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Joint Optimization of User-Experience and
Energy-Efficiency in Wireless Multimedia

Broadcast
Chetna Singhal, Swades De, Ramona Trestian, and Gabriel-Miro Muntean

Abstract—This paper presents a novel cross-layer optimization framework to improve the quality of user experience (QoE) and energy

efficiency of the heterogeneous wireless multimedia broadcast receivers. This joint optimization is achieved by grouping the users

based on their device capabilities and estimated channel conditions experienced by them and broadcasting adaptive content to these

groups. The adaptive multimedia content is obtained by using scalable video coding (SVC) with optimal source encoding parameters

resulted from an innovative cooperative game. Energy saving at user terminals results from using a layer-aware time slicing approach in

the transmission stage. A trade-off between energy saving and QoE is observed, and is incorporated in the definition of a utility function

of the players in the formulated heterogeneous user composition and physical channel aware game. An adaptive modulation and

coding scheme is also optimally incorporated in order to maximize the reception quality of the broadcast receivers, while maximizing

the network broadcast capacity. Compared to the conventional broadcast schemes, the proposed framework shows an appreciable

improvement in QoE levels for all users, while achieving higher energy-savings for the energy constrained users.

Index Terms—Adaptive multimedia broadcast and multicast, scalable video coding, adaptive modulation and coding, heterogeneous

users, energy saving, quality of user experience
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1 INTRODUCTION

Rapid advancement in communication technologies in
recent years, coupled with the availability of afford-
able high-end mobile computing devices, such as smart-
phones, tablets, personal digital assistants, small note-
books, have led to a significant growth in the number of
consumers that access multimedia services from various
types of devices, while on the move or stationary [1], [2].

The prevalent wireless technologies for multimedia
broadcast include Long Term Evolution (LTE) using
extended Multimedia Broadcast and Multicast Services
(e-MBMS) interface specifications [3] [4], Worldwide In-
teroperability for Microwave Access (WiMAX) [3], and
Digital Video Broadcast (DVB) [5] [6] [7]. Although the
latest advances in many wireless network technologies,
including broadcast (e.g. DVB-second generation ter-
restrial (DVB-T2), DVB-hand-held (DVB-H)), broadband
(e.g. IEEE 802.11g, IEEE 802.11n [8]), and cellular (e.g.
LTE), have enabled the operators to increase network
capacity, the demands for popular multimedia content
delivery to the mobile devices are growing even faster.
Consequently, the overall user experience is still far from
optimal, as the rich multimedia content puts pressure on
the existing communication resources in terms of their
bandwidth requirements and real-time constraints.
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Thus, the challenge for the network operators include
network resource optimization for popular multime-
dia content delivery, while ensuring uninterrupted and
smooth services over wireless to a diverse customer
population with varying degree of user-end constraints.

1.1 Motivation and proposed solution

In multimedia broadcast, one challenge is posed by user-
end heterogeneity (e.g., different display size, processing
capabilities, channel impairments). Another key compo-
nent that consumers highly care about is the battery
lifetime of their high-end mobile device. It is known that,
real-time multimedia applications demand strict Quality
of Service (QoS), but they are also very power-hungry.

Given the above user-end constraints, a service
provider would look for maximizing the number of users
served without affecting the Quality of user Experience
(QoE). Clearly, attempting to receive a broadcast content
irrespective of the device constraints is detrimental to
battery resource efficiency, wherein the low-resolution
mobile users suffer from redundant processing of high-
end data that the device is not even able to use fully.

There have been a few recent studies that address
receiver energy constraints [9], [10], display limitations
and channel dynamics [11], [12], [13], [14], source and
channel rate adaptation [15]. Yet to our best knowledge, a
comprehensive look into the optimal broadcast strategy
that jointly caters to both user-specific constraints and
network dynamics is still missing.

This paper presents a novel cross-layer optimization
framework to improve both user QoE levels and energy ef-
ficiency of wireless multimedia broadcast receivers with
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varying display and energy constraints. This solution
combines user composition-aware source coding rate
(SVC) optimization, optimum time slicing for layer
coded transmission, and a cross-layer adaptive modu-
lation and coding scheme (MCS).

1.2 Key features and findings

The main features of the proposed framework are as
follows: 1) user grouping based on individual device
capabilities and channel conditions; 2) formulation of
a cooperative game to obtain user heterogeneity aware
optimized SVC parameters that enable energy saving of
the battery constrained users and at the same time main-
tain high QoE levels for high-end users; 3) optimizing
layer-coded time slicing for energy saving and quality
trade-off; 4) user heterogeneity and physical channel
adaptive MCS allocation to the layered video content
that maximizes network capacity.

The main findings of this work are: (a) The proposed
user- and channel-aware grouping and cooperative game
provide the users options to trade between quality of
reception and energy conservation. (b) the usage of time
slicing along with user heterogeneity and channel aware
MCS significantly reduce energy consumption and in-
crease QoE; the number of users served in the network
with a guaranteed minimum quality level is increased.

Specifically, tests in different traffic scenarios reveal
that, the proposed adaptive MCS offers about 16.6%
higher user serving capacity compared to fixed MCS or
simple MCS schemes. With respect to only energy sav-
ing based optimization, the proposed joint energy and
quality based cross-layer optimizations give about 43%
higher video quality, while trading off only about 8%
in energy saving and a marginal 0.62% in user serving
capacity. Compared to only quality based optimization,
the proposed scheme results in about 17% extra energy
saving, 3.5% higher quality, and 10.8% higher capacity.

1.3 Paper organization

The rest of this paper is organized as follows: Section
2 discusses related works and Section 3 presents the
technological details of the system and the proposed
framework. This is followed by the analytic system
performance model and optimizations in Section 4. Sub-
sequently, Section 5 describes the simulation framework
and Section 6 presents the key results of the proposed
user-centric optimized multimedia broadcast scheme.
Finally, the paper is concluded in Section 7.

2 RELATED WORKS

Hierarchical video coding [16] is an attractive solution
that allows a user to dynamically adapt the video bit-
stream reception in dynamic wireless channel conditions.
This technique encodes the stream into multiple pro-
gressively dependent layers. The most important layer

is called base layer which typically provides an accept-
able basic quality. The rest of the layers are known
as enhancement layers which can be added to the base
layer to improve the video quality. To this end, both
ITU-T VCEG and ISO/IEC MPEG have standardized
the SVC [17], [18] extension of H.264/AVC [19], [20],
[21]. The H.264/SVC extension achieves a rate-distortion
performance comparable to that of H.264/AVC, where
the same visual perceived quality is typically achieved
with at most 10% higher bit rate [22].

DVB-H, an European Telecommunications Standards
Institute (ETSI) standard [23], provides a built-in func-
tion that helps exploiting the video scalability features
using Hierarchical Modulation [24] and is an efficient
way to broadcast multimedia services over digital ter-
restrial networks to hand-held terminals. However, it
considers transmission level details only, but not the user
constraints or video encoding details.

[25] compared group management mechanisms in IP
and MBMS models in UMTS networks, but did not dis-
cuss group formation criterion and user heterogeneity.
An adaptive radio resource allocation scheme for multi-
resolution multicast services in orthogonal frequency-
division multiplexing (OFDM) systems was proposed in
[26], which was shown to achieve an improved system
throughput while maintaining fairness among all users.
For energy-efficient streaming of scalable video over LTE
using e-MBMS, grouping of users based on position
and requested video quality was considered in [11].
Discontinuous reception (DRX) and energy saving at the
user-end was not considered here; instead energy saving
at the base station (BS) was targeted.

