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Abstract

Many interactive image segmentation approaches use an
objective function which includes appearance models as an
unknown variable. Since the resulting optimization prob-
lem is NP-hard the segmentation and appearance are typ-
ically optimized separately, in an EM-style fashion. One
contribution of this paper is to express the objective func-
tion purely in terms of the unknown segmentation, using
higher-order cliques. This formulation reveals an inter-
esting bias of the model towards balanced segmentations.
Furthermore, it enables us to develop a new dual decompo-
sition optimization procedure, which provides additionally
a lower bound. Hence, we are able to improve on existing
optimizers, and verify that for a considerable number of real
world examples we even achieve global optimality. This is
important since we are able, for the first time, to analyze the
deficiencies of the model. Another contribution is to estab-
lish a property of a particular dual decomposition approach
which involves convex functions depending on foreground
area. As a consequence, we show that the optimal decom-
position for our problem can be computed efficiently via a
parametric maxflow algorithm.

1. Introduction
The problem of interactive image segmentation has been

widely studied and is part of any commercial image edit-
ing package. The task is to separate an image into two dis-
tinct regions, foreground and background, with additional
user guidance. The ultimate goal is to minimize the user in-
teraction and to maximize the quality of the segmentation.
Therefore, it is very common to exploit appearance models,
e.g. [5, 15, 11, 14], to distinguish better the foreground from
the background segment. An appearance model is a statis-
tical model for the color, texture, etc. of the pixels of the
segment. The usage of appearance models can be broadly
categorized into three classes:

• The appearance is known apriori. An example are med-
ical images where the pixels intensity of the foreground
often follow a known distribution. Another scenario is

semantic segmentation, e.g. an object recognition and
segmentation system.

• The appearance is fixed, based on the user input. For in-
stance [5, 14] used color model from user-labeled pixels.

• The appearance is optimized jointly with the segmenta-
tion [15, 10, 1], allowing to choose from a set of models
the one that best fits the segments.

This paper considers the most challenging third option.
The advantage is that in the absence of apriori information
(first option) it requires in general less user input than op-
tion two. For example, it was demonstrated in [15] that
good segmentations can be obtained with just an input rect-
angle containing the object. Note, the second option cannot
be used in this case since there is no foreground training
data. Furthermore, for the case of “sparse” user input, e.g.
a few fore- and background brush strokes, it is very likely
that optimizing appearance models is an advantage, as [15]
suggests.1

The subject of this paper is to study the problem of
jointly optimizing segmentation and appearance. For sim-
plicity we consider color as the only appearance feature,
which is however, not a limitation of our approach. As in-
put we use a simple rectangle containing the object, as in
[15], and show that we outperform on average their EM-
style optimization approach. Fig. 1 gives two examples.

The paper is structured as follows. Sec. 2 introduces the
problem formulation and discusses further related work. In
sec. 3 the problem is rewritten using an energy with higher-
order cliques, in a way that the segmentation is the only
unknown parameter. The new formulation reveals an inter-
esting, previously unknown, bias of the model towards bal-
anced segmentations, i.e. the preference of fore- and back-
ground segments to have similar area. In that section we
also show that two existing approaches [1, 12] can be re-
formulated and optimized in the same way as our model.
Then in sec. 4 we discuss how to optimize our energy. The
method presented relies on the parametric maxflow algo-
rithm and can escape from the local minima of an EM-style
algorithm. It also provides a lower bound and we show that

1We confirmed this experimentally by using the publicly available
GrabCut dataset [15] which also provides a trimap.



in practice the bound is often tight. For cases where we
do not reach global optimality, we introduce a semi-global
iterative method in sec. 5 which in practice nearly always
improves on the EM technique. The experimental sec. 6 in-
vestigates our approach on a large dataset. For cases where
we reach global optimality, we will draw conclusions about
limitations of the model.

a) User input b) EM solution c) Our solution
Figure 1. Given the image and bounding box in a) the Expectation
Maximization method produces result in b). Our new algorithm
gives the segmentation in c) which is not only visually better but
also has a lower energy (for the first image it is the global optimum
of our energy formulation).

2. Problem Formulation
We will follow the standard MAP-MRF approach for im-

age segmentation [5, 4, 15, 10]. Hence, we use an energy
function of the form

E(x, θ0, θ1) =
∑
p∈V

− log Pr(zp|θxp)

︸ ︷︷ ︸
U(x,θ0,θ1)

+
∑

(p,q)∈N

wpq|xp − xq|
︸ ︷︷ ︸

P (x)

.

(1)
Here V is the set of pixels, N is the set of neighboring pix-
els, and xp ∈ {0, 1} is the segmentation label of pixel p
(where 0 corresponds to background and 1 to foreground).
The first term of equation (1) is the likelihood term, where
zp is the RGB color at site p and θ0 and θ1 are respectively
the background and foreground color models. The second
term is the contrast sensitive edge term, which we define
explicitly in sec. 6.

