vices that are composed of multiple virtual network func-

tions are mapped into the network. Several optimization ap-

proaches [5], [6], [7], [8] and heuristic algorithms [9], [10]

have been proposed for this problem. Our template embedding

approach has two important differences to these solutions:

First, our approach can be used for initial placement as well

as scaling and adapting existing placements. Second, in our

approach, both the structure of the service and its mapping

to the network are determined in one single step, based on

the requirements of the service and current state of network

resources, thus aiming for a global optimum.

Keller et al. [11] formulate the template embedding problem

similar to our approach. Our assumptions and terminology are

partly based on their work, but there are important differences

that make our approach stronger and more flexible than the

solution presented in that paper. Their templates describe strict

scaling restrictions for each component; e.g., in a two-tier

application, the front-end server needs exactly m instances

of the back-end server. They consider the sources of traffic to

be users distributed over the network. The number of users

then determines the number of instances required for each

component, based on the scaling restrictions. We drop the

scaling restrictions as well as the discrete modeling of the

users. Instead, we determine the number of required instances

for each template component based on the data rate (e.g.,

requests or bits per second) coming from different source

components on different locations in the network, which

allows a more fine-grained control of the scaling process.

Moreover, Keller et al. assign pre-defined resource demands

to components and express the compute capacity of network

nodes as the maximal number of instances they can host.

We model the CPU and memory demands of each instance

TABLE I
NOTATIONS USED FOR GRAPHS IN THE MODEL

Graph Symbol Name Annotations

Template Gtmpl
j∈CT Component In(j), Out(j), pj ,mj , rj
a∈AT Arc

Overlay GOL
i∈IOL Instance c(i), P

(I)
T

(i)

e∈EOL Edge P
(E)
T

(e)

Network Gsub
v∈V Node capcpu(v), capmem(v)
l∈L Link b(l), d(l)

of a component during the template embedding process as a

function of the data rate it actually handles. Substrate network

nodes in our model can host instances of different components

as long as the capacity is not exceeded, thus allowing more

flexibility in the placement. Finally, the optimization objective

in their model is to minimize the total number of instances

for embedded templates. We use a more sophisticated multi-

objective optimization approach where different metrics like

CPU and memory load of network nodes, data rate on network

links, and latency of embedded templates are considered.

For these reasons, we believe that our problem formulation

provides a more realistic model for optimizing virtual network

services.

Another related area is the allocation of virtual machines

to physical machines in cloud data centers. Scaling and

placing instances while obeying capacity constraints are also

typical features of such problem formulations [12]; however,

communication among virtual machines is typically not taken

into account or considered only in a rudimentary way [13].

Although some of those approaches account for the commu-

nication among virtual machines through the network [14],

[15], [16], they do not include routing decisions. Moreover,

our approach of specifying resource consumption as a function

of input data rates allows a much more realistic modeling of

the resource needs of service components than the constant

resource needs assumed by existing approaches.

We do not impose any limitation on the type of compo-

nents used. Therefore, our solution is applicable in different

contexts, e.g., NFV, (distributed) cloud computing, and data

center network management.

III. PROBLEM MODEL

In this section, we formalize our model and define the

problem we are tackling. Our model uses three different graphs

for representing the generic service structure, a concrete and

deployable instantiation of the service, and the actual network.

We use different names and notations to distinguish among

these graphs (Table I).

Informally, the problem we are addressing is as follows:

given a set of services with their templates and sources, we

want to optimally embed the services into the network.

A. Substrate Network

We model the substrate network as a directed graph

Gsub=(V, L). Each node v ∈ V is associated with a CPU



capacity capcpu(v) and a memory capacity capmem(v)
1. More-

over, we assume every node has routing capabilities and can

forward traffic to its neighboring nodes.2 Each link l ∈ L is

associated with a maximum data rate b(l) and a delay d(l).
For each node v, we assume the internal communications (e.g.,

the communications inside a data center) can be done with

unlimited data rate and negligible delay.

B. Templates

The substrate network hosts a set T of network services. We

define the structure of each service T ∈ T using a template,

which is a directed acyclic graph Gtmpl(T )=(CT , AT ). We re-

fer to the nodes and edges of the template graph as components

and arcs, respectively. They define the type of components

required in the service and specify the way they should be

connected to each other to deliver the desired service. Fig. 1(a)

shows an example template.

A template component j ∈ CT has a set In(j) of inputs and

a set Out(j) of outputs. Its resource consumption depends on

data rates of the flows entering the component. We characterize

this using a pair of functions pj ,mj : R
|In(j)|
≥0 → R≥0, where

pj is the CPU load and mj is the required memory size of

component j. These functions should typically account for

the data rate of the flows entering the component as well as

a fixed consumption value at idle times. Data rates of the

outputs are determined as a function of data rates of the inputs

specified as rj : R
|In(j)|
≥0 → R

|Out(j)|
≥0 . Fig. 1(b) shows examples

for functions pj ,mj , rj that define the resource demands and

output data rates of an example component.