A cross-layer adaptive hierarchical video multicast
solution in [27] considered jointly application, data link,
and physical layers, where channel dependent Auto
Rate Selection was proposed. To combat packet losses
in multicast, a layered hybrid Automatic Repeat reQuest
scheme was proposed in [28], where operating point for
the multicast group was selected by a Nash bargaining
game. The approach in [29] for video unicast/multicast
over wireless proposed to minimize the resource usage
while satisfying the diverse QoS requirements. The adap-
tive multicast in [30] maintains the highest sustainable
transmission rate with suitable forward error correction
(FEC) to maximize the received video quality. These
approaches however did not address channel dependent
SVC rate adaptation, MCS, and receiver constraints.

The approach in [9] proposed to enable the hetero-
geneous receivers render the appropriate sub-streams
by time slicing technique in DVB-H for energy saving.
This study derived the rate allocation to different layers
from uniform, linear, or exponential distribution. But in
actuality the rate of the layers depends on the encoding
parameters (e.g. frame rate, quantization level, and spa-
tial resolution). Also, the quality of received video and
the effect of channel condition were not studied here.

A recent study [15] considered heterogeneous broad-
cast users, where an objective (temporal-spatial rate) dis-
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tortion metric was used based on Principal Component
Analysis distance between frames, and optimal layer
broadcasting policy was obtained to maximize the utility.
However, it did not consider channel adaptive scalability
of SVC content, dynamic physical resource allocation,
and energy saving at the receiver.

Adaptive modulation and coding (AMC) has been
widely employed to effectively combat the channel dy-
namics and maximize physical layer data rate. In the
context of video broadcast over wireless there are a few
recent works (e.g., [12], [10], [13], [14]) which have used
AMC in different forms and with different objectives.

The AMC approach in DVB-H applications in [12],
which we call simple MCS scheme, decides on adaptation
based on the broadcast receiver with an acceptable weak-
est signal strength and uses the same MCS for all SVC
layers. In the AMC approach for DVB-H transmission
[10], which we call fixed MCS scheme, different layers
are assigned a predetermined fixed MCS. This scheme
results in saving of power at both data reception and
processing. However, in this work, the adaptation is
merely on the basis of transmitted frame arrangement
which is organized in terms of weaker and incremental
codes; it does not incorporate video encoded data rates
or the use of SVC to support heterogeneous users.

Unlike in DVB-H, transmission rate optimization in
LTE MBMS is not based on time slicing. The adaptive
MCS in [13] is in context of orthogonal frequency-
division multiple access (OFDMA). The approach in [14]
is also for LTE and WiMAX systems, where cooperative
reception from multiple BSs is utilized following the
Single Frequency Network principle. In all these AMC
approaches, device limitations were not considered, thus
the application layer encoding rate, and hence MCS is
not affected by the heterogeneity of users in the network.

3 SYSTEM MODEL

3.1 Overview of the system

A single-cell broadcast scenario is considered. Multime-
dia content delivery is done from the BS and managed
jointly with a connected media server. The wireless user
equipments (UEs) have varying display resolution and
battery capabilities. Based on the users characteristics in
the cell and their SNRs, the media server suitably en-
codes the source content in H.264/SVC standard of DVB-
H. The broadcast over the physical channel is OFDM-
based. A UE, depending on its current status, may
choose to receive all or part of the broadcast content (lay-
ers) by exploiting the time-sliced transmission feature of
DVB-H. Fig. 1 illustrates a representative system, where
L layers and T user types are considered. For example,
L = 14 in the standard ‘Harbor’ video sequence.

Definition 1. UE type τ is characterized by the spatial
resolution R of a UE display and battery power, which are
device-specific. In a system with T types (1 ≤ τ ≤ T ) of UE,
Ri > Rj if j < i. For example in a system with 3 types of
users (i.e., T = 3), R3 > R2 > R1.

Fig. 1. An example of the DVB-H system, where L-layer SVC
content and T types of UEs are considered.

SVC supports three types of scalability: spatial, tempo-
ral, and SNR-based. Spatial scalability is governed by dis-
play resolution of the UE (e.g., QCIF, CIF, D1), temporal
scalability is related to the frame transmission rate (e.g.,
1.875 fps to 30 fps), and SNR scalability is linked with the
SVC coding rate as a function of the SNR experienced
by the various UEs. A detailed overview of H.264/AVC
scalable video extension is given in [18].

In our study, the supported spatial resolutions con-
sidered are QCIF (quarter common intermediate format,
with display resolution 176× 144 pixels), CIF (common
intermediate format, resolution 352 × 288 pixels), and
D1 (D-1 digital recording video standard, resolution
704 × 576 pixels) formats, which serve three types of
users (i.e., T = 3). Apart from spatial resolution of
the individual video frames, variable frame rate is also
considered for the transmitted video.

Definition 2. Layer l (1 ≤ l ≤ L) of a SVC content with
a total of L layers implicitly has its priority Pl in an inverse
order with respect to the other layers, i.e., Pi > Pj , if i < j.

If L = 14, following definition 2, P1 > P2 > · · · > P14.
If a type i UE finds useful to display content up to the
layer l(i) ( ≤ L), then l(i) < l(j) for i < j.

SVC encoding generates different layers: base layer
(layer 1) and enhancement layers. Layer 1 is the most
important that needs to be received by all the UEs for the
basic minimum quality. The other layers when received
by a UE improve the reception quality by increasing the
frame rate and/or resolution at the playback stage.

3.2 Proposed DVB-H system framework

The proposed overall system architecture is illustrated in
Fig. 2. The server encapsulates the SVC encoded data in
real-time transport protocol (RTP) format to IP packets
and sends them to the BS. The BS comprises of the IP en-
capsulator, DVB-H modulator, and the radio transmitter.
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Fig. 2. The proposed DVB-H system architecture components.

IP encapsulator puts the IP packets into multiprotocol
encapsulation (MPE) frames and forms MPE-FEC for
burst transmission as per the time slicing scheme (Section
4.2). The DVB-H modulator employs an adaptive MCS
selection (Section 4.6) for the layered video content and
sends it to the radio transmitter for broadcast.

The SVC encoding and MPE-FEC framing operations
are inter-dependent and jointly optimized based on some
underlying parameters (user, channel, and layer infor-
mation). The optimized video encoding parameters are
obtained through a game theoretic approach and stored
in a central database. The UE and channel aware user
grouping is discussed in Section 4.1, and SVC parameter
optimization game is detailed in Section 4.5.

The UE informs its capabilities while subscribing to
the broadcast service and also time-to-time updates its
signal strength to the BS. It also has a power manager
that helps to take advantage of the time slicing scheme
and save energy based on its remaining power.

Definition 3. A user class c (1 ≤ c ≤ C) defines the
capability of receiving the number of layers which is dictated
by channel rate constraint experienced by the UE at a given
instant of time. C is the total number of user classes.

