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Abstract

In this paper, we address the problem of minimizing energy consumption in a CDMA wireless sensor
network (WSN), where multiple sensor nodes transmit data simultaneously to a common remote
sink. A comprehensive energy consumption model is proposed, which accounts for both the trans-
mit and circuit energy. Energy consumption is minimized by jointly optimizing the transmit power
and transmission time for each active node in the network. The optimization problem is formulated
as a non-convex optimization. Numerical as well as closed-form approximate analytical solutions
are provided. For the numerical solution, we show that the formulation can be transformed into
a convex geometric programming (GP), for which fast algorithms, such as Interior Point Method,
can be applied. For the closed-form solution, we prove that the joint power/time optimization can
be decoupled into two sequential sub-problems: optimization of transmit power with transmission
time serving as a parameter, and then optimization of the transmission time. We show that the first
sub-problem is a linear programming while the second one can be well approximated as a convex pro-
gramming problem. Accordingly, closed-form solutions are found for both sub-problems, and hence
for the original formulation. Taking advantage of these analytical results, we further derive the bit
energy efficiency (BEE) performance for CDMA WSNs. Our results are verified through numerical
examples and simulations.

Keywords: CDMA, sensor network, joint power and time optimization, geometric programming,
convex optimization.



1 Introduction

Advances in mixed-signal design and microelectronic fabrication have made it possible to integrate
analog and digital processing, sensing, and wireless communication into a single integrated circuit.
When packaged with a battery and other electronics, such a circuit forms a small, low cost sensor unit
that can be easily deployed in large numbers to form a wireless sensor network (WSN). In the near
future, it is expected that WSNs will be utilized in a wide range of military and civilian applications,
such as surveillance, environment and health monitoring, inventory tracking, failure detection, and
many more [1]. The individual sensors, being powered by small batteries, have very limited energy
capacity. Even in moderate-size networks, the replacement of such batteries is not feasible, either
due to lack of access or to prohibitive cost. Consequently, strategies for achieving very high energy
efficiency so as to maximize the lifetime of the network are essential.

So far, it is known that the energy required to transmit a certain amount of information grows
exponentially with the inverse of the transmission time [3]. This simple transmission power-delay
tradeoff has been applied in the design of energy-efficient packet scheduling protocols for single-
user wireless links. In [4] and [5], the “lazy scheduling” approach was proposed. According to this
approach, the energy used to transmit packets over a wireless link is minimized by judiciously varying
packet transmission times according to the delay requirements. In [6] and [7], traffic smoothing is
performed, resulting in an output packet traffic that is less bursty than the input traffic, and leading
to significant power savings.

Although the tradeoff between transmission energy and transmission time has been extensively
studied in the context of general wireless networks, such work is not directly applicable to WSNs due
to specific features in node organization and transmission in a WSN. More specifically, because of
the high density of nodes in a WSN, e.g., 20 nodes per meter3 [2], the average transmission distance
between nodes is usually small. Accordingly, signal propagation tends to follow a free-space path
loss model (with a path loss exponent close to 2), rather than a terrestrial propagation model (with
a large loss exponent) as in a cellular environment. For such short-range transmission, the circuit
energy consumption is no longer negligible relative to the transmission energy [11]. Therefore, a
more complicated tradeoff emerges between energy and transmission time; although increasing the
transmission time reduces the transmission energy, it also increases the circuit energy consumption.
Another important feature that distinguishes a WSN from traditional wireless networks is the high
correlation between nodes in a WSN. Because WSNs are often designed to cooperate on executing
some joint task, less emphasis is put on per-node fairness. Accordingly, it is more reasonable to
minimize the total energy consumption in the network instead of minimizing the energy consumption
of individual nodes, i.e., a multi-user environment is more preferable for the optimization. Embracing
the impact of circuit energy consumption and the new context of multiple access optimization, a new
formulation is necessary to minimize the overall energy consumption in a WSN.

Several previous studies incorporated circuit energy in the optimization of energy consumption
for a single user. In [8] circuit energy consumption was included in the analysis of a cooperative and
hierarchical WSN. In [9] and [11], the authors exploit the tradeoff between transmission energy and
circuit energy consumption to provide a cross-layer optimization of link-layer coding and physical-
layer modulation for a single link. More recently, there has been some work on minimizing the total
energy consumption in a multiple access environment. Reference [12] improves upon the work in
[9]-[11] by extending the point-to-point joint energy minimization to a multiple access scenario and
presenting a variable-length Time Division Multiple Access (TDMA) scheme that minimizes the total
energy consumption in the network. However, two major difficulties appear when implementing the
ideas in [12], namely, the need for strict synchronization between different nodes and the scalability
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of the variable-length time slot allocation approach, especially in a dense network such as a WSN.
In this paper, we present a novel formulation and a solution to the problem of energy minimization

in a CDMA-based WSN, where multiple sensors are allowed to transmit data simultaneously to a
remote sink. The assumptions on time synchronization and variable-time slot allocation in [12] are
not imposed. The problem is formulated as the minimization of the total consumed energy subject
to contraints on the received signal quality, transmission delays, and transmission powers. Both
transmission energy and circuit energy consumptions are accounted for in the optimization. For a
given number of information bits at each node, the minimization of energy is achieved by finding the
optimal transmit power and transmission time for each sensor node.

The main contribution of this paper is twofold. First, although the objective function and the
constraints in the underlying optimization problem are not convex, by exploiting the special structure
of the formulation we successfully develop both numerical and closed-form analytical solutions to
this problem. Numerically, this formulation is converted to a posynomial optimization problem
that can be accurately solved by using geometric programming (GP). Analytically, we prove that
the problem of jointly optimizing the transmission power and transmission time can be decoupled
into two separate sequential sub-problems. The first is a parametric linear program for optimizing
the transmission power with the transmission time being a parameter, and the second is a convex
optimization problem for finding the optimal transmission time. We present closed-form solutions
to both sub-problems, and consequently, to the original problem. Second, by taking advantage of
the closed-form results, we further study the bit energy efficiency (BEE) for a CDMA-based WSN,
defined as the minimum expected energy consumed to transmit a single information bit in the network
while satisfying all constraints. For some special cases, we achieve a closed-form BEE expression and
a BEE upper bound for the correlated and independent WSNs, respectively, where the amounts
of data transmitted by different sensors are fully correlated or are independently and identically
distributed (i.i.d.). Numerical examples and simulations are presented to validate our results. We also
demonstrate the significant energy savings achieved by joint transmission power/time optimization.

The rest of this paper is organized as follows. We describe the system model in Section II. We
formulate the problem and present the geometric programming-based numerical solution in Section
III. Section IV presents an approximate closed-form analytical solution to the energy-minimization
problem. Based on this solution, we study the BEE performance for a CDMA-based WSN in Section
V. Section VI presents numerical examples and simulations, and Section VII concludes our work.