Each arc in AT connects an output of a component to an

input of another component.

Source components are special components in the template:

they have no inputs, a single output with unspecified data rate,

and zero resource consumption.

C. Overlays and sources

A template specifies the types of components and the

connections among them as well as their resource demands

depending on the load. A specific, deployable instantiation of

a service can be derived by scaling its template. Depending on

data rates of the service flows and the locations in the network

where the flows start, different numbers of instances for each

service component might be required. To model this, for each

service T , we define a set of sources S(T ). The members of

S(T ) are tuples of the form (v, j, λ), where v ∈ V is a node

of the substrate network, j ∈ CT is a source component, and

λ ∈ R+ is a data rate. Such a tuple means that an instance of

source component j generates a data or request flow from v

with rate λ. Sources represent populations of users, sensors, or

any other component that can generate flows to be processed

by the corresponding service.

An overlay is the outcome of scaling the template

based on the associated sources. An overlay OL stemming

1This can be easily extended to other types of resource.
2Capacities can be 0, e.g., to represent conventional switches.
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Fig. 1. Some examples: (a) a template, (b) a component, (c) an overlay
corresponding to the template, and (d) a mapping of the overlay into a
substrate network. The links of the substrate network are bi-directional.

from template T is described by a directed acyclic graph

GOL(T )=(IOL, EOL). Each component instance i ∈ IOL cor-

responds to a component c(i) ∈ CT of the corresponding

template. To be able to make the required number of instances

for each component, we assume the components are stateless

or a state management system is in place to handle the state

upon adding or removing instances. Each i ∈ IOL has the

same characteristics (inputs, outputs, resource consumption

characteristics) as c(i). Moreover, if there is an edge from

an output of an instance i1 to an input of instance i2 in

the overlay, then there must be a corresponding arc from the

corresponding output of c(i1) to the corresponding input of

c(i2) in the template.

Fig. 1(c) shows an example overlay corresponding to the

template in Fig. 1(a). An overlay might include multiple

instances of a specific template component: e.g., B1, B2, and

B3 all correspond to component B. An output of an instance

can be connected to the input of multiple instances of the same

component, like the output of A1 is connected to the inputs

of B1 and B2. In a case like that, B1 and B2 share the data

rate calculated for the connection between components A and

B. Similarly, outputs of multiple instances in the overlay can

be connected to the input of the same instance, like the input

of C1 is connected to the output of B1, B2, and B3, in which

case the input data rate for C1 is the sum of the output data

rates of B1, B2, and B3.

D. Mapping on the substrate network

Each overlay GOL(T ) must be mapped to the substrate

network by a feasible mapping PT . We define the mapping

as a pair of functions: PT =
(

P
(I)
T , P

(E)
T

)

.

P
(I)
T : IOL → V maps each instance in the overlay to a node

in the substrate network. We make the simplifying assumption

that two instances of the same component cannot be mapped

to the same node. The rationale behind this assumption is

that in this case it would be more efficient to replace the two



instances by a single instance and thus save the idle resource

consumption of one instance.

P
(E)
T : EOL → F maps each edge in the overlay to a flow

in the substrate network; F is the set of possible flows in

Gsub. We assume the flows are splittable, i.e., can be routed

over multiple paths between the corresponding endpoints in

the substrate network.

The two functions must be compatible: if e ∈ EOL is an

edge from an instance i1 to an instance i2, then P
(E)
T (e) must

be a flow with start node P
(I)
T (i1) and end node P

(I)
T (i2).

Moreover, P
(I)
T must map the instances of source components

in accordance with the sources in S(T ), mapping an instance

corresponding to source component j to node v if and only if

∃(v, j, λ) ∈ S(T ).
The binding of instances of source components to sources

determines the outgoing data rate of these instances. As the

overlay graphs are acyclic, the data rate λ(e) on each further

overlay edge e can be determined based on the input data

rates and the rj functions of the underlying components,

considering the instances in a topological order. The data rates,

in turn, determine the resource needs of the instances.

Fig. 1(d) shows a possible mapping of the overlay of

Fig. 1(c) to an example substrate network, based on the pre-

defined allocation of S1 and S2 in the network. Note that it

is possible to map two communicating instances to the same

node, like A2 and D2 in the example. In this case, the edge

between them can be realized inside the node, without using

any links. The flow between A2 and B3 is an example of a

split flow that is routed over two different paths in the substrate

network.