If a UE can receive up to ls useful layers, it belongs to
class c = ls. Thus, a user class is dynamically associated
to a UE and is upper bounded by its resolution. If the
number of useful layers of a type i UE with resolution
Ri is l(i), (l(i) ≤ L), then it can be in class c such that
1 ≤ c ≤ l(i). For a UE type k with the highest resolution
Rk, l(k) = L. In that case, L = C and 1 ≤ c ≤ L.

The parameters updated by the BS in the database are:
C, the number of user classes; Nc, the number of users
in class c (1 ≤ c ≤ C); and R, the OFDM channel rate
(expressed in bps). The parameters updated by the video
server in the database are: L, the number of layers in the
encoded SVC content; rl, the rate of layer l (1 ≤ l ≤ L);
and b, the burst size of the base layer (measured in bis).

The proposed system performance optimization in-

Fig. 3. Signal quality-based grouping example, with 3 UE types.

volves: i) grouping of users, ii) game theoretic formula-
tion to obtain SVC encoding parameters, iii) time slicing
at data-link level transmission, and iv) adaptive MCS
allocation to the SVC layers. These are discussed next.

4 PERFORMANCE MODELING AND OPTIMIZA-
TION OF THE PROPOSED SYSTEM

4.1 Grouping of users

User grouping is based on the respective UE resolution
capabilities and received SNR. A UE capability is deter-
mined by the BS at the time of service subscription, when
the UE sends its type information, i.e., the number of lay-
ers it wants to receive. The UE periodically updated its
channel condition to the BS through the uplink channel.

Definition 4. User group g l
(τ)

z refers to the UEs of type τ
(1 ≤ τ ≤ T ) in zone z(1 ≤ z ≤ Z) that have requested for
l(τ) layers. Z is the number of concentric zones around a BS.

The coverage region of a BS is comprised of concentric
zones, as shown in Fig. 3, with the SNR thresholds
defining zone boundaries. For a SVC content with L
layers, 1 ≤ l(τ) ≤ L, with QCIF resolution l(τ) = 4,
and those with CIF and D1 resolutions are respectively 9
and 14. In the user-grouping example of Fig. 3, three UE
types and three zones (based on three supported MCS
levels in DVB-H [31]) are considered. The groups in this
example are: g4z1 = {U2, U4, U6}, g9z1 = {U1, U5}, g14z1 =
{U3}, g4z2 = {U8, U11}, g9z2 = {U7, U9}, g14z2 = {U10},
g4z3 = {U13, U15} , g9z3 = {U14} and g14z3 = {U12, U16}.

4.2 Time slicing as an energy saving measure

Time slicing approach allows discontinuous reception at
the UEs, thereby facilitating the UE to turn-off the radio
when not receiving data bursts and hence saving energy.

Definition 5. Energy saving (ES) is calculated as the ratio
of the time duration for which the UE’s radio components are
turned-off over the total time of the video transmission cycle.
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Fig. 4. Time slicing based DVB-H broadcast scheme.

The broadcast channel rate is considered R (bps).
The multimedia content is encoded into L layers. For
decoding the layer l (1 ≤ l ≤ L) the UE first needs to
correctly receive and decode all layers l̀, 1 ≤ l̀ < l. Video
layer l is allocated rate rl (bps), such that

∑L
l=1 rl ≤ R.

In time slicing-based layered broadcast, the UEs know
apriori the specific layer constituted in a MPE-FEC frame
(burst). As shown in Fig. 4, each layer corresponds to a
different burst within the recurring window. This allows
a UE to safely skip the bursts containing the layers that
are irrelevant to it, and thereby save energy. Each MPE-
FEC frame consists of two parts: Application Data Table
that carries the IP packet, and an R-S (Reed-Solomon
coding) Data Table that carries the parity bits.

Given a channel rate R and base layer burst size b bits,
the burst size of layer l is proportionally set to b · rl/r1
bits. The recurring window size is the total burst size of
all the layers, given as:

∑L
l=1 b · rl/r1 = b·R

r1
bits. Hence

with respect to starting time of the base layer burst, the

start time of the layer l burst is:
b·
∑l−1

i=1 ri/r1
R sec.

If a user is currently in class c, the energy saving factor
of that user at that time instant would be:

ESc = 1−

∑c
i=1 ri
R

−
H · c · r1

b
. (1)

where, in general 1 ≤ c ≤ l(τ), for a type τ UE, H is the
overhead duration (typically 100 ms [9]).

4.3 Video quality model

The video quality Q(q, t) is a parametric function that
best approximates the Mean Opinion Score (MOS). MOS
is a subjective measure that indicates the user QoE
level. MOS 5 refers to ’excellent’ quality, 4 is ’good’, 3
is fair, 2 is ’poor’, and 1 is ’bad’. The parameters for
the quality model are specific to a video based on its
inherent features. The quality parametric model in [32]
is specified with video specific parameters λ and g. For
a given spatial resolution, Q(q, t) is a function of the
quantization parameter QP and frame rate t, as follows:

Q(q, t) = Qmax ·Qtc(t) ·Qq(q), with (2)

Qtc(t) =
1− e(−λ·t/tmax)

1− e−λ
,

Qq(q) =
e(−g·q/qmin)

e−g
, and q = 2(QP−4)/6.

Qmax is the maximum quality of the received video at
the UE when it is encoded at minimum quantization
level qmin and at the highest frame rate tmax. To nor-
malize, we consider Qmax to be 100%.
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Fig. 5. Quality versus quantization parameter at different frame

rates with the three standard video sequences, namely, ‘Harbor’,

‘Town’, and ‘Tree’.

To comprehensively study the video quality in the
proposed system framework, we consider three rep-
resentative video sequences: ‘Harbor’, ‘Town’, ‘Tree’,
which cover a wide spatial and temporal perceptual
information space [33]. In particular, the ‘Harbor’ video
represents a sequence with sharp edges (high spatial
variations) but having a relatively slow motion (low
temporal variations), ‘Town’ has high spatial and tem-
poral variations, whereas ‘Tree’ has low spatial and
temporal variations in first half and high spatial and high
temporal changes in the later half. Fig. 5 captures the
effect on quality Q of the three different video sequences
at different QP . The trends of variation of Q (which
represents QoE) are observed to be quite similar in all
these video sequences. Also, the plots indicate that the
quality is a concave function of QP .

4.4 Energy saving versus quality trade-off

As noted in Section 4.2, the energy saving is a function
of rate allocation to the layers. We now consider the
scalability factors as parameters in the rate allocation at
the source encoding stage. The parametric rate model, as
in [34], [35], again is a function of the quantization level
q, frame rate t, and spatial resolution s. The parameters
θ, a and d, here are video specific.

Rc(q, t, s) = Rmax · Rtc(t) · Rq(q) · Rs(s), with (3)

Rtc(t) =
1− e(−θ·t/tmax)

1− e−θ
, Rq(q) = ea·(1−q)/qmin ,

and Rs(s) =

(

s

smax

)d

, d < 1.