2 Model Description

2.1 System Model

We consider a DS-CDMA-based WSN [13][14] that consists of a set of densely distributed sensor
nodes S. The nodes transmit their data to a remote base station in a one-hop WSN or to a local
cluster head in a clustered WSN [17]-[19]. Let o denote the destination node and let N be the number
of active sensors at any given time instant, as illustrated in Figure 1. The information from the N
sensors is transmitted simultaneously over a spread-spectrum bandwidth of W Hz. The single-sided
power spectrum density of the additive white Gaussian noise (AWGN) is N0 watt/Hz.

Per-cycle transmission power and transmission time control for all sensor nodes is performed by
o. For sensor i (i = 1, . . . , N), there are Bi bits in the queue waiting to be transmitted to o using
transmit power Pti and for a transmission duration Ti. Different transmission rates are supported
by using variable spreading gains. Let the channel gain between nodes i and o be hi and assume
the channel is stationary for the duration Ti. The quality-of-service (QoS) requirement of sensor i
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is presented by the triple (γi, T
limit
i , Pmax), where γi is the minimum bit-energy-to-interference-ratio

threshold for the received signal from sensor i, T limit
i ≥ Ti is an upper limit on the transmission

delay, and Pmax ≥ Pti is the maximum transmit power (assumed the same for all nodes). As is
common in DS-CDMA systems, we assume BPSK modulation. We must point out that, although
we assume a common Pmax for all nodes and BPSK modulation for the system, the analysis presented
is not limited to these specific assumptions, and the corresponding results can be easily extended to
accommodate heterogeneous power constraints and higher modulation schemes.
Remark: The above system model is suitable for a wide range of practical WSNs, including clock-
driven, event-driven, and inquiry-driven systems. For a clock-driven WSN, the remote node o peri-
odically (e.g., with period T ) broadcasts beacons to activate simultaneous data transmissions from
all nodes in S. In this case, N = |S| and T limit

i = T . For an event-driven WSN, a subset of S is
activated simultaneously by the occurrence of an event. The activated nodes begin to transmit their
sensed data roughly at the same time. Depending on the type of sensed data, e.g., voice, video,
etc., there may be different deadlines for the transmissions from different sensors. Such deadlines are
captured by T limit

i , i = 1, . . . , N . For an inquiry-driven WSN, node o broadcasts the inquiry request
to the set S, leading to a response from those sensors that have the desired answers. For a real-time
inquiry, the desired information is usually needed by a certain time limit T limit.

2.2 Energy Consumption Model

Consider the ith sensor node with Bi backlogged bits. The energy consumption at this node consists
of transmission energy consumption and circuit energy consumption, i.e.,

Ei = (Pti + Pci)Ti, (1)

where Pci is the power consumed by the circuit at sensor i. Following a similar model to the one in
[11], Pci can be written as

Pci = αi + (
1

η
− 1)Pti, (2)

where αi is a transmit-power-independent component that accounts for the power consumed by the
digital-to-analog converter, the signal filters, and the modulator. PPAi

def
= ( 1

η
− 1)Pti is the power

consumed by the power amplifier (PA), whose value is related to the transmission power via the
efficiency of the PA η, where η = Pti

Pti+PPAi
. Physically, η is determined by the drain efficiency of

the RF power amplifier and the modulation scheme [11][20]. Substituting (2) into (1), the energy
consumption of sensor i is given by

Ei =
1

η
PtiTi + αiTi

=
1

η
(Pti + αciri)Ti, (3)

where αciri = ηαi is defined as the equivalent circuit power consumption. For N active sensor nodes,
the total energy consumption is

Etotal =
N∑

i=1

Ei =
1

η

N∑

i=1

(Pti + αciri)Ti. (4)
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3 Problem Formulation and Numerical Solution

The primary objective of our work is to find the optimal transmission power P o
ti and transmission

time T o
i for each sensor node i such that the total energy consumption for transmitting

∑N
i=1 Bi bits

is minimized while the QoS requirement of each transmission is satisfied. Formally, this is expressed
as 




min{Pt,T}
∑N

i=1(Pti + αciri)Ti

s.t.(
Eb

I0

)
i
≥ γi, i = 1, . . . , N

0 ≤ Ti ≤ T limit
i , i = 1, . . . , N

0 ≤ Pti ≤ Pmax. i = 1, . . . , N

(5)

where Pt
def
= (Pt1, . . . , PtN) is the transmit power vector, T

def
= (T1, . . . , TN) is the transmission time

vector, and
(

Eb

I0

)
i
is the received bit-energy-to-interference-density ratio at node o for sensor i. This(

Eb

I0

)
i
is given by

(
Eb

I0

)

i

=
W

Ri

hiPti

δ
∑N

j=1,j 6=i hjPtj + N0W
(6)

=
W

Bi

hiPtiTi

δ
∑N

j=1,j 6=i hjPtj + N0W
(7)

where Ri = Bi

Ti
is the transmission rate under the assumption of BPSK modulation and δ is the

orthogonality factor, representing multiple access interference (MAI) from the imperfect-orthogonal
spreading codes and the asynchronous chips across simultaneous transmitting nodes. Typical values
for δ are 2

3
and 1 for a chip of rectangular or sinoide shape, respectively [15][16]. The second and

third constraints in (5) come from the delay and transmit power upper bounds.

Because of the cross-product of Pt and T in the objective function and in the
(

Eb

I0

)
i
constraint,

(5) is not a convex optimization problem. Hence, there is no guarantee that a locally optimal solution
will indeed be globally optimal. We proceed to show that (5) can be put in a more standard form that
reveals its special structure, for which an efficient numerical algorithm (geometric programming) is
available. Moreover, as we show later, an approximate closed-form analytical solution is also possible
due to the fact that the optimization problem can be solved sequentially, first with respect to power
and then with respect to time.
Proposition 1: The problem formulation in (5) is a geometric programming, which can be trans-
formed into a convex optimization problem of the so-called log-sum-exponential form so that the
globally optimal solution can be efficiently derived by any numerical algorithm for convex optimiza-
tion.

Proof : After some simple algebraic manipulations, (5) can be expressed as





min{Pt,T}
∑N

i=1(Pti + αciri)Ti

s.t.

δBiγi (WhiPtiTi)
−1 ∑N

j=1,j 6=i hjPtj + Biγi (WhiPtiTi)
−1 ≤ 1, i = 1, . . . , N

Ti

T limit
i

≤ 1,
Pti

Pmax
≤ 1,

Ti ≥ 0,
Pti ≥ 0.