E. Objectives

The system state consists of the overlays and their mapping

on the substrate network, which can be changed by our

template embedding algorithm.

A valid system state must respect all capacity constraints:

for each node v, the total resource needs of the instances

mapped to v must be within its capacity (for both CPU and

memory), and for each link l, the sum of the flows going

through l must be within its maximum data rate. However, it

is also possible that some of those constraints are violated in a

given system state: for example, a valid system state (i.e., one

without any violations) may become invalid because the data

rate of a source has increased, because of a temporary peak in

resource needs, or a failure in the substrate network. Therefore,

given a current system state σ, our primary objective is to find

a new state σ′, in which the number of constraint violations

is minimal (ideally, zero). For this, we assume violating node

and link capacity constraints are equally undesired.

There are a number of further, secondary objectives, which

can be used as tie-breaker to choose from system states that

have the same number of constraint violations:

• Total delay of all edges across all overlays

• Number of instance addition/removal operations required

to transition from σ to σ′

• Maximum of amounts of capacity constraint violations,

for each resource type (CPU, memory, bandwidth)

• Total resource consumption of all instances across all

overlays, for each resource type (CPU, memory, band-

width)

Higher values for these metrics result in higher costs for the

system or in lower customer satisfaction, so our objective

is to minimize these values. Therefore, our aim is to select

a new state σ′ from the set of states with minimal number

of constraint violations that is Pareto-optimal with respect to

these secondary metrics.

IV. COMPLEXITY

Theorem 1. For an instance of the Template Embedding

problem as defined in Section III, deciding whether a solution

with no violations exists is NP-complete in the strong sense.

Proof. It is clear that the problem is in NP: a possible witness

for the positive answer is a solution – i.e., a set of overlays

and their embedding into the substrate network – with 0

violations. The witness has polynomial size and can be verified

in polynomial time wrt. to the input size.

To establish NP-hardness, we show a reduction from the

Set Covering problem to the Template Embedding problem.

An input of the Set Covering problem consists of a finite set

U , a finite family W of subsets of U such that their union is

U , and a number k ∈ N. The aim is to decide whether there

is a subset Z ⊆ W with cardinality at most k such that the

union of the sets in Z is still U .

From this instance of Set Covering, an instance of the

Template Embedding problem is created as follows. The

substrate network consists of nodes V = {s1, . . . , s|U |} ∪
{a1, . . . , a|W|} ∪ {b}, where each si represents an element of

U and each element aj represents an element of W . There is a

link from si to aj if and only if the element of U represented

by si is a member of the set represented by aj . Furthermore,

there is a link from each aj to b. The capacities of the nodes are

as follows: capcpu(si) = capmem(si) = 0 for each i ∈ [1, |U |],
capcpu(aj) = 0 and capmem(aj) = 1 for each j ∈ [1, |W|], and

capcpu(b) = 1 and capmem(b) = 0. For each link, its maximum

data rate is 1, its delay is 0.

There is a single template consisting of a source component

S and two further components A and B, and two arcs (S,A)
and (A,B). Component A has one input and one output, its

resource consumption as a function of the input data rate λ

is given by pA(λ) = 0 and mA(λ) = 1; its output data rate

is given by rA(λ) = 1. Component B has one input and no

output, its resource consumption as a function of the input

data rate λ is given by

pB(λ) =

{

1, if λ ≤ k,

2, otherwise,

and mB(λ) = 0. In each si, there is a source corresponding

to an instance of S with data rate λ = 1.

Suppose first that the original instance of Set Covering is

solvable, i.e., there is a subset Z ⊆ W with cardinality at most
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Fig. 2. An example for the proof of Theorem 1

k such that the union of the sets in Z is U . In this case, the

generated instance of the Template Embedding problem can

also be solved without any violations, as follows (see Fig. 2

for an example). Each si must of course host an instance of

S. In each ai corresponding to an element of Z , an instance

of A is created. Since the union of the sets in Z is U , each si
has an outgoing link to at least one aj hosting an instance of

A, which can be selected as the target of the traffic leaving the

source in si through the link (si, aj). Further, a single instance

of B is created in node b and each instance of A is connected

to B through the (aj , b) link. Since the number of instances

of A is at most k, each emitting traffic with data rate 1, the

CPU requirement of the instance of B is 1, so that it fits on b,

and hence we obtained a solution to the Template Embedding

problem with 0 violation.

Now assume that the generated instance of the Template

Embedding problem is solvable without violations. Then,

we can construct a solution of the original instance of Set

Covering, as we show next. In a solution of the generated

instance of the Template Embedding problem, each si must

host an instance of S and there is no other instance of S.