Color modeling Many different models were suggested
in the literature. Two popular ones are histograms [5] and
Gaussian Mixture Models (GMMs) [4, 15]. We will use the
former model, since the use of histograms will be essential
for our approach. (Note, it is well-known that MAP estima-
tion with the GMM model is strictly speaking an ill-posed
problem since by fitting a Gaussian to the color of a sin-
gle pixel we may get an infinite likelihood - see [3], section
9.2.1.) As mentioned above, we express the color models in
the form of histograms. We assume that the histogram has
K bins indexed by k = 1, . . . , K. The bin in which pixel p
falls is denoted as bp, and Vk ⊆ V denotes the set of pixels
assigned to bin k. The vectors θ0 and θ1 in [0, 1]K represent

the distribution over fore- and background, respectively, and
sum to 1. The likelihood model is then given by

U(x, θ0, θ1) =
∑

p

− log θ
xp

bp
. (2)

Optimization The main goal of this paper is to study the

problem of minimizing energy function (1). As we show in
[18], it is NP-hard. An EM-style algorithm was proposed
in [15]. It works by iterating the following steps: (i) Fix
color models θ0, θ1, minimize energy (1) over segmentation
x. (ii) Fix segmentation x, minimize energy (1) over color
models θ0, θ1. The first step is solved via a maxflow al-
gorithm, and the second one via standard machine learning
techniques for fitting a model to data. Each step is guaran-
teed not to increase the energy, but of course the procedure
may get stuck in a local minimum. Two examples are shown
in fig. 1.

In order to avoid local minima, a branch-and-bound
framework was proposed in [10]. They demonstrated that
a global minimum can be obtained for 8 bins, when allowed
models (θ0, θ1) are restricted to a set with 216 elements.
Unfortunately, in general branch-and-bound techniques suf-
fer from an exponential explosion, so increasing the num-
ber of bins or using a finer discretization would present a
problem for the method in [10]. We are not aware of any
existing technique which could assess the performance of
the EM when the number of bins is large, or when the space
of models (θ0, θ1) is unrestricted.

We now present our approach. First, we will rewrite en-
ergy (1) so that it solely depends on the unknown segmen-
tation x.

3. Rewriting the energy via high-order cliques
Let us denote ns

k to be the number of pixels p that fall
into bin k and have label s, i.e. ns

k =
∑

p∈Vk
δ(xp − s). All

these pixels contribute the same cost − log θs
k to the term

U(x, θ0, θ1), therefore we can rewrite it as

U(x, θ0, θ1) =
∑

s

∑
k

−ns
k log θs

k . (3)

It is well-known that for a given segmentation x distri-
butions θ0 and θ1 that minimize U(x, θ0, θ1) are simply the
empirical histograms computed over appropriate segments:

θs
k =

ns
k

ns
(4)

where ns is the number of pixels with label s: ns =∑
p∈V δ(xp − s). Plugging optimal θ0 and θ1 into the en-

ergy gives the following expression:

E(x) = min
θ0,θ1

E(x, θ0, θ1) =
∑

k

hk(n1
k) + h(n1) + P (x)

(5)

hk(n1
k) = −g(n1

k) − g(nk − n1
k) (6)

h(n1) = g(n1) + g(n − n1) (7)



where g(z) = z log z, nk = |Vk| is the number of pixels in
bin k and n = |V | is the total number of pixels.

It is easy to see that functions hk(·) are concave and sym-
metric about nk/2, and function h(·) is convex and symmet-
ric about n/2. The form of equation (5) allows an intuitive
interpretation of this model. The first term (sum of concave
functions) has a preference towards assigning all pixels in
Vk to the same segment. The convex part prefers balanced
segmentations, i.e. segmentations in which the background
and the foreground have the same number of pixels.

Bias of the model Let us analyze this preference towards
balanced segmentations in more detail. This bias is most
pronounced in the extreme case when all pixels are assigned
to unique bins, so nk = 1 for all bins. Then all concave
terms hk(n1

k) are constants, so the energy consists of the
convex part h(n1) and pairwise terms. Note, however, that
the bias disappears in the other extreme case when all pixels
are assigned to the same bin (K = 1); then concave and
convex terms cancel each other. The lemma below gives
some intuition about intermediate cases.

Lemma 3.1. Let Vk be the set of pixels that fall in bin
k. Suppose that pixels in Vk are not involved in pair-
wise terms of the energy, i.e. for any (p, q) ∈ N we have
p, q /∈ Vk. Also suppose that energy (5) is minimized under
user-provided hard constraints that force a certain subset
of pixels to the background and another subset to the fore-
ground. Then there exists a global minimizer x in which all
unconstrained pixels in Vk are assigned either completely
to the background or completely to the foreground.