(8)
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The objective function and all of the left-hand sides of the constraints in (8) are sums of mono-
mials in (Pt,T) with non-negative coefficients. These are known as posynomials1, and (8) can be
solved using geometric programming [21]. The above form is still not a convex optimization prob-
lem. However, with a transformation of variables, (8) can be converted into an equivalent convex
optimization problem. Let xi = ln Pti and yi = ln Ti. Taking the logarithms of both the objective
function and constraints, (8) is transformed into the following equivalent problem:





min{x,y} log
∑N

i=1 [exp(xi + yi) + exp(ln αciri + yi)]
s.t.

log
[∑N

j=1,j 6=i exp
(
xj − xi − yi + ln δBiγiW

−1h−1
i hj

)
+ exp

(
ln(BiγiW

−1h−1
i )− xi − yi

)]
≤ 0

log exp
(
yi − ln T limit

i

)
≤ 0,

log exp (xi − ln Pmax) ≤ 0, i = 1, . . . , N.
(9)

The log-sum-exponential function f(z) = log (
∑n

i=1 ezi), where z = (z1, . . . , zn) ∈ Rn, is a convex
function [21]. This implies that the affine mapping g(s) = f(As+B) preserves the convexity of f(z).
Hence, the objective function and all the constraints presented in (9) are convex, and so (9) is a
convex optimization problem whose locally optimal solution (xo,yo) is also globally optimal. Taking
advantage of this useful property, efficient numerical algorithms for convex optimization problem,
such as the primal-dual interior point method [21], can be used to solve for (xo,yo). The globally
optimal solution of (5) is simply given by P o

ti = exp(xo
i ) and T o

i = exp(yo
i ), for i = 1, . . . , N . Thus,

Proposition 1 follows.
Note that the transformation from the posynomial-form geometric program (8) to the convex-

form problem (9) does not involve any computation; and the parameters for the two problems are
the same. Therefore, the computational complexity is not increased by taking this transformation;
it simply changes the form of the objective and constraint functions.

4 Closed-Form Analytical Results

The transformation of the optimization problem in (5) into (9) facilitates an accurate and very
efficient numerical solution for finding the globally optimal transmission power and time for all
active nodes in the system. In this section, we derive a closed-form analytical solution that may be
viewed, in general, as a tight approximation of the exact solution. For all practical purposes, this
analytical solution is indistinguishable from the numerical solution. The closed form of this solution
makes it quite attractive for any real time transmit control operation.

The analytical solution is obtained by transforming the joint optimization problem in transmission
power and time into two sequential sub-problems. This is achieved by first obtaining the optimal
transmission power as an explicit function of the transmission time T, for all feasible transmission
times. Then, the optimal value of T is derived. Mathematically, this decoupling is described and
justified in the following section.

4.1 Mathematical Justification of the Decoupling Approach

Let (xo,yo) be the optimal solution to the minimization of a function f(x,y) over the feasible set
Ω, i.e., f(xo,yo) ≤ f(x,y) for ∀(x,y) ∈ Ω, where x ∈ Rn, y ∈ Rm, and f : Rn ×Rm → R. Let Ω1

1A posynomial in the variable x = (x1, . . . , xn) ∈ Rn is a linear combination of monomials with nonnegative
coefficients. Formally, it is defined as f(x) =

∑K
k=1 ckxak1

1 xak2
2 . . . xakn

n , where ck ≥ 0 and akj ∈ R, j = 1, 2, . . . , n.
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be the set composed of all feasible x in Ω, i.e., Ω1 = {x |(x,y) ∈ Ω}. For a given x0 ∈ Ω1, define
the function Fx0(y) = f(x0,y) and let the corresponding feasible set be Ωx0 = {y |(x0,y) ∈ Ω}.
Assuming the minimum value of Fx0(y) exists over Ωx0 , then there must be some y∗0 ∈ Ωx0 for which
Fx0(y

∗
0) ≤ Fx0(y) for ∀y ∈ Ωx0 . Define the multi-dimensional function g(x) as the mapping from x0

to y∗0, i.e., for any x ∈ Ω1, the corresponding optimal solution to the problem min Fx(y) over the
feasible set Ωx is given by y∗ = g(x) = (g1(x), . . . , gm(x)), so that Fx(g(x)) ≤ Fx(y) for ∀y ∈ Ωx.
Regarding the optimal solution to min f(x,y) over Ω, we have the following proposition:
Proposition 2: Define h(x) = f(x,g(x)). Let x∗ be the (globally) optimal solution to problem

min h(x) over the feasible set Ω1, (10)

i.e., h(x∗) ≤ h(x), ∀x ∈ Ω1. Then, f(x∗,g(x∗)) = f(xo,yo), i.e., (x∗,g(x∗)) is also the globally
optimal solution to the problem

min f(x,y) over Ω. (11)

Proof : Because x∗ ∈ Ω1 and g(x∗) ∈ Ωx∗ , it is clear that (x∗,g(x∗)) ∈ Ω. Because (xo,yo) is the
optimal solution to (11), it immediately follows that f(xo,yo) ≤ f(x∗,g(x∗)). On the other hand,
because x∗ is the optimal solution to (10), it follows that for ∀x ∈ Ω1,

h(x∗) = f(x∗,g(x∗)) ≤ h(x) = f(x,g(x)). (12)

Therefore, it follows that

f(x∗,g(x∗)) ≤ f(xo,g(xo)) = Fxo(g(xo)). (13)

For any given x, y∗ = g(x) provides the optimal (minimum) value of Fx(y) over the feasible set Ωx.
Therefore,

Fxo(g(xo)) ≤ Fxo(y), ∀y ∈ Ωxo . (14)

Because (xo,yo) ∈ Ω, there must be yo ∈ Ωxo . Therefore,

Fxo(g(xo)) ≤ Fxo(yo) = f(xo,yo). (15)

Combining (15) and (13), it follows that

f(x∗,g(x∗)) ≤ f(xo,yo). (16)

But f(xo,yo) ≤ f(x∗,g(x∗)). Thus, it must be that f(x∗,g(x∗)) = f(xo,yo).
Analytically, Proposition 2 suggests that the optimization of the two-variable problem (11) can be

divided into two sequential sub-problems. In the first sub-problem, x is treated as a given parameter
and y as the optimization variable. For a given x, the optimal y that minimizes the objective function
is presented as a function of x, i.e., g(x). The optimization results of sub-problem 1 is then forwarded
to the configuration of sub-problem 2, where the objective function is transformed to f(x,g(x)) and
the optimization is conducted over x. Proposition 2 proves that the optimal solution of the original
problem is obtained from the results of sub-problems 1-2 as (x∗,g(x∗)). Taking advantage of this
property, the analysis of (5) proceeds as follows.
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4.2 Sub-Problem 1: Parametric Solution for Optimal Transmission Power