Instances of A can only be hosted by aj nodes because of

the memory requirement, and an instance of B can only be

hosted in b because of the CPU requirement. We define Z to

contain those elements of W for which the corresponding node

aj hosts an instance of A. Since each source generates traffic

that must be consumed by an instance of A and there is a path

(actually, a link) from si to aj only if the set corresponding

to aj contains the element corresponding to si, it follows that

the sets in Z cover all elements of U . Moreover, since the

instance of B must fit on b and each instance of A generates

traffic with data rate 1, it follows that the number of instances

of A is at most k and hence |Z| ≤ k, thus Z is a solution of

the original Set Covering problem.

Since all numbers in the generated instance of the Template

Embedding problem are constants, this reduction shows that

the Template Embedding problem is indeed NP-hard in the

strong sense.

As a consequence, we can neither expect a polynomial or

even pseudo-polynomial algorithm for solving the problem

exactly nor a fully polynomial-time approximation scheme,

under standard assumptions of complexity theory.

TABLE II
VARIABLES

Name Domain Definition

xj,v {0, 1} 1 iff an instance of component j∈C is mapped to
node v∈V

ya,v,v′ R≥0 If a∈AT is an arc from an output of j∈CT to an
input of j′∈CT , an instance of j is mapped on v∈V ,
and an instance of j′ is mapped on v′∈V , then
ya,v,v′ is the data rate of the corresponding flow

from v to v′; otherwise it is 0
za,v,v′,l R≥0 If a∈AT is an arc from an output of j∈CT to an

input of j′∈CT , an instance of j is mapped on v∈V ,
and an instance of j′ is mapped on v′∈V , then
za,v,v′,l is the data rate of the corresponding flow

from v to v′ that goes through link l∈L; otherwise
it is 0

Λj,v R
|In(j)|
≥0 Vector of data rates on the inputs of the instance

of component j∈CT on node v∈V , or an all-zero
vector if no such instance is mapped on v

Λ′
j,v R

|Out(j)|
≥0 Vector of data rates on the outputs of the instance

of component j∈CT on node v∈V , or an all-zero
vector if no such instance is mapped on v

̺j,v R≥0 CPU requirement of the instance of component
j∈CT on node v∈V , or zero if no such instance
is mapped on v

µj,v R≥0 Memory requirement of the instance of component
j∈CT on node v∈V , or zero if no such instance is
mapped on v

ωv,cpu {0, 1} 1 iff the CPU capacity of node v∈V is exceeded
ωv,mem {0, 1} 1 iff the memory capacity of node v∈V is exceeded
ωl {0, 1} 1 iff the maximum data rate of link l∈L is exceeded
ψcpu R≥0 Maximum CPU over-allocation over all nodes
ψmem R≥0 Maximum memory over-allocation over all nodes
ψdr R≥0 Maximum capacity over-allocation over all links
ζa,v,v′,l {0, 1} 1 iff za,v,v′,l > 0
δj,v {0, 1} 1 iff xj,v 6= x∗j,v

V. MIXED INTEGER PROGRAMMING APPROACH

In this section, we provide a mixed integer programming

(MIP) formulation of the problem. On one hand, this serves

as a further formalization of the problem, on the other hand,

under suitable assumptions an appropriate solver can be used

to solve this formulation, yielding an algorithm for the prob-

lem.

Based on the assumption that two instances of the same

component cannot be mapped to a node, instances can be

identified by the corresponding component and the hosting

node. This is the basis for our choice of variables, which are

explained in more detail in Table II.

We use the following notations for formalizing the

constraints and objectives that the variables must ful-

fill. C=
⋃

T∈T CT denotes the set of all components,

A=
⋃

T∈T AT the set of all arcs, and S=
⋃

T∈T S(T ) the

set of all sources across all services that we want to map

to the network. M , M1, and M2 denote sufficiently large

constants. (Λj,v)k denotes the kth component of the vector

Λj,v . 0 denotes a zero vector of appropriate length.

The problem inputs are the substrate network, the set of

service templates, and the set of sources, as described in

Section III. Additionally, information about existing instances

should also be taken into account during the decision process.



For this, we define x∗
j,v(∀j ∈ C, v ∈ V ) as a constant given

as part of the problem input. If there is a previously mapped

instance of j on node v in the network, x∗
j,v is 1, otherwise it

is 0.

A. Constraints

Here we define the sets of constraints that enforce the

required rules to optimize the template embedding process.