A proof of this lemma is given in [18]. Note that hk(0) =
hk(nk), so if pixels in Vk are not involved in hard con-
straints then in the absence of pairwise terms the labeling
of Vk will be determined purely by the convex term h(n1),
i.e. the model will choose the label that leads to a more bal-
anced segmentation.
Related models There is a relation between the model
discussed in this paper and a special case of the model pro-
posed in [1]. If the only feature considered in their for-
mulation is color, their model reduces to equation (5) with
functions hk(n1

k) and h(n1) defined in the following way:

hk(n1
k) = −n1

k log

(
nk − n1

k

n1
k

)
− (nk − n1

k) log

(
n1

k

nk − n1
k

)

h(n1) = n1 log

(
n − n1

n1

)
+ (n − n1) log

(
n1

n − n1

)

In [12] the authors propose to use a measure of distance
between histograms to detect a salient object in an image.
This approach can also be converted to a sum of concave
functions over the histogram bins (the same as equation (5)
without the convex part), where hk(n1

k) is defined as fol-
lows:

hk(n1
k) = − (2n1

k − nk)2

2nk

Both these models can be optimized using the dual de-
composition approach, described in the following section.

4. Optimization via dual decomposition
The full energy derived in the previous section has the

following form:
E(x) =

∑
k

hk(n1
k) +

∑
(p,q)∈N

wpq|xp − xq|
︸ ︷︷ ︸

E1(x)

+h(n1)︸ ︷︷ ︸
E2(x)

(8)

where hk(·) are concave functions and h(·) is a convex
function. Recall that n1

k and n1 are functions of the seg-
mentation: n1

k =
∑

p∈Vk
xp, n1 =

∑
p∈V xp. It can be

seen that the energy function is composed of a submodular
part (E1(x)) and a supermodular (E2(x)) part.

As we showed, minimizing function (8) is an NP-hard
problem. We will use a dual decomposition (DD) technique,
which is a popular approach for solving difficult optimiza-
tion problems [2]. Its idea is to decompose the energy into
several subproblems, each of which can be optimized ef-
ficiently. Combining the minima of different subproblems
gives a lower bound on the original function. The DD ap-
proach then tries to maximize this lower bound over differ-
ent decompositions.

We now apply this technique to our problem. Let us
rewrite the energy as

E(x) = [E1(x) − 〈y,x〉] + [E2(x) + 〈y,x〉] (9)

where y is a vector in R
n, n = |V | and 〈y,x〉 denotes the

dot product between two vectors. In other words, we added
unary terms to one subproblem and subtracted them from
the other one. This is a standard use of the DD approach for
MRF optimization [19, 16, 17, 9, 20].

Taking the minimum of each term in (9) over x gives a
lower bound on E(x):
Φ(y) = min

x
[E1(x)−〈y,x〉]︸ ︷︷ ︸

Φ1(y)

+ min
x

[E2(x)+〈y,x〉]︸ ︷︷ ︸
Φ2(y)

≤ min
x

E(x) (10)

Note that both minima can be computed efficiently. In par-
ticular, the first term can be optimized via a reduction to
an min s-t cut problem [13]. In section 4.1 we review this
reduction and propose one extension.

To get the tightest possible bound, we need to maximize
Φ(y) over y. Function Φ(·) is concave, therefore one could
use some standard concave maximization technique, such
as a subgradient method [2, 16, 17, 9] which is guaranteed
to converge to an optimal bound. Note, such decomposition
was used as an example in [20] for enforcing the area con-
straint; the bound was optimized via a max-sum diffusion
algorithm.

We will show that in our case the tightest bound can be
computed in polynomial time using a parametric maxflow
technique [7].



Theorem 4.1. Suppose that continuous functions Φ1,Φ2 :
R

|V | → R have the following properties:

(a) Φ1(y + δ · χp) ≥ Φ1(y) + min
x∈{0,1}

{−xδ} (11)

for all vectors y and nodes p ∈ V , where χp is the
vector of size |V | with (χp)p = 1 and all other compo-
nents equal to zero;

(b) Φ2(y) = min
x∈{0,1}|V |

E2(x)+〈y,x〉 (12)

where E2(x) = h(
∑

p∈V xp) and function h(·) is con-
vex on [0, n] where n = |V |, i.e. 2h(k) ≤ h(k − 1) +
h(k + 1) for k = 1, . . . , n − 1.

Under these conditions function Φ(y) = Φ1(y) + Φ2(y)
has maximizer y such that yp = yq for any p, q ∈ V .

A proof is given in the Appendix. Theorem 4.1 implies
that it suffices to consider vectors y of the form y = λ1,
where 1 is the vector in R

n with components 1. It is easy to
see that we can evaluate Φ(λ1) efficiently for all values of
λ. Indeed, we need to minimize functions

E1(x) − λ〈1,x〉 , E2(x) + λ〈1,x〉 .