Treating the transmission time vector T as a given system parameter with Ti ≤ T limit
i , problem (5)

is equivalent to the following linear programming problem:




min{Pt1,...,PtN}
∑N

i=1 PtiTi

s.t.(
1 + δBiγi

WTi

)
hiPti − δBiγi

WTi

∑N
j=1 hjPtj ≥ BiγiN0

Ti
, i = 1, . . . , N

Pti ≤ Pmax

(17)

Regarding the optimal solution to (17), we have the following proposition.
Proposition 3: If the optimal solution to (17) exists, i.e., the feasible set depicted by the constraints
in (17) is not empty, then this optimal solution is the solution to the following set of linear equations

(
1 +

δBiγi

WTi

)
hiPti − δBiγi

WTi

N∑

j=1

hjPtj =
BiγiN0W

WTi

, i = 1, . . . , N (18)

Proof : Let fi(Pt)
def
=

(
1 + δBiγi

WTi

)
hiPti − δBiγi

WTi

∑N
j=1 hjPtj, i = 1, . . . , N . Its first-order partial deriva-

tions are
∂fi

∂Pti

= hi > 0 (19)

and
∂fi

∂Ptj

= −Biγi

WTi

hj < 0, for j 6= i. (20)

The derivations indicate that fi(Pt) is a strict mono-increasing function of Pti and a strict mono-
decreasing function of Ptj, j 6= i.

Let the optimal solution to (17) be Po
t = (P o

t1, . . . , P
o
tN). Then it follows that

∑N
i=1 P o

tiTi ≤∑N
i=1 PtiTi for any feasible transmit power vector Pt = (Pt1, . . . , PtN). Suppose for some node k, 1 ≤

k ≤ N , fk(P
o
t ) > BkγkN0

Tk
. Then, for this node, there must be some increment 4Ptk > 0 such that

replacing P o
tk by P o′

tk = P o
tk − 4Ptk while keeping the transmit power of other nodes intact results

in fk(P
o′
t ) ≥ BkγkN0

Tk
and fi(P

o′
t ) ≥ BiγiN0

Ti
, for i 6= k, where Po′

t = (P o
t1, . . . , P

o
tk − 4Ptk, . . . , P

o
tN).

Therefore, Po′
t is also a feasible solution to problem (17). However, it is easy to show that

∑N
i=1 P o′

ti Ti

is strictly smaller than
∑N

i=1 P o
tiTi by 4PtkTk, leading to a conflict with the supposition that Po

t is the
optimal solution that minimizes the objective function

∑N
i=1 PtiTi. Therefore, there can not be any

node k that does not meet the equality in the first constraint in (17). Then Proposition 3 follows.

After some mathematical manipulations of (18), we arrive at

hiPti =
δBiγi

WTi + δBiγi

N∑

j=1

hjPtj +
Biγi

WTi + δBiγi

N0W, i = 1, . . . , N. (21)

Define the power index of node i as:

gi
def
=

δBiγi

WTi + δBiγi

, (22)

Equation (21) can be rewritten as

hiPti = gi

N∑

j=1

hjPtj +
1

δ
giN0W, i = 1, . . . , N. (23)
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Summing over i leads to
N∑

i=1

hiPti = gΣ

N∑

j=1

hjPtj +
1

δ
gΣN0W, (24)

where gΣ
def
=

∑N
i=1 gi. Therefore, the solution to (18), and also the optimal solution to problem (17)

if it exists, is simply given by

Pti =
δ−1h−1

i gi

1− gΣ

N0W. (25)

Assuming N0W = 1, i.e., normalizing Pti by the background AWGN, (25) is further simplified to

Pti =
δ−1h−1

i gi

1− gΣ

, i = 1, . . . , N. (26)

Given any feasible transmission time vector T, (26) presents the optimal transmit power vector
in terms of T if such optimal solution exists. Regarding the second constraint in (17), a necessary
condition for the existence of the optimal solution is given by

Pti =
δ−1h−1

i gi

1− gΣ

≤ Pmax (27)

which leads to
gi ≤ δ(1− gΣ)hiPmax, i = 1, . . . , N. (28)

The inequality (28) depicts a polyhedron in RN
+ within which a feasible solution to (17) exists (thus,

the optimal solution exists). Summing over i in (28), we have

gΣ ≤ δPmaxhΣ

1 + δPmaxhΣ

< 1, (29)

where hΣ
def
=

∑N
i=1 hi. To provide a tractable closed-form solution, we relax (28) into

gi ≤ δhiPmax, i = 1, . . . , N. (30)

Note that this relaxation may result in transmission powers for some sensor nodes that exceed the
upper bound Pmax if the received signal quality constraints are to be satisfied for all nodes. However,
for a typical CDMA-based WSN application, which is characterized by low data transmission rates,
large spread spectrum bandwidth, and a relatively small SINR requirement, the gi’s are very small
and gΣ ¿ 1. Consequently, the expansion of the feasible set through (30) will result in a tight
approximation to the original polyhedron in (28), as will be demonstrated later in Section 6.

To summarize the results of this section, for any given feasible transmission time T, the parametric
optimal transmit power is given by (26). In order to guarantee the existence of this optimal power
allocation, (30) and (29) must be satisfied, where gi is defined in (22) and gΣ =

∑N
i=1 gi.

4.3 Sub-Problem 2: Optimization of Transmission Time

¿From (22), it is clear that for given Bi, γi,W , and δ, the power index gi and the transmission time
Ti are equivalent measures in the sense that there is a one-to-one mapping between gi and Ti:

Ti =
δBiγi

Wgi

(1− gi). (31)
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In the following optimization, it is more mathematically convenient to work with gi. Let g
def
=

(g1, . . . , gN). The problem of determining the optimal value of g is formulated by substituting (31),
(26), and the constraints (30) and (29) into the original optimization problem (5). This results in





min{g1,...,gN}
{
h(g1, . . . , gN)

def
=

∑N
i=1

(
δ−1h−1

i gi

1−gΣ
+ αciri

)
δBiγi

Wgi
(1− gi)

}

s.t.
δBiγi

δBiγi+WT limit
i

≤ gi ≤ δhiPmax, i = 1, . . . , N
∑N

i=1 gi ≤ δPmaxhΣ

1+δPmaxhΣ

(32)

where the lower bound on gi in the first constraint comes from the delay bound requirement Ti. In
most cases, (32) is a well-formulated problem, meaning that the upper bound requirement on gi is
larger than its lower bound, so the feasible solution set to (32) is not empty. However, in the case
when both hi and Pmax are extremely small to the extent that the upper bound on gi is smaller than
its lower bound, the feasible set to (32) is null, and no solution exists to problem (5).