Mapping consistency rules:

∀(v, j, λ) ∈ S : xj,v = 1 (1)

∀(v, j, λ) ∈ S : Λ′
j,v = λ (2)

∀j ∈ C, ∀v ∈ V, k ∈ [1, |In(j)|] : (Λj,v)k ≤M · xj,v (3)

∀j ∈ C, ∀v ∈ V, k ∈ [1, |Out(j)|] : (Λ′
j,v)k ≤M · xj,v (4)

∀j ∈ C, ∀v ∈ V : xj,v − x∗j,v ≤ δj,v (5)

∀j ∈ C, ∀v ∈ V : x∗j,v − xj,v ≤ δj,v (6)

Flow and data rate rules:

∀j ∈ C, j not a source component, ∀v ∈ V :

Λ′
j,v = rj(Λj,v)− (1− xj,v) · rj(0) (7)

∀j ∈ C, ∀v ∈ V, k ∈ [1, |In(j)|] :

(Λj,v)k =
∑

a ends in input k of j,v′∈V

ya,v′,v (8)

∀j ∈ C, ∀v ∈ V, k ∈ [1, |Out(j)|] :

(Λ′
j,v)k =

∑

a starts in output k of j,v′∈V

ya,v,v′ (9)

∀a ∈ A, ∀v, v1, v2 ∈ V :
∑

vv′∈L

za,v1,v2,vv′ −
∑

v′v∈L

za,v1,v2,v′v =

=











0 if v 6= v1 and v 6= v2

ya,v1,v2 if v = v1 and v1 6= v2

0 if v = v1 = v2

(10)

∀a ∈ A, ∀v, v′ ∈ V, ∀l ∈ L : za,v,v′,l ≤M · ζa,v,v′,l (11)

Calculation of resource consumption:

∀j ∈ C, ∀v ∈ V : ̺j,v = pj(Λj,v)− (1− xj,v) · pj(0) (12)

∀j ∈ C, ∀v ∈ V : µj,v = mj(Λj,v)− (1− xj,v) ·mj(0) (13)

Capacity constraints:

∀v ∈ V :
∑

j∈C

̺j,v ≤ capcpu(v) +M · ωv,cpu (14)

∀v ∈ V :
∑

j∈C

̺j,v − capcpu(v) ≤ ψcpu (15)

∀v ∈ V :
∑

j∈C

µj,v ≤ capmem(v) +M · ωv,mem (16)

∀v ∈ V :
∑

j∈C

µj,v − capmem(v) ≤ ψmem (17)

∀l ∈ L :
∑

a∈A;v,v′∈V

za,v,v′,l ≤ b(l) +M · ωl (18)

∀l ∈ L :
∑

a∈A;v,v′∈V

za,v,v′,l − b(l) ≤ ψdr (19)

To illustrate the interplay of these constraints, we assume

we need to optimize the embedding shown in Fig. 1(d).

Constraints (1) and (2) ensure that instances of the source

component, i.e., S1 and S2, are embedded and their output

data rates are set correctly. Constraint (9) ensures that these

data rates are then handed out as flows that can only end up in

instances of A. These flows are mapped to network links and

instances of A are assigned input data rates using Constraints

(10) and (8), respectively. That being set, Constraint (3) marks

the instances A1 and A2 as embedded, and Constraint (7) sets

their output data rates using the respective rj function. In a

similar way, the rest of the components are embedded in the

network.

Constraints (5) and (6) ensure that the δj,v variables are

set correctly. Constraints (12) and (13) compute the resource

consumption of each instance based on the input data rates

and the corresponding pj and mj functions. Constraints (14)–

(19) make sure that over-allocation of node and link capacities

are indicated correctly, and collect the maximum value of

over-allocation for each resource type. This maximum value is

used in the objective function described in Section V-B, which

drives the decisions based on the constraints.

B. Optimization objective

We formalize the optimization objective based on the goals

defined in Section III-E:

minimize M1 ·
(

∑

v∈V

(ωv,cpu + ωv,mem) +
∑

l∈L

ωl

)

+M2 ·
(

∑

a∈A
v,v′∈V
l∈L

(d(l) · ζa,v,v′,l) +
∑

j∈C
v∈V

δj,v

)

+ ψcpu + ψmem + ψdr +
∑

j∈C
v∈V

(̺j,v + µj,v) +
∑

a∈A
v,v′∈V
l∈L

za,v,v′,l (20)

By assigning sufficiently large values to constants M1 and

M2, we can achieve the following goals with the given

priorities (1 being the highest priority):

1) Number of capacity constraint violations over all nodes

and links is minimized.

2) Template arcs are mapped to network paths with mini-

mum latency. Moreover, number of instances that need

to be started/stopped is minimized.

3) The maximum value for capacity constraint violations

over all nodes and links is minimized. Also, overlay

instances and the edges among them are created in a

way that their resource consumption is minimized.