Here, Rmax is the maximum bit rate of the video se-
quence with minimum quantization level qmin, maxi-
mum frame rate tmax, and maximum spatial resolution
smax. By using these rate parametric model equations for
energy saving analysis (i.e., in (1)), the energy saving for
class c users of type τ (1 ≤ c ≤ l(τ)) is given as:

ESc = 1−
Rc(q, t, s)

R
−

H · c · R1(q, tmin, smin)

b
. (4)

To study the impacts of SVC quantization parameter
and time slicing scheme on the energy saving, we again
consider the three representative video sequences: ‘Har-
bor’, ‘Town’, and ‘Tree’. Fig. 6(a) shows the variation of
normalized average energy saving with the change in



6

10 20 30 40 50
0

0.5

1

Quantization parameter, QP

E
n
e
rg

y
 s

a
v
in

g

 

 

1 2 4 6 8 10 12 14
0

0.5

1

Layer

E
n
e
rg

y
 s

a
v
in

g

 

 

QP = 5

QP =15

QP = 25

QP = 35

QP = 45

10 20 30 40 50
0.2

0.4

0.6

0.8

1

Quantization parameter, QP

E
n
e
rg

y
 s

a
v
in

g

 

 

10 20 30 40 50
0.2

0.4

0.6

0.8

1

Quantization parameter, QP

E
n
e
rg

y
 s

a
v
in

g

 

 

2 4 6 8 10 12 14
0

0.5

1

Layer

E
n
e
rg

y
 s

a
v
in

g

 

 

QP=5

QP=15

QP=25

QP=35

QP=45

2 4 6 8 10 12 14
0

0.5

1

Layer

E
n
e
rg

y
 s

a
v
in

g

 

 

QP=5

QP=15

QP=25

QP=35

QP=45

15fps, 176×144

7.5fps, 352×288

30fps, 352×288

3.75fps, 704×576

15fps, 704×576

15fps, 176×144

7.5fps, 352×288

30fps, 352×288

3.75fps, 704×576

15fps, 704×576

15fps, 176×144

7.5fps, 352×288

30fps, 352×288

3.75fps, 704×576

15fps, 704×576

(b)(a)

’Tree’ video

’Town’ video

’Harbor’ video

Fig. 6. Energy saving performance at different SVC quantiza-
tions and time slicing schemes for the three video sequences:
‘Harbor’, ‘Town’, and ‘Tree’: (a) effect of quantization parameter
QP ; (b) effect of number of layers transmitted.

quantization parameter QP . It is notable that, in all the
three cases, an increase in QP results in a higher energy
saving. Also a decrease in t (by DRX mechanism) and
smaller spatial resolution of the video sequence results in
more energy saving for the UEs. It is also observed that
the nature of the energy saving is concave with respect
to QP . For the three video sequences, Fig. 6(b) shows
the normalized energy saving with respect to the layers
received by the UEs. Also, a higher QP (i.e., higher q and
hence a lower allocated rate) corresponds to a higher
energy saving. Hence, there is a clearly evident trade-
off between the energy saving and quality for a specific
value of quantization level q. Also different type of users
have different energy savings and QoE requirements.

It is observed from Figs. 5 and 6 that, the quality and
energy saving performances of the three representative
test sequences (‘Harbor’, ‘Tree’, ‘Town’) follow similar
trends with respect to the variations of quantization
parameter, frame rate, spatial resolution, and the number
of layers transmitted. Thus, the proposed framework in
the paper and the optimizations (discussed subsequently
in this section) should generically hold true for any
possible SVC video sequences. Therefore, our remaining
performance results are discussed with respect to only
one representative test sequence (‘Harbor’ video).

4.5 Energy saving and quality optimization game

Based on the energy saving and quality trade-off that
depends on the quantization level q, we now formulate a
cooperative game to obtain the optimal video encoding
parameters. Note that, the development in Section 4.4
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Fig. 7. Examples of utility plots of individual class of users for

the standard ‘Harbor’ video sequence.

demonstrates the possibility of an optimal SVC encoding
from the individual user’s perspective. However it does
not provide an insight to the encoding optimality for
broadcast when there are different user class in different
proportions. Here, we address this optimization aspect.

This optimization game jointly accounts for the users
of different classes (Definition 3) as well as the fraction
of users in each class. The game is defined below:

Players: Class c comprising of a set of users who can
be served up to l = c layers, where 1 ≤ c ≤ l(τ), τ =
1, 2, 3. (Recall that, c is dynamic, computed at the BS,
depending on the UE type τ and their individual SNRs.)

Strategy: Quantization level q used by the SVC en-
coder for encoding the source video. Optimum q deter-
mines the rate distribution (i.e. the minimum bit rate) rl
for the different layers l of the SVC content, that satisfy
the users’ ES and quality requirements.

Utility: For class c the utility is defined as: uc =
(ESc(q, t))

αc · (Qc(q, t))
βc , where αc, βc are the param-

eters for a particular class of users based on their em-
phasis on energy saving or quality, with αc + βc = 1.
The higher the αc value is, the higher is the emphasis
on energy saving by the users in that class. On the other
hand, the higher the value of βc is, the more will be the
emphasis on receiving higher quality video. Here, for
class c, energy saving ESc(q, t) is given in (4) and the
quality value Qc(q, t) is given in (2).

We use multiplicative exponent weighting (MEW) in
defining the utility uc instead of simple additive weight-
ing (SAW), because in SAW based optimality poor value
of a parameter can be outweighed by a very good
value of another parameter. Instead, MEW penalizes
alternatives with poor parameter values more heavily.
For example, if energy utility is near zero (which means
the UE consumes a lot of energy), the MEW based utility
function avoids selecting this because it is multiplicative,
whereas the SAW utility may end up choosing this case
of near-zero energy but very high quality.
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In Fig. 7, some examples of utility function with QP
variation are shown. Quantization level q is can be
obtained from QP (see (2)). The (αc, βc) combination
shown are the optimum values that achieve the maxi-
mum possible utility for the individual user class c. The
plots indicate that for each class, the considered utility
function is concave in nature in terms of the QP .

Since the number of users in a class impacts the overall
system utility, we define a modified utility function. If
there are Nc users in class c, the modified utility is:

ùc = Nc(ESc(q, t))
αc · (Qc(q, t))

βc (5)

The objective is to maximize the total average utility for
the system,

Utotal = max

⎛

⎜

⎜

⎜

⎝

T
∑

τ=1

l(τ)
∑

c=1
ùc

T
∑

τ=1

l(τ)
∑

c=1
Nc

⎞

⎟

⎟

⎟

⎠

(6)

Before we proceed further, we prove the concavity of
the utility functions in (5) and (6).

Proposition 1. The utility function of a class c, defined in
(5), and the system utility, defined in (6), are strictly concave
functions of QP in the range [QPmin, QPmax].

Proof: Given two functions f1(x) and f2(x), a function
φ(x) = f1(x) · f2(x) is said to be strictly concave and
has a unique maxima in [xmin, xmax] if the following
conditions hold [36]:

(1) f ′′
1 (x) < 0 and f ′′

2 (x) < 0, i.e., f1(x) and f2(x) are
concave functions of x ∈ [xmin, xmax], (2) f1(x), f2(x) are
non-negative, and (3) f ′

1(x) · f
′
2(x) < 0 in [xmin, xmax].

Since φ′′(x) = f ′′
1 (x) · f2(x) + 2 · f ′

1(x) · f
′
2(x) + f1(x) ·

f ′′
2 (x), by the above conditions φ′′(x) is negative in
[xmin, xmax]. Hence it is concave down with a maxima
at k ∈ [xmin, xmax], s.t. φ′(k) = 0.