Rewriting the objective function h(g1, . . . , gN) in (32) by expanding the products results in

h(g1, . . . , gN) =
N∑

i=1

h−1
i Biγi(1− gi)

(1− gΣ)W
+

N∑

i=1

αciriδBiγi

Wgi

−
N∑

i=1

αciriδBiγi

W
. (33)

As stated in the formulation of sub-problem 1, for a typical WSN application, gi ¿ 1. Therefore,
(33) is tightly approximated by

h(g1, . . . , gN) ≈
∑N

i=1 h−1
i Biγi

(1− gΣ)W
+

N∑

i=1

αciriδBiγi

Wgi

−
N∑

i=1

αiδBiγi

W

=
K

1− gΣ

+
N∑

i=1

αciriAi

gi

−
N∑

i=1

αciriAi, (34)

where Ai
def
= δBiγi

W
is a node-dependent constant and K

def
=

∑N
i=1 δ−1h−1

i Ai is a system-dependent
constant.
Proposition 4: The function h(g1, . . . , gN) in (34) is strictly convex.
Proof : The first-order partial derivative of h(g1, . . . , gN) with respect to gi, i = 1, . . . , N , is given by

∂h

∂gi

=
K

(1− gΣ)2
− αciriAi

g2
i

. (35)

The second-order partial deviation is given by

∂2h

∂g2
i

=
2K

(1− gΣ)3
+

2αciriAi

g3
i

, (36)

and for i 6= j
∂2h

∂gi∂gj

=
2K

(1− gΣ)3
. (37)

Therefore, the Heissian of h(g1, . . . , gN) is given by2

∇2h(g1, . . . , gN) =
2K

(1− gΣ)3
I + D, (38)

2The element aij of the Heissian of a multi-variable function f(x1, . . . , xn) is defined as aij = ∂2f
∂xi∂xj

, for i, j =
1, . . . , n.
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where I is an N ×N matrix with all elements equal to 1 and D is an N ×N diagonal matrix whose
ith diagonal element is 2αciri

g3
i

. For any non-zero vector v = (v1, . . . , vN) ∈ RN , it is easy to show that

v · I · vT =
N∑

i=1

N∑

j=1

vivj

= (v1 + . . . + vN)2 ≥ 0, (39)

and

v ·D · vT =
N∑

i=1

2αciriAi

g3
i

v2
i > 0. (40)

Therefore, ∇2h(g1, . . . , gN) is positive definite, and thus h(g1, . . . , gN) is a strictly convex function of
(g1, . . . , gN).

Replacing h(g1, . . . , gN) in the objective function in (32) by its approximation in (34), we arrive
at the following convex optimization problem





min{g1,...,gN}
K

1−gΣ
+

∑N
i=1

αciriAi

gi
−∑N

i=1 αciriAi

s.t.
δBiγi

δBiγi+WT limit
i

≤ gi ≤ δhiPmax, i = 1, . . . , N
∑N

i=1 gi ≤ δPmaxhΣ

1+δPmaxhΣ
.

(41)

Since (34) is a tight approximation, we can also expect that the optimal solution to (41) will be a
tight approximation to the optimal solution of (32).

The optimal solution (go
1, . . . , g

o
N) to the constrained problem (41) is related to the solution of

the unconstrained minimization of h(g). Being strictly convex, h(g1, . . . , gN) must have only one
unconstrained minimum solution, which can be derived by solving the following equation set:

∂h

∂gi

=
K

(1− gΣ)2
− αciriAi

g2
i

= 0, i = 1, . . . , N. (42)

Through some mathematical manipulations, it can be shown that the unconstrained optimum solu-
tion (go

u1, . . . , g
o
uN) to h(g1, . . . , gN) is given by

go
ui =

√
αciriAi√

K +
∑N

i=1

√
αciriAi

, i = 1, . . . , N. (43)

Because of the convexity of h(g), if any of the go
ui in (43) violates the upper or the lower bound

on gi in (41), then the corresponding constrained optimal solution go
i must itself be the upper or the

lower bound, depending on which bound is being violated. Accordingly, the optimal solution to the
constrained problem is given in the following proposition.
Proposition 5: Let (go

1, . . . , g
o
N) denote the optimal solution to (41). Let gupp

i
def
= δhiPmax and

glow
i

def
= δBiγi

δBiγi+WT limit
i

be the upper and lower bounds on gi, respectively. Let V denote the set of all

active nodes, and let U denote the set of active nodes for which go
i = gupp

i or go
i = glow

i . Define
t1

def
= 1−∑

j∈U go
j and t2

def
= δPmaxhΣ

1+δPmaxhΣ
−∑

j∈U go
j . Then for i = 1, . . . , N ,

1. If
∑N

i=1 go
i < δPmaxhΣ

1+δPmaxhΣ
, then go

i ∈
{

gupp
i , t1

√
αiAi√

K+
∑

j∈V−U

√
αjAj

, glow
i

}
.

2. If
∑N

i=1 go
i = δPmaxhΣ

1+δPmaxhΣ
, then go

i ∈
{

gupp
i , t2

√
αiAi∑

j∈V−U

√
αjAj

, glow
i

}
.
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Note: In either of these two cases, at least one go
i will equal the intermediate value.

Proof : The proof actually provides a recursive algorithm for solving for go
i .

Case 1: First, we consider the case when
∑N

i=1 go
i < δPmaxhΣ

1+δPmaxhΣ
. Let U be initially empty. Because

of the strict convexity of h(g), if for some i, the unconstrained optimal solution go
ui exceeds its upper

bound, i.e., go
ui > gupp

i , then the constrained optimal solution must be go
i = gupp

i . Similarly, if
go

ui < glow
i , then go

i = glow
i . Such nodes, whose unconstrained optimal solutions exceed their upper or

lower bounds are added to the set U. With the knowledge of go
i for i ∈ U, the objective function in

(41) is equivalent to the following function

h′(V −U) =
K

t1 − g′Σ
+

∑

i∈V−U

αciriAi

gi

+
∑

i∈U

αciriAi

go
i

−
N∑

i=1

αciriAi, (44)

where g′Σ
def
=

∑
i∈V−U gi. Because go

i is known for any i ∈ U, replacing the objective function in (41)
by (44) leads to an inherited problem that is of the same form as (41) except that the number of
variables is reduced from |V| to |V −U|. With some mathematical manipulations, it can be shown
that the unconstrained optimal solution to (44) is given by

go′
ui =

t1
√

αciriAi√
K +

∑
j∈V−U

√
αcirjAj

, i ∈ V −U (45)

which is a recurrent version of (43) in terms of t1 and U. The above process is repeated and the values
of t1 and U are updated based on the newly computed values of go

i until all remaining unconstrained
solutions go

ui, i ∈ V−U, of the inherited problem meet their respective upper and lower bounds. In
the last iteration, the remaining go

i ’s, i ∈ V−U, are equal to their unconstrained counterparts given
by (45).