For the first function we need to solve a parametric maxflow
problem [7]. The result is a nested sequence of m solutions
x, 2 ≤ m ≤ n+1 and the corresponding m−1 breakpoints
of λ. Accordingly, function minx[E1(x)−λ〈1,x〉] is a
piecewise-linear concave function. All solutions and break-
points can be computed efficiently by a divide-and-conquer
algorithm (see e.g. [8] for a review). The second function
can also be handled efficiently. It is not difficult to show
that if E2(x) = h(

∑
p∈V xp) then minx[E2(x)+λ〈1,x〉]

is a piecewise-linear concave function with breakpoints
h(n − 1) − h(n), h(n − 2) − h(n − 1), . . ., h(0) − h(1).
This implies that Φ(·) is a piecewise-linear concave func-
tion with at most 2n breakpoints. In our implementation we
construct this function explicitly; after that computing the
tightest lower bound (i.e. the maximum of Φ(·)) becomes
trivial. Note, however, that this is not the most efficient
scheme: in general, maximizing a concave function does
not require evaluating all breakpoints.

It remains to specify how to get labeling x. From the
sequence of solutions obtained using parametric maxflow,
we choose the one with minimum energy to be the solution
for the original problem.

Extended decompositions The decomposition (9) could
potentially be strengthened by using other terms. We started
to investigate the following decomposition:

E(x) = [E1(x) − 〈y,x〉 −
∑

k

ykhk(n1
k)]

+ [E2(x) + 〈y,x〉 +
∑

k

ykhk(n1
k)] (13)

As before, both terms can be minimized in polynomial time
assuming that yk ≤ 1 for all k and subsets Vk are disjoint.

(Note, the second term can be optimized using dynamic pro-
gramming2.) Unfortunately, in preliminary tests on a few
examples we did not manage to get tighter bounds com-
pared to decomposition (9). Exploring such decompositions
is left as a future work.

4.1. Minimizing submodular functions with concave
higher order potentials

The decomposition approach described above requires
minimizing functions of the form

f(x) =
∑

p

fp(xp) +
∑
(p,q)

fpq(xp, xq) +
∑

k

hk(n1
k) (14)

where terms fpq(·, ·) are submodular and hk(·) are concave
functions. Since each function hk(n1

k) is dependent on the
labels of all nodes in Vk, these functions correspond to po-
tentials defined over higher order cliques. It is known that
the problem of minimizing f(·) can be be reduced to a min
s-t cut problem [13]. Let us review how this reduction
works. Consider term hk defined over subset Vk. hk(·)
needs to be defined only for values 0, 1, . . . , nk = |Vk|
so we can assume without loss of generality that hk(·) is
a piecewise-linear concave function with βk integer break-
points. The method in [13] first represents the function as
a sum of βk piecewise-linear concave functions with one
breakpoint. For each function we add an auxiliary variable
which is connected to the source or to the sink and to all
nodes in Vk. Thus, the number of added edges is O(nkβk).

In our case function hk(·) is strictly concave, which im-
plies βk = O(nk). Thus, the method would add O((nk)2)
edges. This makes it infeasible in practice for large nk; even
keeping edges in memory would be a problem.

We used the following iterative technique instead. Let
us approximate hk(·) with a piecewise-linear concave func-
tion h̄(·) whose set of breakpoints Bk satisfies {0, nk} ⊆
Bk ⊆ {0, 1, . . . , nk}. We require h̄k(B) = hk(B) for every
breakpoint B ∈ Bk. Using this property, we can uniquely
reconstruct function h̄(·) from the set Bk. It is not diffi-
cult to see that h̄(B) ≤ h(B) for all integer values of B in
[0, nk].

We initialize sets Bk with a small number of breakpoints,
namely {0, 	nk/2
, nk}. We then iterate the following pro-
cedure: (1) minimize function (14) in which terms hk(n1

k)
are replaced with approximations h̄k(n1

k); obtain optimal
solution x and corresponding counts n1

k; (2) for each bin k
set Bk := Bk ∪ {n1

k}. We terminate if none of the sets Bk

change in a given iteration.

2The algorithm computes recursively the following quantities for sub-
sets K ⊆ {1, . . . , K} and integers m ∈ [0,

∑
k∈K |Vk|]:

CK(m) = min
x:

∑
k n1

k
=m

∑
k∈K

⎡
⎣ ∑

p∈Vk

ypxp + ykhk(n1
k)

⎤
⎦

If K = {k} then CK(m) can be computed by sorting values yp, p ∈
Vk . Array CK′∪K′′ for disjoint subsets K′, K′′ can be obtained via min-
convolution of arrays CK′ and CK′′ .