The objective function is in line with the objectives defined

in Section III-E. The primary objective is to minimize the num-

ber of constraint violations; a sufficiently large M1 ensures

that a decrease in the first term of the objective function has

larger impact than any change in the other terms. Moreover,

the resulting solution σ′ will be Pareto-optimal with respect to

the other, secondary metrics: otherwise, there would be another



solution σ′′ that is as good as σ′ according to each secondary

metric and strictly better than σ′ in at least one secondary

metric, but then, σ′′ would lead to a lower overall value of

the objective function.

This mixed integer program can be used for initial embed-

ding of service templates as well as optimizing an existing

embedding. However, when used for initial embedding, the

term
∑

j∈C,v∈V δj,v should be removed from the objective

function to ensure that the decision is not biased towards an

embedding with fewer instances, in case having more instances

can decrease the overall cost of the solution.

C. Solving the mixed integer program

All our constraints are linear equations and linear inequal-

ities, and also the objective function is linear. Hence, if the

functions pj , mj , and rj are linear for all j ∈ C, then we

obtain a mixed-integer linear program (MILP), which can

be solved by appropriate solvers. For non-linear functions,

a piecewise linear approximation may make it possible to

use MILP solvers to obtain good (although not necessarily

optimal) solutions.

VI. HEURISTIC APPROACH

Now we present a heuristic algorithm that is not guaranteed

to find an optimal solution but is much faster than the mixed

integer programming approach. Moreover, it has the advantage

that it works for non-linear functions pj , mj , and rj as well.

The heuristic, shown in Algorithm 1, starts by checking that

each service has a corresponding overlay and each overlay

corresponds to a service (lines 1–5). If a new service has

been started or an existing service has been stopped since the

last invocation of the algorithm, the corresponding overlay is

created or removed at this point. Next, the mapping of the

sources and source components is checked and updated if

necessary (lines 6–11): if a new source emerged, an instance

of the corresponding source component is created; if the data

rate of a source changed, then the output data rate of the

corresponding source component instance is updated; if a

source disappeared, then the corresponding source component

instance is removed. Finally, to propagate the changes of the

sources to the processing instances, we need to iterate over

all instances and ensure that the new output data rates, which

are determined by the new input data rates, are discharged

correctly by outgoing flows (lines 12–24). For this purpose, it

is important to consider the instances in a topological order

(according to the overlay) so that when an instance is dealt

with, its incoming flows have already been updated. If a

change in the outgoing flows is necessary, then the INCREASE

or DECREASE procedures are called.

The auxiliary subroutines are detailed in Algorithm 2.

DECREASE removes as many edges as possible (lines 3–6)

and when this is not possible anymore, it reduces the next

flow on each link by the same factor to achieve the required

reduction (lines 7–9). INCREASE first checks if new instances

need to be created to be consistent with the template (lines

12–16), then tries to increase the existing flows (lines 17–19),

Algorithm 1 Main procedure of the heuristic algorithm

1: if ∃GOL(T ) with T 6∈ T then
2: remove GOL(T )

3: for all T ∈ T do
4: if ∄GOL(T ) then
5: create empty overlay GOL(T )

6: for all (v, j, λ) ∈ S(T ) do

7: if ∄i ∈ IOL with c(i) = j and P
(I)
T (i) = v then

8: create i ∈ IOL with c(i) = j and P
(I)
T (i) = v

9: set output data rate of i to λ

10: if ∃i ∈ IOL, where c(i) is a source component but

∄(P (I)
T (i), c(i), λ) ∈ S(T ) for any λ then

11: remove i
12: for all i ∈ IOL in topological order do
13: if all input data rates of i are 0 then
14: remove i and go to next iteration

15: compute output data rates of i
16: for all output k of i do
17: Φ: set of flows currently leaving output k
18: λ: sum of the data rates of the flows in Φ
19: λ′: new data rate on output k
20: if λ′ < λ then
21: E : set of edges leaving output k
22: DECREASE(E ,λ− λ′)
23: else if λ′ > λ then
24: INCREASE(i,k,Φ,λ′ − λ)

and if this is not sufficient, creates further instances and flows

(lines 20–23).

In the CREATEINSTANCEANDFLOW procedure (called by

INCREASE to create a new instance of a component together

with a flow from an existing instance), all nodes of the

substrate network are temporarily tried for hosting the new

instance and the one leading to the best flow is selected (lines

26–31). Finally, the INCRFLOW procedure (called by both

INCREASE and CREATEINSTANCEANDFLOW) increases the

data rate of a flow along a new path (lines 34–40).

As can be seen, we avoid computing maximum flows. This

is because the time complexity of the best known algorithms

for this purpose are worse than quadratic with respect to

the size of the graph [17]; since these subroutines are run

many times, the high time complexity would be problematic

for large substrate networks. Instead, each run of INCRFLOW

increases a flow only along one new path. For finding the

path, a modified best-first-search is used, which runs in linear

time. It should be noted that split flows can still be created if

INCRFLOW is run multiple times for a flow.