In our context the two functions are: ESc(q, t)
αc and

Qc(q, t)
βc . Since, the proof is generic and holds true ∀

c ∈ [1, l(τ)], and t, s are constant values for any class
c, the variable over which the optimization is carried
out is QP , which is related to q by (2). Thus the two
functions can be written as f1(x) = ESc(QP )αc and
f2(x) = Qc(QP )βc , and the interval of concavity is
[QPmin, QPmax]. We want to show the concavity of the
utility function and joint optimization of the system in
terms the best suited QP for the video encoding.

Firstly, we prove Qc(QP )βc is concave in
[QPmin, QPmax]. The proof is as follows:
Qc(QP )βc = (Qq(q) · Qmax · Qtc)

βc , where QP ∈
[QPmin, QPmax].

Then, from (2):

Qc(QP )βc =

(

e(−g·2(QP−4)/6)/2(QPmin−4)/6

e−g ·D

)βc

, where

D is a constant with respect to the variable QP and is
given as D = Qmax ·Qtc(t).

For obtaining the derivative, denote QP = x,
QPmin = xmin, QPmax = xmax. Also let w =

2((x−4)/6)/2((xmin−4)/6). Then we have:

dQc(x)
βc

dx
=

dQc(w)
βc

dw
·
dw

dx
, where (7)

Qc(w)
βc =

(

e−g·w

e−g
·D

)βc

,

dQc(w)
βc

dw
= (−βc · g) · e

−βc·g·(w−1) ·D, and
dw

dx
=

w

6
.

It is evident from (7) that, for xmin = QPmin = 1,
xmax = QPmax = 51:

dQc(x)
βc

dx
< 0, ∀ x ∈ [xmin, xmax] (8)

Differentiation (7) again with respect to x we have,

d2Qc(x)
βc

dx2
=

(

βc · g −
1

6

)

×
(

(βc · g) · e
−βc·g·(w−1)

·D · 2((x−4)/6)/(6 · 2((xmin−4)/6))
)

(9)

Since βc · g < 1
6 (βc(max) = 1, g = 0.06), from

(9), d2Qc(x)
βc

dx2 < 0. Thus Qc(QP )βc is concave in
[QPmin, QPmax].

We now prove that ES(QP )αc is concave in
[QPmin, QPmax].

From (4), ESc(QP )αc =
(

1− Rc(QP )
R − H·c·R1(QP )

b

)αc

,

where QP ∈ [QPmin, QPmax].

From (3), it implies that ESc(QP )αc =
(

(1 − ea(1−2(QP−4)/6)/(2(QPmin−4)/6)) · P
)αc

, where P

is a constant with respect to variable QP . Using

(3), P is obtained as: P =
(

Rmax·Rtc (t)·Rsc(s)
R

)

−
(

H·Rmax·Rtc (tmin)·Rs(smin)
b

)

.

Again, for the derivative we denote QP = x, QPmin =

xmin, QPmax = xmax. Let v = ea(1−2(x−4)/6))/2(xmin−4)/6

·P .
By simplifying we have,

dESc(x)
αc

dx
=

dESc(v)
αc

dv
·
dv

dx
, where (10)

ESc(v)
αc = (1− v)αc and

dv

dx
= −

aea(1−2(x−4)/6)/2(xmin−4)/6

(2(xmin−4)/6)
· P ·

2(x−4)/6

6
· ln 2.

Since v < 1 ∀ x ∈ [xmin, xmax],
dv
dx < 0 and dESc(v)

αc

dv < 0.
This implies that,

dESc(x)
αc

dx
> 0, ∀ x ∈ [xmin, xmax]. (11)

On similar lines as in (7)-(9), it is observed that
d2

dx2 (ESc(x)
αc ) < 0, ∀ x ∈ [xmin, xmax]. This implies that

ES(QP )αc is concave in [QPmin, QPmax].
Thus, Condition (1) is shown to be true. Condition

(2) holds in the proposed scheme as per the basic
design of the system, since ESc(QP )αc and Qc(QP )βc

are always positive. From (8) and (11), the product
ESc(QP )αc ·Qc(QP )βc is negative. So Condition (3) also
holds true. Hence, the utility of class c, uc is proven to
be strictly concave and has a maxima in the given range.
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Fig. 8. Total average system utility with the ‘Harbor’ sequence.

Note that, although the exact value of the maxima for a
class of utility function and the corresponding value of
QP can be easily obtained from the above development,
these are not of our interest here.

As shown in [37], [38], a non-negative linear combina-
tion of strictly concave functions is also strictly concave.
Since the system utility in (6) is a non-negative linear
combination of the utilities of all the individual classes
that are already proven to be strictly concave, the system
utility in (6) is a strictly concave in the given range. This
implies the existence of a unique solution that maximizes
the utility in the joint optimization formulation. �

In terms of algorithmic complexity, the joint energy-
saving and video quality optimization has a complexity
of O(lT ), where lT is the number of SVC layers being
broadcast for the highest resolution type T .

Fig. 8 shows that, the sum total weighted average
utility for all classes is a concave function of QP with
a unique maxima. This plot corresponds to 60% type
1 users, 30% type 2 users, and 10% type 3 users in
the system, with their corresponding random location
dependent SNR feedbacks accounted at the BS to deter-
mine the user classes c and the corresponding Nc values.
(Different traffic scenarios and the SNR-channel rate
relationships are given in Tables 1 and 2, respectively.)
The maxima of this scenario corresponds to QP = 30.

4.6 Adaptive modulation and coding scheme

As noted in Section 3, in our approach, besides user-and-
channel aware SVC rate optimization at the application
layer and time slicing at the link layer, at the physical
layer adaptive MCS is applied which is optimized for en-
hanced energy efficiency and network capacity. Clearly,
this adaptation is a function of the heterogeneous users
composition in a cell and the dynamic physical channel
rate constraint. Physical channel dynamics is accounted
in a slow (shadow fading) scale to avoid high bandwidth
overhead of frequent channel state feedback and compu-
tation of coding and MCS optimizations at the BS as well
as the video server.

The total number of users in the cell that are sub-
scribed to the broadcast service is taken to be N . The
different MCSs are considered to be m = 1, · · · ,M (for
example, m = 1 represents QPSK with code rate = 1/2,
and so on). The SVC encoded video is considered to have
L layers. In our formulation, Rm represents the data rate

provided by MCS m, rl is the rate allocated for layer l
(l = 1, · · · , L). If a layer l, can be served by the BS to
the users, then we set lserved = 1, else it is set to 0. We
have used an indicator function χl,m that takes a value
1 if layer l is modulated with MCS m and takes a value
0 otherwise. The value of ml, l = (1, · · · , L) specifies the
MCS used for layer l subject to lserved = 1. For a user
to be able to decode any layer, it is necessary to have
received all the layers lower than the current layer. Only
then the layer is said to be valid for the user. The number
of valid layers for any user is denoted by:

lsj = max{l | ∀ l̀ ≤ l ≤ l(τj),

Mj
∑

m̀=1

χl̀,m̀ = 1}.

lsj is the maximum number of continuous layers modu-
lated with 1 to Mj starting from base layer, where Mj is
the highest possible modulation level that jth user can
receive, such that these layers are either equal to or less
than the requested number of layers by the user (l(τj))
based on its type τj , 1 ≤ τj ≤ T . The received rate for

user j is given by: r∑
j
=

lsj
∑

l=1

rl.