This technique must terminate since sets Bk cannot grow
indefinitely. Let x be the labeling produced by the last iter-
ation. It is easy to verify that for any labeling x′ there holds

f(x′) ≥ f̄(x′) ≥ f̄(x) = f(x)
where f̄(·) is the function minimized in the last iteration.
Thus, x is a global minimum of function (14).

5. Semi-global iterative optimization
In our experiments, we observed that for some im-

ages the dual decomposition technique performed rather
poorly: the number of breakpoints obtained using paramet-
ric maxflow was small and none of those breakpoints corre-
sponded to a good solution. In such cases we would proba-
bly need to resort to an EM-style iterative technique. In this
section we describe how we can use the dual decomposition
approach for such iterative minimization.

Suppose that we have a current solution x̄. The EM ap-
proach would compute empirical histograms (θ̄0, θ̄1) over
x̄ using formulas (4) and then minimize energy EEM(x) =
E(x, θ̄0, θ̄1). We now generalize this procedure as follows.
Consider the energy function

Ē(x) = (1 − α)EEM(x) + αE(x) (15)

where α is a fixed parameter in [0, 1] and E(x) is defined
by (5). Note that α = 0 gives the energy used by the EM
approach, and α = 1 gives the global energy (5).

Lemma 5.1. Suppose that x is a minimizer of Ē(·) for α ∈
(0, 1] and xEM is a minimizer of EEM(·). Then E(x) ≤
E(xEM). Furthermore, if (θ̄0, θ̄1) is computed from some
segmentation x̄ then E(x) ≤ E(xEM) ≤ E(x̄).

Proof. Denote β = 1−α. Optimalities of x and xEM imply

βEEM(x) + αE(x) ≤ βEEM(xEM) + αE(xEM)
βEEM(xEM) ≤ βEEM(x)

Adding these inequalities and canceling terms gives
αE(x) ≤ αE(xEM), or E(x) ≤ E(xEM) since α > 0.
It is well-known that E and M steps of the EM method
do not increase the energy; this implies the second claim
E(xEM) ≤ E(x̄).

The lemma suggests a semi-global iterative optimization
approach in which the next solution is obtained by mini-
mizing function Ē(·) for some value of α. (Clearly, tech-
niques discussed in section 4 are applicable to function (15)
as well). We can expect that for sufficiently small values of
α the DD approach will produce a global minimum of Ē(·);
this is certainly true for α = 0.

6. Experimental results
In this section we present experimental results us-

ing the previously described model and optimization pro-
cedure for interactive image segmentation. We first

give some implementation details. The pairwise poten-
tials for the 8-connected grid are defined similar to [5]:

wpq = (λ1+λ2 exp−β‖zp−zq‖2)
dist(p,q) with λ1 = 1, λ2 = 10 and

β =
(
2
〈
(zp − zq)

2
〉)−1

, where 〈·〉 denotes expectation

over the image. The histograms are computed over the RGB
color space divided into 163 bins of equal size.

We report results for the GrabCut database [15] of 49 im-
ages with associated user defined bounding box.3 The out-
side of the box is constrained to be background. In order to
run many experiments we downscaled each image to a max-
imum side-length of 250 pixels. Careful inspection showed
that this did not affect the quality of the results. The running
time for these downscaled images is shown in table 1. Note,
we did not put much effort into optimizing the code since
efficiency was not the primary focus of this paper4. We be-
lieve that the running times can be considerably reduced.

Min Mean Max
Runtime (in seconds) 27 576 16125
# breakpoints 17 90.5 144
# breakpoints (30 pixel diff) 3 20 38

Table 1. Number of breakpoints and running time.

Dual decomposition for energy minimization Table 2
compares two different methods for energy minimization:
our dual decomposition approach and the EM-style proce-
dure used in previous approaches [15, 1]. For 80% of the
images our method obtains an energy which is lower than
EM, and achieves global optimality for 61% of the images.
The two methods obtain the same solution for 4% of the
images.5

Dual decomp. EM
Lower energy 79.6% 16.3%
Global optimum 61.2% 4.1%
Error 10.5% 8.1%
Error (glob. opt. set) 4.1% 4.7%

Table 2. Comparison between the dual decomposition approach
proposed in this paper and EM procedure.

Table 1 shows the average number of breakpoints ob-
tained using dual decompositon and also the number of
those breakpoints that differ by at least 30 pixels. The
small number of breakpoints obtained for some images af-
fects negatively the performance of the dual decomposition
method.

We consider as error rate the number of misclassified
pixels over the size of the inference region. The average

3We exclude the “cross” image since the bounding box covers the
whole image.

4We use unoptimized C++/Matlab. Flow is not reused. Also we per-
form parametric maxflow iterations in the inner loop of the procedure in
section 4.1 rather than in the outer loop; the latter could be faster. Finally,
the maxflow algorithm that we used [6] does not appear to handle well
nodes with high degree.