Once all the go
i have been computed, it should be verified that

∑N
i=1 go

i < δPmaxhΣ

1+δPmaxhΣ
. If this is not

the case, then the solution of go
i falls into the next case.

Case 2: Consider the case when
∑N

i=1 go
i = δPmaxhΣ

1+δPmaxhΣ
. In this case, the objective function in (41)

degenerates into the following function

h2(g)
def
= K(1 + δPmaxhΣ) +

N∑

i=1

αciriAi

gi

−
N∑

i=1

αciriAi. (46)

Accordingly, (41) is equivalent to the following problem




min{g1,...,gN}
∑N

i=1
αciriAi

gi

s.t.∑N
i=1 gi = δPmaxhΣ

1+δPmaxhΣ
,

δBiγi

δBiγi+WT limit
i

≤ gi ≤ δhiPmax, i = 1, . . . , N.

(47)

In this case, it is easy to show that

∇2h2(g1, . . . , gN) = diag(
2αcir1A1

g3
2

, . . . ,
2αcirNAN

g3
N

), (48)

which is a positive definite matrix. Therefore, h2(g) is a strictly convex function. Under the condition∑N
i=1 go

i = δPmaxhΣ

1+δPmaxhΣ
, the optimal unbounded (i.e., ignoring the upper and lower bounds on gi) solution

to h2(g) is given by

go
ui =

δPmaxhΣ

1+δPmaxhΣ

√
αciriAi

∑N
j=1

√
αcirjAj

. (49)

11



Accounting for the upper- and lower-bound constraints of gi and following a similar process to
case 1, it can be found that go

i is equal to gupp
i , glow

i , or

go
i =

t2
√

αciriAi
∑

j∈V−U

√
αcirjAj

, i ∈ V −U. (50)

If in one of the computational cycles go
i is found to be equal to δhiPmax or δBiγi

δBiγi+WT i
limit

for all

i = 1, . . . , N , then there is no feasible solution to (41) because the constraint
∑N

i=1 go
i = δPmaxhΣ

1+δPmaxhΣ

can not be satisfied.
The above proof actually describes the “mechanics” for computing the optimal solution to (41).

A pseudo-code representation of the computational algorithm is outlined in Table 1. The following
example further illustrates the operation of this algorithm.

Example: Let N = 5, K = 144, αcir1 = . . . = αcir5 = 1, A1 = A2 = A3 = 1, A4 = 4, A5 = 9. The
upper bounds are set to gupp

i = 0.1, 0.1, 0.055, 0.05, 0.1 for i = 1, . . . , 5, respectively. Let glow
i = 0.01

for all nodes, and let δPmaxhΣ

1+δPmaxhΣ
= 0.9. To determine go

i for i = 1, . . . , 5, we first assume that∑5
i=1 go

i < 0.9 and consider case 1 of Proposition 5 (once the go
i ’s have been computed, we can verify

whether or not case 1 is the appropriate case). we initially set U = ∅ and t1 = 1.
In the first iteration, according to (45), we have go

u1 = go
u2 = go

u3 = 0.05, go
u4 = 0.1, and go

u5 = 0.15.
Comparing these values with their respective upper and lower bounds, we find that go

u4 and go
u5 violate

their upper bounds. Therefore, we set go
4 = gupp

4 = 0.05 and go
5 = gupp

5 = 0.1 as their final values.
Updating U and t1, we have U = {4, 5} and t1 = 0.85.

In the second iteration, we have go
u1 = go

u2 = go
u3 = 0.05667. Comparing these values with

their respective upper and lower bounds, we notice that go
u3 violates its upper bound. Therefore,

go
3 = gupp

3 = 0.055. Updating U and t1, we have U = {3, 4, 5} and t1 = 0.795.
Finally, in the third iteration, we have go

u1 = go
u2 = 0.0568. Since both of these values are

compliant with their upper and lower bounds, go
1 = go

u1 = 0.0568 and go
2 = go

u2 = 0.0568. After
verifying that

∑5
i=1 go

i < 0.9, the algorithm terminates.
Once the go

i ’s have been computed, Proposition 2 indicates that the optimal transmit power and
transmission time are obtained by combining (26), (31), and Proposition 5:

P o
ti =

δ−1h−1
i go

i

1− go
Σ

, (51)

T o
i =

δBiγi

Wgo
i

(1− go
i ), i = 1, . . . , N (52)

where go
Σ

def
=

∑N
i=1 go

i .

5 Bit Energy Efficiency

Based on the optimal transmit power and transmission time expressions derived in Section 4, the
minimum expected energy consumption for transmitting one information bit in a DS-CDMA based
WSN, termed bit-energy efficiency (BEE) of the network, can be studied analytically. To proceed
with our analysis, we focus our attention on a homogeneous clock-driven WSN, i.e., we take αciri =
αcir and γi = γ for all i. This assumption is reasonable because BEE is typically a device-independent
metric of system performance that is specified under the assumption of homogeneity.
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Initialization: For i = 1, . . . , N , Ai = δBiγi

W
, gupp

i = δhiPmax, and glow
i = δBiγi

δBiγi+WT limit
i

K =
∑N

i=1 δ−1h−1
i Ai, t1 = 1, t2 = δPmaxhΣ

1+δPmaxhΣ

V = {1, . . . , N}, U = ∅, and flag-continue = TRUE
For all i ∈ V −U

f
(1)
i (t1,U) = t1

√
αiAi√

K+
∑

j∈V−U

√
αjAj

, f
(2)
i (t2,U) = t2

√
αiAi∑

j∈V−U

√
αjAj

End for
m = 1 // start with case 1

Iteration: While flag-continue = TRUE, do
flag-continue = FALSE

For all i ∈ V −U, set go
ui = f

(m)
i (tm,U)

For all i ∈ V −U, do
If go

ui > gupp
i ,

Set go
i = gupp

i

U = U ∪ {i}
flag-continue = TRUE

Else if go
ui < glow

i ,
Set go

i = glow
i , U = U ∪ {i}, and flag-continue = TRUE

End if-else
End for
Update tm:

If m = 1, t1 = 1−∑
i∈U go

i

Else, t2 = δPmaxhΣ

1+δPmaxhΣ
−∑

j∈U go
j

Update f
(m)
i (tm,U) as in the initialization step

End while

If U = V, exit // no feasible solution
Else for all i ∈ V −U, set go

i = go
ui

If (m == 1 &&
∑N

i=1 go
i < δPmaxhΣ

1+δPmaxhΣ
) or (m == 2 &&

∑N
i=1 go

i = δPmaxhΣ

1+δPmaxhΣ
)

output (go
1, . . . , g

o
N) and exit

Else // case 2
Set U = ∅, flag-continue = TRUE, m = 2, and go to Iteration

Table 1: Pseudo-code for computing the optimal solution for transmit power and time.
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A well-designed WSN should not be operated at the boundary of its capacity, i.e., the load of the
traffic should be reasonable compared with the network capacity so that the optimal transmit power
and time allocation are located within the polyhedron depicted by the constraints of (5). Hence, we
further assume that the considered WSN is well designed in the above sense. Considering (43), the
optimal power index of node i is given by

go
i =

√
αcirAi√

K +
∑N

i=1

√
αcirAi

, i = 1, . . . , N. (53)