The utility for the user j is defined as a general
function of its received rates, requested quality rates
and maximum possible feasible received rate based on
its channel conditions, i.e. SNR with shadowing at any

given time: Uj(r∑
j
, rl

(τj )
∑ , r∑

j(SNR)
). Here, rl

(τj )
∑ corre-

sponds to the rate requested by the user for its desired
maximum quality level. So it is based on the maximum
number of layers l(τj) of the SVC content requested by
the user of type τj . r∑

j(SNR)
corresponds to the maxi-

mum rate that the user would be able to receive if the
user alone was present in the network and optimization
of the MCS was to be just based on this user’s channel
conditions (i.e., its experienced SNR).

The user j’s utility is defined as:

Uj(r∑
j
, rl

(τj )
∑ , r∑

j(SNR)
) =

Q(r∑
j
)−Q(min{rl

(τj )
∑ , r∑

j(SNR)
})

(12)

where Q(r∑
j
) is the quality value based on the para-

metric model given in (2). Since the possible rates that a
user j can receive is from a set of possible layer rates, if
a user is able to receive lsj layers, such that r∑

j
≥ rlsj ,

with layer lsj having a frame rate tlsj and a quantization

level qlsj , then, Q(r∑
j
) = Q(qlsj , tlsj ).

The objective is to maximize the total system utility,

i.e., max{
∑

j∈N

Uj(r∑
j
, rl

(τj )
∑ , r∑

j(SNR)
)} subject to (5), (6),

and the following constraints:

r∑
j
≥ r1, given that, r∑

j(SNR)
≥ r1 ∀j ∈ N

M
∑

m=1

χl,m ≤ 1, l = 1, · · · , L
(13)

The first set of constraints mentioned in (13) states
that for every user j ∈ N the rate received should be
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Algorithm 1 Adaptive MCS selection for SVC layers

Input: L, γm, Rm, rl, r∑
j(SNR)

, rl
(τj )
∑ , ∀ m =

1, · · · ,M, l = 1, · · · , L, and j = 1, · · · , N
Pseudocode:

1) Initialize variables: Utotal = 0 and χl,m = 0, ∀ l =
1, · · · , L, ∀ m = 1, · · · ,M

2) for each l = 1 to L
if RM < rl then Set lserved = 0
else

for each i = 1 to M
if rl < Ri and ml−1 ≤ i then

Set ml = i, χl,i = 1, and lserved = 1
go to 3

3) for each user j = 1 to N
Using ml(l = 1, · · · , l(τj)) and lserved, find r∑

j

Compute Uj(r∑
j
, rl

(τj )
∑ , r∑

j(SNR)
) using (12)

Utotal = Utotal + Uj(r∑
j
, rl

(τj )
∑ , r∑

j(SNR)
)

Output: χl,m, ml, lserved, ∀ l = 1, · · · , L and m =
1, · · · ,M .

at least greater than or equal to the rate of the base
layer r1, for the condition that r∑

j(SNR)
> r1, i.e. the

channel condition of the user j supports a rate greater
than that required for the base layer. The second set of
constraint in (13) uses integer relaxation, which states
that for a given video layer l, it can be modulated and
coded with at most one MCS. It is important to note
that a layer l may not even be modulated with any

MCS, i.e.,
M
∑

m=1

χl,m = 0. In such a case the layer l is

not transmitted. The users experiencing extremely bad
channel conditions with r∑

j(SNR)
< r1 will not be able

to receive any layer, since they are experiencing the SNR
below the minimum SNR threshold for the most basic
MCS (e.g., QPSK with code rate of 1/2).

The different supported MCS have a minimum SNR
threshold (γm, for MCS m = 1, · · · ,M ) under the given
DVB-H standard specifications, based on the quasi error
free reception and MPE-FEC error rate of 5% with a
BER value of 10−12 [31]. The rates corresponding to SNR
threshold of different MCS are given by:

Rm = B. log2 (1 + γm) , 1 ≤ m ≤ M,

γm̀ > γm, where MCS m̀ > m, 1 < m̀ ≤ M

Hence, Rm̀ > Rm ∀ m, m̀ ∈ [1,M ], m̀ > m.

(14)

The proposed MCS assignment algorithm is summa-
rized in Algorithm 1.

The adaptive MCS algorithm has O(L ·M +N ) com-
plexity, where L is the number of SVC layers broadcast,
M is the number of MCS levels, and N is the total
number of users. The proposed approach ensures that,
with optimal MCS allocation for all the SVC layers,

Q(r∑
j
) ≥ Q(min{rl

(τj )
∑ , r∑

j(SNR)
}), ∀ j ∈ [1, N ], leading

to maximum system utility Utotal.

4.7 Video reception quality measure

For a fair comparison of the quality of reception perfor-
mance of the different competitive strategies, we define
a video reception quality measure.

Definition 6. In a system having T types of users, with the
highest number of layers l(τ) that a type τ user (1 ≤ τ ≤ T )
is capable of receiving and the corresponding reception quality
denoted by Q

(

l(τ)
)

, the weighted average video reception
quality, or the Q measure is expressed as:

Q = 1−
1

T
∑

τ=1

l(τ)
∑

ls=0

N
(τ)
ls

T
∑

τ=1

l(τ)
∑

ls=0

[

Q
(

l(τ)
)

−Q (ls)
]

N
(τ)
ls

(15)

where N
(τ)
ls

is the number of type τ users actually receiving
ls number of layers, with the corresponding quality measure
Q (ls). Q (ls) = 0 if ls = 0, i.e. when no layers are received.

Q(l(τ)) and Q(ls) are obtained based on the parametric
model in (2), as a function of quantization level q and
frame rate t (Q (ls) = Qls(q, t), i.e., the quality value
corresponding to layer ls (1 ≤ ls ≤ l(τ)) of SVC content).

With respect to a given UE type, Q is indicative of
the difference in actually experienced video reception
quality with respect to its highest reception capability.
It is a performance metric that indicates the QoE of the
broadcast users in a given heterogeneous users distri-
bution. Being a weighted average, it also indicates the
proportion of total number of users that are served with
a specified video quality level. Hence, a higher value
of Q measure signifies that a higher proportion of total
number of users are being served in the cell with a higher
video reception quality. In our system example, T = 3,
and l(τ) = 4, 9, 14 respectively, for τ = 1, 2, 3.

Further, it may be noted that the parametric quality
measure Q(q, t)and hence the weighted average qual-
ity measure Q, that we use to characterize the trans-
mission strategies, have a direct relationship with the
subjective measure MOS [32], given as: MOS = 4 ×
Q(q, t) + 1. Thus, numerically, Q(q, t) = 0 corresponds
to MOS = 1, Q(q, t) = (0.0− 0.25] corresponds to MOS
= 2, Q(q, t) = (0.25− 0.5] corresponds to MOS = 3,
Q(q, t) = (0.5− 0.75] corresponds to MOS = 4, and
Q(q, t) = (0.75− 1.0] corresponds to MOS = 5. This
mapping between QoE measure of video quality (MOS)
and parametric video quality Q(q, t) is shown in Fig. 9.