5These were the images where EM achieves the global optimum.



error rate is 10.5% for dual decomposition, while for EM it
is 8.1%. The dual decomposition method fails for camou-
flage images and the average error rate is greatly affected by
these examples. Figure 2 shows one of these failure cases.
If we consider only those images where the global optimum
solution is achieved, the error rate drops to 4.1%. For this
set of images EM achieves an error of 4.7%, which shows
the advantage of achieving global optimality.

User input EM solution DD solution

Figure 2. Failure case for dual decomposition (DD) method. The
method performs poorly for camouflage images.

Motivated by the difficult cases we proposed the semi-
global method (sec. 5) that uses dual decomposition in an
iterative procedure. To show that this method is more pow-
erful than EM we take solution x̄ to be an EM fixed point,
i.e. EM procedure can not reduce further the energy. We
then run the semi-global method and report how often it
improves the energy, i.e. escapes from that local minimum.

Recall that the method uses parametric maxflow which
produces a sequence of solutions. From this sequence, the
final solution can be chosen in two different ways: the solu-
tion with smaller energy with respect to the original energy
E(x) (solution 1, eq. 5) or the solution that minimizes en-
ergy Ē(x) (solution 2, eq. 15). In table 3 we report results
for this procedure. The first two columns show the number
of times that the semi-global method improves over EM,
considering, respectively, solution 1 and solution 2. The
last column shows the number of times that global optimal-
ity is verifiably achieved. Recall that α = 0 in (15) gives the
energy of the EM and α = 1 gives the global energy (5). As
expected, energy Ē(x) is globally minimized more often
for smaller values of α.

In the final experiment we were interested to achieve
lowest energy for the whole data set with our procedure.
For this we consider those 19 images where we do not
achieve global optimality, and choose the solution with bet-
ter energy between EM and dual decomposition to obtain an
initial solution. Then we run sequentially the semi-global
method for α = 0.75, 0.5, 0.25, 0. Each run was initialized
with the lowest energy result from the previous run. We
conclude that we improved over EM in terms of energy in
all examples, and the error rate on the total set reduced to
7.2%.
Model properties and limitations As discussed above,
one of the main benefits of the dual decomposition opti-
mization method is that it provides a lower bound. This
allows to verify for which images we get global optimality
and consequently to analyze the properties and limitations

Solution 1 Solution 2 Global optimum
α = 0.25 91.8% 61.2% 95.9%
α = 0.5 95.9% 73.5% 85.7%
α = 0.75 89.8% 85.7% 79.6%

Table 3. Results for the semi global method.

of the model. For this purpose, we consider the restricted set
of 30 images where dual decomposition provides the global
minimum. Fig. 3 shows some results that are visually good.

For some images the current model is not good enough.
There are many ways to improve the model. One possible
direction is to incorporate other types of appearance mod-
els [1]. For some examples, however, we suspect that an im-
provement can only be achieved by requesting further user
input.

In the following we investigate one potential improve-
ment of the model. In sec. 3 we discussed the bias of the
model towards balanced segmentations given by the con-
vex term h(n1). This means that it prefers that the area of
the foreground is half of the image size. This bias is im-
portant to overcome a degenerate case when user input is
limited. More precisely, if the user input is a bounding box
then without the term h(n1) the solution with all pixels be-
ing background has the lowest energy.

Let us extend the model by introducing a weight λ for
the convex term:

E(x) =
∑

k

hk(n1
k) + λh(n1) + P (x) (16)

Note that changing the weight does not change the dual de-
composition procedure; instead, it changes the criterion ac-
cording to which we select the solution from the sequence
of solutions produced by parametric maxflow. Thus, the
method does not need to be run again.

Figure 4 shows the effect of changing this weight. In
this example, the solution with smallest error rate does not
correspond to the solution with λ = 1 (our original model).
This suggests that the model can be improved by choosing
a better weight. More examples are shown in fig. 5.

User input λ = 0.3 λ = 0.4 λ = 1 λ = 1.5

Figure 4. Choosing a different weight for the bias towards bal-
anced segmentations produces different solutions. All solutions
are global optima for the respective weight.

To show the possible gain of selecting the correct λ we
did the following experiment: from the sequence of solu-
tions of parametric maxflow we chose the one with mini-
mum error rate. This solution is guaranteed to be the best



Figure 3. Global optimum results. The first row shows the user input and the second row the segmentation obtained using dual decompo-
sition. For all these images the solution corresponds to the global optimum of the energy.