Substituting (53) into (26) and (31), we obtain simplified closed-form expressions for the optimal
transmit power and time:

P o
ti =

√
αBi

hi

√
δ

∑N
j=1 h−1

j Bj

(54)

T o
i =

δBiγ

Wgo
i

(1− go
i ) '

δBiγ
(√

δ−1
∑N

j=1 h−1
j Bj +

∑N
j=1

√
αcirBj

)

W
√

αcirBi

. (55)

Substituting (54) and (55) into (4), the minimum energy required for the transmission of
∑N

i Bi

bits in a given transmission cycle is given by

Emin
total =

1

η

N∑

i=1




√
αcirBi

hi

√
δ

∑N
j=1 h−1

j Bj

+ αcir


 Biγ

(√
δ

∑N
j=1 h−1

j Bj +
∑N

j=1 δ
√

αcirBj

)

W
√

αcirBi

=
γ

Wη




N∑

i=1

Bih
−1
i + 2

√
αcirδ

N∑

i=1

√√√√√
N∑

j=1

h−1
j BiBj + αcirδ

N∑

i=1

N∑

j=1

√
BiBj


 . (56)

Suppose that Bi and hi, i = 1, . . . , N , are arbitrarily defined random variables. Taking the expec-
tation of (56) with respect to Bi and hi gives E{Emin

total}; the minimum expected energy consumption
in one transmission cycle. In general, E{Emin

total} can not be expressed in a closed form. However, as
stated in Proposition 6, a tight upper bound can be obtained using the first-order moment E{B}
and the covariance matrix E{BTB}.
Proposition 6:

E{Emin
total} ≤

γ

Wη




N∑

i=1

E{Bi}E{h−1
i }+ αcirδN

N∑

i=1

E{Bi}+ 2
√

αcirδ
N∑

i=1

√√√√√
N∑

j=1

E{h−1
j }E{BiBj}


 .

(57)
Proof : Because the geometric average of a sequence of nonnegative numbers can not be larger than
their arithmetic average, we have

E



αcirδ

N∑

i=1

N∑

j=1

√
BiBj



 = αcirδ

N∑

i=1

N∑

j=1

E{
√

BiBj}

≤ αcirδ
N∑

i=1

N∑

j=1

E{Bi}+ E{Bj}
2

= αcirδN
N∑

i=1

E{Bi}. (58)
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In addition, because
√

x is a concave function for x ≥ 0, according to Jensen’s inequality, E {√x} ≤√
E{x}. Therefore,

E





√√√√√
N∑

j=1

h−1
j BiBj





≤
√√√√√E





N∑

j=1

h−1
j BiBj





=

√√√√√
N∑

j=1

E
{
h−1

j

}
E{BiBj}. (59)

where we assume that the channel gain hi is independent of Bi. Substituting (58) and (59) into the
expectation of (56), (57) follows.

If (57) is convergent, an upper bound on the BEE is obtained by dividing (57) over the average
number of bits transmitted in one transmission cycle, i.e.,

BEE ≤ γ

Wη
∑N

i=1 E{Bi}




N∑

i=1

E{Bi}E{h−1
i }+ αcirδN

N∑

i=1

E{Bi}+ 2
√

αcirδ
N∑

i=1

√√√√√
N∑

j=1

E{h−1
j }E{BiBj}


 .

(60)
Further simplification of this upper bound as well as closed-form expressions of the BEE can be

obtained for special cases of B, as described next.

5.1 Sensor Nodes with Independent and Identically Distributed Traffic

If Bi’s are i.i.d. random variables and N is large, it can be shown that (60) can be further simplified
to a traffic-distribution-independent asymptotic upper bound

BEEiid ≤ γ

Wη

(
E{G}

N
+ αcirδN + 2

√
αcirδE{G}

)
, (61)

where G
def
=

∑N
i=1 h−1

i is the sum of the inverse of channel gains.

5.2 Sensor Nodes with Fully Correlated Traffic

In many WSN scenarios, the data captured and transmitted by various sensors are highly correlated.
As an extreme case, suppose the numbers of bits transmitted by various sensor nodes in the same
cycle are identical although they may vary in consecutive cycles, i.e., B1 = B2 = . . . = BN with
E(Bi) = B. In this case, the BEE is given by

BEEFC =
γ

Wη

(
E{G}

N
+ αcirδN + 2

√
αcirδE

{√
G

})
. (62)

A special yet widely used case is a WSN employing fixed-length coding, i.e., the number of bits
transmitted by each sensor node in each cycle is a constant B.

6 Numerical Investigations

In this section, we verify the accuracy of our analysis by comparing the analytical results obtained
in Section IV with those of the numerical algorithm presented in Section III. The effect of relaxing
the constraints and that of other approximations made in our analysis are also investigated.
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6.1 System Settings

We consider a 20m × 20m square sensing field, as shown in Figure 2, over which N homogeneous
sensors are distributed uniformly. The sink node is located at (D, 0). For each sensor node, the
power amplifier energy efficiency is set to η = 0.9. The network is clock-driven and in every cycle of
1 second, all N sensors transmit their data simultaneously using DS-CDMA. A rectangular spreading
chip is assumed, i.e. δ = 2

3
. The threshold of the received SINR is 4 for all nodes. Each transmission

must be completed within T limit
i = 1 second. The spread spectrum bandwidth is W = 1 MHz and

the single-sided power spectrum density of AWGN is N0 = 10−15 W/Hz. For sensor node i, the
channel gain is given by

hi = L(d0)

(
di

d0

)−µ

Yi

(
X2

Ii + X2
Qi

)
, (63)

where L(d0) = GtGrλ2

16π2d2
0

is the path loss of the close-in distance d0, Gt and Gr are the antenna gains

of the transmitter and the receiver, respectively, and λ is the wavelength of the carrier. We take
d0 = 10 meters and GtGr = 1. We also set the carrier frequency to 2.4 GHz. Let di be the distance
between node i and the sink. The parameters Yi, i = 1, . . . , N , are i.i.d. lognormally distributed
random variables with standard deviation 7dB. They account for the effect of shadowing. Moreover,
XIi and XQi are the real and the imaginary parts of a Rayleigh fading channel gain, which follows
a Gaussian distribution of mean zero and variance 1

2
. Finally, µ is the path loss exponent and is

assumed to be 2 in our system, i.e., we consider a free-space loss model.