When improving a flow and when selecting from multiple

possible flows, the INCRFLOW and CREATEINSTANCEAND-

FLOW routines must strike a balance between flow data rate

and the increase in overall delay of the solution. Our strategy

for comparing two possible flows is to first compare their data

rates and compare their latencies only if there is a tie. This

strategy is used in line 31 to select the best flow. The rationale

is that selecting flows with high data rate leads to a small

number of instances to be created. However, we also employ

a cutoff mechanism: flow data rates above the cutoff (the



Algorithm 2 Auxiliary methods of the heuristic

1: /* Decrease the flows on the edges in E by ∆λ in total */
2: procedure DECREASE(E ,∆λ)
3: sort E in non-decreasing order of flow data rate
4: for all e ∈ E while flow data rate λ(e) ≤ ∆λ do
5: ∆λ := ∆λ− λ(e)
6: remove e
7: if ∆λ > 0 then
8: let e be the next edge
9: reduce flow of e by a factor of (λ(e)−∆λ)/λ(e)

10: /* Increase the flows in Φ leaving output k of instance i by ∆λ
in total */

11: procedure INCREASE(i,k,Φ,∆λ)
12: for all arc (c(i), j) leaving output k of c(i) do
13: if ∄i′ ∈ IOL with c(i′) = j and ii′ ∈ EOL then
14: ϕ := CREATEINSTANCEANDFLOW(j, i, ∆λ)
15: ∆λ := ∆λ− (data rate of ϕ)
16: Φ := Φ ∪ {ϕ}

17: for all ϕ ∈ Φ do
18: d := INCRFLOW(ϕ,∆λ)
19: ∆λ := ∆λ− d
20: while ∆λ > 0 do
21: (c(i), j): random arc leaving output k of c(i)
22: ϕ := CREATEINSTANCEANDFLOW(j, i, ∆λ)
23: ∆λ := ∆λ− (data rate of ϕ)

24: /* Create an instance of component j with flow from instance i
of high data rate (capped at cutoff) */

25: procedure CREATEINSTANCEANDFLOW(j,i,cutoff)
26: for all v ∈ V do
27: create temporary instance i′ of j on v
28: ϕ: flow of data rate 0 from i to i′

29: INCRFLOW(ϕ,cutoff)
30: remove i′ and ϕ

31: create instance of j on node resulting in best flow

32: /* Increase flow data rate by at most d */
33: procedure INCRFLOW(ϕ,d)
34: v := start node of ϕ
35: v′ := end node of ϕ
36: β1 := maximum flow based on capCPU (v

′)
37: β2 := maximum flow based on capmem(v′)
38: d := min(d, β1, β2)
39: P : v  v′ path of high bandwidth (b) and low latency
40: increase ϕ by min(b, d) along P

increase in data rate that we want to achieve) do not add more

value and are hence regarded to be equal to the cutoff value.

This increases the likelihood of a tie, so that the tie-breaking

method of preferring lower latencies is also important. An

analogous strategy is used in line 39 to compare paths: the

primary criterion is to prefer paths with higher bandwidth –

up to the given cutoff d – and, in case of a tie, to prefer paths

with lower latency. For finding the best path, a modified best-

first-search is used, in which the nodes to be visited are stored

in a priority queue, where priority is defined in accordance

with the above comparison relation.

VII. EVALUATION

We implemented the presented algorithms in the form of a

C++ program. For solving the MILP, Gurobi Optimizer 7.0.13

3http://www.gurobi.com/
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Fig. 3. Example substrate network

was used. For substrate networks, we used benchmarks for the

Virtual Network Mapping Problem4 from Inführ and Raidl

[18]. As service templates, we use examples from IETF’s

Service Function Chaining Use Cases [19].

First, we illustrate our approach on a small substrate net-

work of 10 nodes and 20 arcs (see Fig. 3) in which the CPU

and memory capacity of each node is taken to be 100. In

this network, a service consisting of a source (S), a firewall

(FW), a deep packet inspection (DPI), an anti-virus (AV), and

a parental control (PC) component is deployed. Initially, there

is a single source in node 1 with a moderate data rate. As a

result, our algorithm deploys all components of the service in

node 1 (see Fig. 4(a)).

Subsequently, the data rate of the source increases. As a

result, the resource demand of the processing components

of the service increases so that they do not fit onto node 1

anymore. Our algorithm automatically re-scales the service

by duplicating the DPI, AV, and PC components and au-

tomatically places the newly created instances on a nearby

node, namely node 3 (see Fig. 4(b)). Later on, a second

source emerges for the same service on node 9. The algorithm

automatically decides to create new processing component

instances on node 9 to process as much as possible of the

traffic of the new source locally, and the excess traffic from

the new FW instance that cannot be processed locally due to

capacity constraints is routed to the existing DPI, AV, and PC

instances on node 3 because node 3 still has sufficient free

capacity (see Fig. 4(c)).