λ = 1.35 λ = 1.35 λ = 1.5 λ = 1.7

Figure 5. Model failure cases that can be improved by choosing an
appropriate weight λ. The second row corresponds to the solution
for the original model with λ = 1. All solutions are global optima
for the respective weight.

solution obtained using dual decomposition method for a
certain fixed λ (but not necessarily the global optimum of
eq. 16 for a fixed λ). By selecting this solution the error
drops from 4.1% to 3%. In practice the optimal weight
could potentially be learned from ground truth segmenta-
tions. (Note, the weight would probably depend on the loca-
tion of the bounding box inside the image). Another option
is to have the user selecting the weight, e.g. by browsing
through the sequence of solutions.

7. Conclusions and future work
We showed that dual decomposition is a powerful

method for optimizing functions of the form of equation (5).
It improves over EM-style techniques and it can be com-
bined with this approach for complex images. It also com-
putes the global optimum for 60% of the instances consid-

ered. This allows a proper evaluation of this type of model
that was not possible before. It reveals that the model can
be improved by weighting the bias towards balanced seg-
mentations.

On the optimization side, we showed how to speed up
dual decomposition techniques involving convex terms of
the area (see theorem 4.1). We hope that this observation
will turn out to be useful for other vision applications. Some
examples, e.g. a constraint on segmentation area, have been
discussed recently in [20, 21].

References
[1] S. Bagon, O. Boiman, and M. Irani. What is a good image

segment? a unified approach to segment extraction. In ECCV
(4), pages 30–44, 2008.

[2] D. Bertsekas. Nonlinear Programming. Athena Scientific,
1999.

[3] C. Bishop. Pattern Recognition and Machine Learning.
Springer-Verlag, 2008.

[4] A. Blake, C. Rother, M. Brown, P. Perez, and P. Torr. Interac-
tive image segmentation using an adaptive GMMRF model.
In ECCV, 2004.

[5] Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal
boundary and region segmentation of objects in N-D images.
In ICCV, 2001.

[6] Y. Boykov and V. Kolmogorov. An experimental comparison
of min-cut/max-flow algorithms for energy minimization in
vision. PAMI, 26(9), Sept. 2004.

[7] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast para-
metric maximum flow algorithm and applications. SIAM J.
Computing, 18:30–55, 1989.

[8] V. Kolmogorov, Y. Boykov, and C. Rother. Applications of
parametric maxflow in computer vision. In ICCV, 2007.

[9] N. Komodakis, N. Paragios, and G. Tziritas. MRF optimiza-
tion via dual decomposition: Message-passing revisited. In
ICCV, 2005.

[10] V. S. Lempitsky, A. Blake, and C. Rother. Image segmenta-
tion by branch-and-mincut. In ECCV (4), 2008.

[11] Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum. Lazy snapping.
SIGGRAPH, August 2004.

[12] T. Liu, J. Sun, N.-N. Zheng, X. Tang, and H.-Y. Shum.
Learning to detect a salient object. In CVPR, 2007.



[13] P.Kohli, L.Ladicky, and P.Torr. Robust higher order poten-
tials for enforcing label consistency. In CVPR, 2008.

[14] A. Protiere and G. Sapiro. Interactive image segmentation
via adaptive weighted distances. IEEE Transactions on Im-
age Processing, 16(4):1046–1057, April 2007.

[15] C. Rother, V. Kolmogorov, and A. Blake. Grabcut - inter-
active foreground extraction using iterated graph cuts. SIG-
GRAPH, August 2004.

[16] M. I. Schlesinger and V. V. Giginyak. Solution to structural
recognition (MAX,+)-problems by their equivalent transfor-
mations. Part 1. Control Systems and Computers, (1):3–15,
2007.

[17] M. I. Schlesinger and V. V. Giginyak. Solution to structural
recognition (MAX,+)-problems by their equivalent transfor-
mations. Part 2. Control Systems and Computers, (2):3–18,
2007.

[18] S. Vicente, V. Kolmogorov, and C. Rother. Joint optimization
of segmentation and appearance models. Technical report,
UCL, 2009.

[19] M. Wainwright, T. Jaakkola, and A. Willsky. MAP estima-
tion via agreement on trees: Message-passing and linear-
programming approaches. IEEE Trans. Information Theory,
51(11):3697–3717, 2005.

[20] T. Werner. High-arity interactions, polyhedral relaxations,
and cutting plane algorithm for soft constraint optimisation
(MAP-MRF). In CVPR, 2008.

[21] O. J. Woodford, C. Rother, and V. Kolmogorov. A global
perspective on MAP inference for low-level vision. In ICCV,
2009.