5 SIMULATION SETTINGS

For the simulation purpose and in order to encode the
SVC streams, we have used the SVC encoder reference
software JSVM 9 19 12 [39]. In the considered scenario,
scalable video covers three levels of spatial resolution
formats: QCIF, CIF, and D1, serving three type of users,
and five temporal resolutions: 1.875, 3.75, 7.5, 15, 30 fps
(cf. Fig. 10), which serve the users in variable channel
conditions. The sample ‘Harbor’ video sequence with
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Fig. 10. Spatial-temporal scalable layer structure used in

system simulations.

TABLE 1

Simulation scenarios, with variable ratios of user type

Scenario 1 2 3 4 5 6
Type 1 33.3% 10% 45% 60% 90% 5%
Type 2 33.3% 30% 10% 30% 5% 5%
Type 3 33.3% 60% 45% 10% 5% 90%

300 frames was taken for evaluating the proposed frame-
work. For this video, the parameters λ, g, θ, a, and d
in (2)-(3) are respectively found to be 7.38, 0.06, 1.429,
1.551, and 0.845. Fig. 10 shows the flexible layer structure
with each coordinate representing different spatial and
temporal resolutions. Note that there are two possible
layer routes for the hierarchical broadcast reception.

We consider a single-cell video broadcast network
with 500 randomly distributed users belonging to three
user types. Six simulation scenarios are considered with
different ratios of user type distributions as listed in
Table 1. The users belonging to type 1 require QCIF
format video, those belonging to type 2 require CIF
format, and the ones of type 3 need D1 format.

The first step is to obtain the optimized SVC encoding
parameters as a function of the user types distribution
in the system using the proposed cooperative game. The
outcome of the game is the optimized adaptive video
coded sequence with the optimal rate allocation for each
layer, such that it aids the energy saving for type 1 users
and the quality for type 3 users.

The rate allocation is followed by the adaptive MCS
allocation for the different SVC layers that are trans-
mitted in a time-sliced arrangement. Note that, since
the optimal rate allocation to different SVC layers rl,

TABLE 3
Simulation parameters

Parameter Value
OFDM channel bandwidth 8MHz
Frequency 800MHz
Carrier spacing 4KHz
DVB-H transmission mode 2K
Number of data carriers 1705
Receiver noise figure 5.2dB
Transmitter output power 63.8dBm
Transmitter cable and connector loss 3.0dB
Transmitter power splitter loss 3.0dB
Transmitter antenna gain 13.1dBi
Receiver antenna gain −7.3dBi
Building loss 14.0dB
Location variation loss for 95% area probability 5.3dB
Receiver noise input power −99dBm
Shadowing standard deviation 8dB
Guard interval 1/4
Wireless channel model Gaussian
Shadowing model Log-normal
Path loss model Free space

1 ≤ l ≤ L is a function of the user type distribution
ratios, the time-slice allocation in (1) is also accordingly
a function of user type distribution ratios. The adaptive
MCS in our approach is additionally governed by the
SNR experienced by the various user groups.

As per the DVB-H specifications [23], the minimum
SNR threshold for each MCS for a given wireless channel
and the corresponding channel rates with the relevant
guard interval (GI = 1/4) are listed in Table 2. The overall
system simulation parameters considered are listed in
Table 3. The performance results are presented below.

6 RESULTS AND DISCUSSIONS

6.1 Energy-quality trade-off performance with time

slicing technique

Considering the different traffic scenarios as listed in
Table 1, we first analyze the energy–SVC quantization-
dependent quality trade-off. Fig. 11, illustrates the
energy-quality (Q, given in (2)) trade-off for the three
types of users. It can be seen that, when the video
encoding parameters are so chosen that the quality of
the video at the UEs is higher, the corresponding energy
saving for the users of all the three types is lower.
However, under all the six scenarios the energy saving
for the type 1 users is the highest among the three
type of users. This is primarily due to the time slicing
approach of transmission. Considerable variation in the
energy saving and quality values is evident when there
is a remarkable change in proportion of any particular
type of user in the network. For instance, in scenario 5
with 90% of type 1 users, the joint optimization approach
results in energy saving of more than 90% for the UEs,
with approximately 20% quality. This is because, more
than 90% users are energy-constrained and the objective
is to satisfy these users in terms of their energy-saving.



11

TABLE 2
MCS parameters with Gaussian channel model and guard interval GI = 1/4 in DVB-H standard [31]

Modulation QPSK 16QAM 64QAM
Code rate 1/2 2/3 3/4 5/6 7/8 1/2 2/3 3/4 5/6 7/8 1/2 2/3 3/4 5/6 7/8
SNR Threshold (dB) 3.1 4.9 5.9 6.9 7.7 8.8 11.1 12.5 13.5 13.9 14.4 16.5 18.0 19.3 20.1
Channel rate (Mbps) 4.98 6.64 7.46 8.29 8.71 9.95 13.27 14.93 16.59 17.42 14.93 19.91 22.39 24.88 26.13
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Fig. 11. Normalized energy saving versus reception quality of

the different types of users.

It is also notable that, since each user has the indepen-
dent control of time-sliced reception, even though the
high-end (e.g. type 3) users may not achieve the maxi-
mum desired quality due to the system optimization for
large proportion of low-end (e.g. type 1) users, they can
improve the QoE by the time slicing flexibility.

6.2 Adaptive MCS performance

We now study the MCS-dependent broadcast perfor-
mance. The proposed adaptive MCS is compared against
the two other schemes: simple MCS and fixed MCS.

Fig. 12(a) shows the average difference between the
user request for a certain number of layers and what they
actually receive under the three MCS schemes. Fig. 12(b)
shows that the total number of users receiving exactly
the requested quality is much higher with adaptive MCS
as compared to the two other schemes. The results are
averaged over several iterations with the number of
users varying between 400 and 500. It can be noticed
that the adaptive MCS outperforms the other two MCS
schemes in terms of the number of served users. More-
over by using the adaptive MCS the received number of
layers are very close to the requested number of layers,
reflecting a higher amount of user satisfaction.

Fig. 13 captures the layer based values for the aver-
age percentage of users being served in the broadcast
network for the six scenarios listed in Table 1 under the
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Fig. 13. Effect of MCS and number of layers on the average
percentage of users served.

three MCS allocation schemes. The results show that the
adaptive MCS allocation scheme outperforms the other
schemes, by ensuring a higher percentage of users that
are getting served under all scenarios.

The composite gain achieved by the adaptive MCS
under the six different scenarios is illustrated in Fig. 14.
The ratio of the total number of users served by the
proposed adaptive MCS is compared against the simple
MCS and fixed MCS. It can be noted that, among the
three schemes, the adaptive MCS ensures more number
of users served. In particular, the gain of adaptive MCS
in terms of number of additional users served over the
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Fig. 14. Comparison of MCS allocation schemes in terms of
service capacity.

fixed or simple MCS scheme under the six scenarios
with ‘ES+Q’ strategy are 12.6, 19.4, 14.1, 9.7, 7.2, and
24.4%, respectively. The average number of additional
users served with adaptive MCS under the six scenarios
is 16.57% with respect to the simple MCS and 16.63%
with respect to the fixed MCS.