Already this small example shows the difficult trade-offs

that template embedding involves. Next, we show that our

approach is capable of handling also much more complex

scenarios.

We consider a substrate network with 20 nodes and 44

arcs, in which multiple services are deployed. Each service

is a virtual content delivery network for video streaming,

consisting of a streaming server, a DPI, a video optimizer,

and a cache. The number of concurrently active services varies

from 0 to 4, the number of sources varies from 0 to 20. Fig. 5

shows how the total data rate of the sources (as a metric of the

demand) and the total CPU size of the created instances (as

4https://www.ac.tuwien.ac.at/files/resources/instances/vnmp

http://www.gurobi.com/
https://www.ac.tuwien.ac.at/files/resources/instances/vnmp
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Fig. 5. Temporal development of the demand and the allocated capacity in a
complex scenario

a metric of the allocated processing capacity) change through

re-optimization after each event (an event is the emergence or

disappearance of a service, the emergence or disappearance

of a source, or the change of the data rate of a source). As

can be seen, the allocated capacity using the heuristic and the

MILP algorithms follow the demand very closely, meaning

that our algorithms are successful in scaling the service in

both directions to quickly react to changes in the demand.

Regarding total data rate and total latency of the overlay

edges, the MILP algorithm performs better than the heuristic

algorithm. This is because in the MILP algorithm, the optimal

location for all required instances can be determined at the

same time respective to the location of the sources, resulting

in shorter distances between the source and the instances. The

heuristic algorithm, however, needs to create instances one

by one, resulting in larger data rates traveling through larger

distances in the substrate network. In this scenario, to handle

the peak demand, a total of 127 instances are created using

the MILP algorithms, while the heuristic algorithm creates 261

instances. The corresponding plots have been omitted because

of space constraints.

Since the template embedding problem is NP-hard, it is

foreseeable that the scalability of the MILP solver will be

limited. In order to test this, we gradually increase the source

data rate of the service from our first experiment, leading to

an increasing number of instances; moreover, we also consider

substrate networks of increasing size. In each case, the MILP

solver is run with a time limit of 60 seconds, meaning that the

solution process stops at (roughly) 60 seconds with the best

solution and the best lower bound that the solver found until

that time. The measurements were performed on a machine

with Intel Core i5-4210U CPU @ 1.70GHz and 8GB RAM.

Fig. 6(a) shows the execution time of the MILP algorithm

for different data rates and substrate network sizes, while

Fig. 6(b) shows the corresponding gap between the found

solution and lower bound. As can be seen, for a small network

with 10 nodes and 20 arcs, the algorithm computes optimal

results for the lower half of source data rate values, and even

for larger source data rates, the optimality gap is quite low

(around 20%), meaning that the results are almost optimal.

However, for a bigger substrate network with 20 nodes and

44 arcs, the timeout is reached for much smaller source data

rate and also the optimality gap is much bigger. For even

bigger substrate networks, the performance of the algorithm

further deteriorates, up to the point where it cannot be run

anymore because of memory problems. The large sensitivity

to the size of the substrate network is not surprising, given

that the number of variables of the MILP is cubic in the size

of the substrate network.

In contrast, as shown in Fig. 6(c), the execution time

of the heuristic algorithm remains very low even for the

largest substrate networks: for 1000 nodes and 2530 arcs, the

execution time is still below 20 milliseconds, rendering the

heuristic practical for industrial problem sizes as well.

VIII. CONCLUSIONS AND FUTURE WORK

We have presented a fully automatic approach to scale and

place multiple virtual network services on a common substrate

network. Besides formally defining the problem and proving

its NP-hardness, we developed two algorithms for it, an MILP-
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Fig. 6. Scalability of the presented algorithms

based one and a custom constructive heuristic. Empiric tests

have shown how our approach finds a balance between con-

flicting requirements and ensures that the allocated capacity

quickly follows changes in the demand. The MILP-based

algorithm gives optimal or near-optimal results for relatively

small networks, whereas the heuristic remains very fast for

even the largest networks that were tested. Overall, the tests

gave evidence to the feasibility of our approach, which makes

it possible (i) for service developers to specify services at

a high level of abstraction and (ii) for providers to quickly

reoptimize the system state after changes.

Promising future research directions include, beside further

algorithmic enhancements to the presented algorithms, the

consideration of queuing incoming requests in the service

components and the investigation of the effects of cyclic

service templates.
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