Appendix: Proof of theorem 4.1
Let y◦ be a maximizer of Φ(·), and let Ω be the set of

vectors y such that Φ(y) = Φ(y0) and minq∈V y◦
q ≤ yp ≤

maxq∈V y◦
q for p ∈ V . Clearly, Ω is a non-empty com-

pact set. Let y be a vector in Ω with the minimum value
of Δ(y) = maxp∈V yp − minp∈V yp. (The minimum is
achieved in Ω due to compactness of Ω and continuity of
function Δ(·).) If there are multiple vectors y ∈ Ω that
minimize Δ(y), we will choose a vector such that the cardi-
nality of the set {p ∈ V : minq∈V yq < yp < maxq∈V yq}
is maximized. We need to prove that Δ(y) = 0. Suppose
that Δ(y) > 0. Let p− ∈ V and p+ ∈ V be nodes with the
minimum and maximum values of yp, respectively, so that
yp+ − yp− = Δ(y) > 0.

Denote Ē2(x) = E2(x) + 〈x,y〉, and let X be the set
of minimizers of Ē2(·). We claim that there exist labelings
x−,x+ ∈ X such that x−

p− = 0, x+
p+ = 1. Indeed, suppose

that all labelings x ∈ X have xp− = 1, then there exists suf-
ficiently small δ ∈ (0,Δ(y)) such that increasing yp− by δ
will not affect the optimality of labelings in x ∈ X . As a
result of this update, Φ2(y) = minx[E2(x)+〈y,x〉] will in-
crease by δ and Φ1(y) will decrease by no more than δ due
to (11), therefore vector y will remain a maximizer of Φ(·).
After this update either Δ(y) will decrease or the cardinal-
ity of the set {p ∈ V : minq∈V yq < yp < maxq∈V yq}
will increase. This contradicts to the choice of y, which
proves the existence of labeling x− ∈ X with x−

p− = 0.

Similarly, suppose that all labelings x ∈ X have xp+ = 0,
they will remain optimal if we decrease yp+ by a sufficiently
small amount δ ∈ (0,Δ(y)). As a result of this update,
Φ2(y) = minx[E2(x)+〈y,x〉] will not change and Φ1(y)
will not decrease, therefore vector y will remain a max-
imizer of Φ(·). This contradicts to the choice of y, and
proves the existence of labeling x+ ∈ X with x+

p+ = 1.
Next, we will establish some useful properties about the

structure of X . Let us call labeling x ∈ {0, 1}n monotonic
if it satisfies the following property: if yp < yq for nodes
p, q ∈ V then xp ≥ xq. Clearly, any labeling x ∈ X must
be monotonic. Indeed, if yp < yq, xp = 0 and xq = 1 then
swapping the labels of p and q would decrease Ē2(x).

Let us introduce function

h̄(k) = min
x:||x||=k

Ē2(x) = h(k) + min
x:||x||=k

〈x,y〉

where we denoted ||x|| =
∑

p∈V xp. It is easy to see that
x ∈ X if and only if two conditions hold: (i) h̄(k) achieves
the minimum at k = ||x||; (ii) labeling x is monotonic.
(Note, all monotonic labelings x with the same count ||x||
have the same value of 〈x,y〉.)

Let (y1, . . . , yn) be the sequence of values yp, p ∈ V
sorted in the non-decreasing order. In other words, yk is the
k-th smallest element among values yp, p ∈ V . Clearly, we
have

h̄(k) = h(k) +
k∑

i=1

yi , k = 0, 1, . . . , n

Functions h(k) and s(k) =
∑k

i=1 yi are convex, so h̄(k) is
convex as well. Therefore, the set of values of k that mini-
mize h̄(k) form an interval [k−, k+] where 0 ≤ k− ≤ k+ ≤
n. Furthermore, if k− < k+ then yk−+1 = yk+

. Indeed,
we have h̄(k) = const for k ∈ [k−, k+], i.e. function h̄(·)
is linear on [k−, k+]. It is a sum of two convex functions, so
both functions must be linear on [k−, k+]. This implies that
s(k−+1)−s(k−) = s(k+)−s(k+−1), i.e. yk−+1 = yk+

.
Let us show that yp+ = yk+

. Suppose not: yk+
< yp+ .

Then there are at least k+ nodes p ∈ V with yp < yp+ .
They must satisfy x+

p = 1, since x+
p+ = 1 and x+ is mono-

tonic. Thus, there are at least k+ + 1 nodes p ∈ V with
xp = 1, so ||x+|| ≥ k+ + 1 - a contradiction.

Similarly, we can show that yp− = yk−+1. (Note, we

have k− ≤ ||x−|| ≤ n − 1.) Suppose not: yp− < yk−+1.
Then there are at least n − k− nodes p ∈ V with yp >
yp− . They must satisfy x−

p = 0, since x−
p− = 0 and x− is

monotonic. Thus, there are at least n−k− +1 nodes p ∈ V
with xp = 0, so ||x−|| ≤ k− − 1 - a contradiction.

The arguments above imply that if k− < k+ then yp− =
yk−+1 = yk+

= yp+ , and if k− = k+ then yp− = yk−+1 ≥
yk+

= yp+ . This contradicts to the assumption yp− < yp+

made earlier.