6.2 Numerical Results

In Figures 3 and 4, we depict the results obtained from the GP-based numerical algorithm and from
the analytical algorithm proposed in Sections 3 and 4, respectively. For a given cycle, the channel gain
of each node is generated according to (63). Both numerical and analytical algorithms are applied to
calculate the optimal transmit power and transmission time for each node. The traffic generated by
different nodes in each cycle is i.i.d. with a Poisson distribution of mean 100 bits. Although other,
more realistic traffic models can be used in the simulations, this will have no impact on the qualitative
(relative) performance of various optimization approaches. Figures 3 and 4 depict, respectively, the
energy consumption and the average sensor transmission time in each cycle for 10 consecutive cycles.
To illustrate the benefits of jointly optimizing transmit power and time, we also include in Figure 3
the performance of a “fixed-transmission-time” strategy [3], whereby the transmission time for each
sensor is set to the delay constraint (1s) and the transmit power is determined using (26). It can
be observed that despite the approximate nature of our closed-form solution, this solution is almost
indistinguishable from the GP-based numerical solution. This accuracy can be explained by noting
that for a typical CDMA-based WSN with a low data transmission rate, large spread spectrum
bandwidth, and a small received SINR requirement, gi ¿ 1.

It should be noted, however, that the relaxation of the constraint on gi from (28) into (30) may
result in some nodes having optimal transmit powers greater than Pmax. Such nodes will obviously
have to use Pmax as their transmit power. Fortunately, this capping of power will only impact the
the signal quality of such nodes (the SINR of other nodes will actually improve).

In Figures 5 and 6, we study the severity of violating the Pmax constraint as a function of Pmax.
We use two metrics for this purpose: violation rate and violation degree. The violation rate is defined
as the average percentage of sensors in a cycle whose optimal transmit powers exceed Pmax. The
violation degree is defined as the average power surplus over Pmax required by those violating sensors.
This value is normalized by Pmax. It is observed that for a wide range of N values (20 to 100), even
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under a tight power constraint of 10 mW, only a small percentage of sensors (≈ 5%) violate the Pmax

constraint to a degree of 25%. Effectively, this says that in each transmission cycle, about 5% of
the information bits are received at the sink below their SINR threshold with a normalized deficit of
0.25. Taking advantage of the rich data redundancy possessed by a WSN, the 5% data loss can be
easily compensated for by other data transmitted from neighboring nodes. Using a more practical
value for Pmax = 100 mW [11], the violation rate and degree are reduced to below 0.2% and 20%,
respectively (over various values of N).

In Figures 7 through 10, we study the BEE performance under various traffic scenarios. Figure 7
depicts the BEE versus N for the case of fully correlated traffic. The theoretical values (obtained from
(62)) are compared with those from simulations where Bi is assumed to have a Poisson distribution
with mean 100. In the simulations, the GP-based numerical algorithm is employed to determine the
optimal transmit power and time in each transmission cycle. The figure shows that (62) accurately
captures the BEE performance of a WSN. The case of i.i.d. traffic is considered in Figures 8-10, where
the BEE is plotted as a function of the circuit power consumption (α), the remote node distance
(D), and N , respectively. In these figures, we contrast the distribution-independent theoretical upper
bound on the BEE (given in (61)) with three simulation-based BEE values that correspond to three
different traffic distributions. The theoretical bound is found to be sufficiently tight. The simulation
results also show that the BEE decreases with the increase in the variance of the traffic (compare
the results for the cases Bi ∼ uniform(50, 150) and Bi ∼ uniform(20, 180)). This can be attributed,
in part, to the nonlinearity of Emin

total, given in (56). For example, consider the term B1B2 in (56).
Under the constraint that B1 + B2 = 2B, where B is a constant, we have B1B2 = −B2

1 + 2BB1

where 0 ≤ B1 ≤ 2B. It is easy to see that B1B2 is a concave function for 0 ≤ B1 ≤ 2B, with its
maximum value attained at B1 = B2 = B. This says that the function B1B2 is a mono-decrease
function of the absolute difference between B1 and B2. Similarly, for a traffic distribution with a
larger variation, the expected absolute difference between Bi and Bj in (56) will be larger, leading
to a smaller product of BiBj, hence resulting in a smaller Emin

total and BEE.

7 Summary

In this paper, we studied the problem of jointly optimizing the transmission powers and times of
sensor nodes in a DS-CDMA WSN. The optimization was carried out for the purpose of minimizing
the total energy consumption in the network. A comprehensive energy model was used, which
accounts for both the transmit power consumption and the circuit energy consumption. The problem
was formulated as a non-convex geometric program. In general, the non-convexity of the objective
function and the constraints in such problems makes it quite challenging to obtain closed-form
solutions. We first showed that the formulation can be transformed into a convex geometric program
for which fast computational algorithms, such as the Interior Point Method, are applicable. Then,
by exploiting the special structure of the underlying formulation, we derived a closed-form tight
approximation for the optimal transmit powers and transmission times. To the best of our knowledge,
this is the first closed-form analytical treatment of the subject. Our closed-form solution is based
on decoupling the optimization problem into two sequential sub-problems. First, we optimize the
transmit powers, treating the transmission times as parameters. As a result of this step, the optimal
powers are expressed as functions of the transmission times. In the second sub-problem, we optimize
the transmission times. We showed that the first sub-problem is a linear program, while the second
one can be well approximated as a convex optimization problem. Taking advantage of our closed-
form results, we further studied the bit energy efficiency for CDMA-based WSNs under various
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traffic scenarios. We obtained closed-form expressions and bounds for the BEE. The goodness of
our solutions were verified through comparisons with simulation-based numerical results. These
comparisons indicate that the closed-form expressions are extremely accurate, and can therefore be
used as a basis for determining the optimal transmit power and times in a WSN. Our future work
will focus on using such results in the design of protocols for dynamic adjustment of the powers and
times.
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Figure 1: System model.
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Figure 2: Sensing field used in the numerical examples.
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Figure 3: Trace of energy consumption per bit for ten successive cycles (N = 100).
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Figure 4: Trace of average sensor transmission time in ten successive cycles (N = 100).
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 Figure 5: Violation rate of transmission power constraint vs. Pmax.
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 Figure 6: Violation degree of transmission power constraint vs. Pmax.
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Figure 7: Bit energy efficiency vs. number of sensors, case of fully correlated nodes.
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Figure 8: Bit energy efficiency vs. circuit power, case of i.i.d. nodes.
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Figure 9: Bit energy efficiency vs. sink location, case of i.i.d. nodes.
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Figure 10: Bit energy efficiency vs. number of sensors, case of i.i.d. nodes.
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