6.3 Energy-Quality trade-off with optimized SVC and
adaptive MCS

Fig. 15 presents a comparison of the three MCS along
with the three SVC optimization measures: joint energy
saving and quality (ES+Q), energy saving only (ES only),
and quality only (Q only). The line plots indicate the
number of users served versus the number of SVC layers
transmitted. The adaptive MCS with ‘ES+Q’ is shown
to perform better than the ‘Q only’ case. Although the
‘ES only’ serves a higher number of users (cf. Table
4), the average reception quality is very low (e.g., Q is
18.19% in scenario 1). This means, in ‘ES only’ case a
large proportion of users would experience a low QoE.
The uneven trend in the plots may be due to random
distribution of heterogeneous UEs in the network.

The bar plots on the right in Fig. 15 capture the
composite gain on number of users served in the three
schemes (‘ES+Q’, ‘ES only’, and ‘Q only’) with the three
MCS strategies. ‘ES+Q’ with adaptive MCS serves a
lesser number of users in comparison with the ‘ES only’
case, but performs better with respect to ‘Q only’ case.
The number of users served in ‘Q only’ case is generally
low (e.g., 35% only in scenario 2). The results demon-
strate that, with the proposed adaptive MCS, the average
reduction of number of users served with ‘ES+Q’ is only
0.62% lower than that in ‘ES only’ scenario. On the other
hand, the number of users served with ‘ES+Q’ is about
10.8% higher than that with ‘Q only’ scenario.

Table 4 further quantifies the energy-quality trade-off
with the three optimization schemes: ‘ES+Q’, ‘ES only’,
and ‘Q only’ where the weighted quality measure Q in
(15) is used. The table also includes the optimum quan-
tization parameters for the ES and Q trade-off game.
Under the six user-heterogeneity scenarios with adaptive
MCS, when compared with ‘ES only’ strategy, the ‘ES+Q’
strategy offers on average, about 43% higher quality. The
corresponding trade-off on the amount of energy saving

is only about 8%. With respect to ‘Q only’ scenario, the
‘ES+Q’ scheme offers about 17% extra energy saving as
well as about 3.5% higher quality performance.

7 CONCLUSION

This paper has introduced a novel cross-layer opti-
mization solution to improve both the quality of user
experience (QoE) and energy efficiency of wireless mul-
timedia broadcast receivers with varying display and
energy constraints. This joint optimization is achieved by
grouping the users based on their device capabilities and
estimated channel conditions experienced by them and
broadcasting adaptive content to these groups. The op-
timization is a game theoretic approach which performs
energy saving versus reception quality trade-off, and
obtains optimum video encoding rates of the different
users. This optimization is a function of the proportion
of users in a cell with different capabilities, which in
turn determines the time slicing proportions for different
video content layers for maximized energy saving of
low-end users, while maximizing the quality of reception
of the high-end users. The optimized layered coding
rate, coupled with the receiver groups’ SNRs, adaptation
of the MCS for transmission of different layers, ensure
higher number of users are served while also improving
users’ average reception quality. Thorough testing has
shown how the proposed optimization solution supports
better performance for multimedia broadcast over wire-
less in comparison with the existing techniques.
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Network. John Wiley & Sons, Ltd, 2009.

[32] Y. Wang, Z. Ma, and Y.-F. Qu, “Modeling rate and perceptual
quality of scalable video as functions of quantization and frame
rate and its application in scalable video adaptation,” in Proc. Intl.
Packet Video Wksp., Seattle, USA, May 2009.

[33] Subjective video quality assessment methods for multimedia applica-
tions, ITU-T Recommendation, P.910, Apr. 2008.

[34] S. Azad, W. Song, and D. Tjondronegoro, “Bitrate modeling of
scalable videos using quantization parameter, frame rate and
spatial resolution,” in Proc. IEEE ICASSP, Dallas, TX, USA, Mar.
2010.

[35] S. Parakh and A. Jagannatham, “Game theory based dynamic
bit-rate adaptation for H.264 scalable video transmission in 4G
wireless systems,” in Proc. SPCOM, Bangalore, India, July 2012.

[36] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[37] A. Takayama, Analytical Methods in Economics. University of
Michigan Press, 1993.

[38] A. Cambini and L. Martein, Generalized Convexity and Optimization:
Theory and Applications. Springer-Verlag, 2009.

[39] J. Reichel, H. Schwarz, and M. Wien, “Joint Scalable Video Model
JSVM-12 text,” Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T
VCEG, Shenzhen, China, Doc. JVT-Y202, Oct. 2007.

ACKNOWLEDGMENT

This work has been supported by the Department of
Science and Technology (DST) under the grant no.
SR/S3/EECE/0122/2010 and Indo-Ireland cooperative
science program. The authors are thankful to the anony-
mous reviewers for the insightful comments and valu-
able suggestions, which have significantly improved the
quality of presentation.

BIOGRAPHIES

Chetna Singhal (S’13) received her B.Eng. in
Electronics and Telecommunications from Univ.
of Pune in 2008 and M.Tech. in Computer Tech-
nology from Electrical Eng. Dept., IIT Delhi in
2010. She worked in IBM Software Lab, New
Delhi, as a Software Engineer, from June 2010
to July 2011. She is currently pursuing Ph.D.
from Bharti School of Telecommunications, IIT
Delhi, since July 2011. Her research interests
include handoff schemes and cross-layer opti-
mization in wireless networks, adaptive multime-

dia multicast and broadcast schemes and technologies. She is a student
member of ACM, IEEE, and IEEE Computer and Communications
Societies.

Swades De (S’02-M’04) received his PhD in
Electrical Eng. from the State Univ. of New York
at Buffalo in 2004. He is currently an Associate
Professor of Electrical Eng. at IIT Delhi. His
research interests include performance study,
resource efficiency in wireless networks, broad-
band wireless access, and communication and
systems issues in optical networks. Dr. De cur-
rently serves as an Associate Editor of IEEE
Communications Letters and Springer Photonic
Network Communications journal. He is a mem-

ber of IEEE, IEEE ComSoc, and IEICE.

Ramona Trestian (S’08-M’12) is a Lecturer with
the Computer and Communications Eng. Dept.,
School of Science and Technology, Middlesex
Univ., London, UK. She received her Ph.D. from
Dublin City Univ., Ireland in March 2012 and
B.Eng. in Telecommunications from the Elec-
tronics, Telecommunications and the Technol-
ogy of Information Dept., Technical Univ. of Cluj-
Napoca, Romania in 2007. She has published in
prestigious international conferences and jour-
nals and has two edited books. She is a re-

viewer for international journals and conferences and an IEEE member.
Her research interests include mobile and wireless communications,
multimedia streaming, handover and network selection strategies, and
software-defined networks.

Gabriel-Miro Muntean (S’02-M’04) received
the B.Eng. and M.Sc. degrees in software eng.
from the Computer Sc. Dept., Politehnica Univ.
of Timisoara, Timisoara, Romania, in 1996 and
1997, respectively, and the Ph.D. degree from
the School of Electronic Eng., Dublin City Univ.
(DCU), Dublin, Ireland, in 2003 for his research
on quality-oriented adaptive multimedia stream-
ing over wired networks. He is currently a Se-
nior Lecturer with the School of Electronic Eng.,
DCU. He is Co-Director of the Performance Eng.

Lab. Research Group, DCU, and Director of the Network Innovations
Centre, part of the Rince Institute Ireland. He has published over 150 pa-
pers in prestigious international journals and conferences, has authored
three books and 12 book chapters, and has edited five other books.
His current research interests include quality-oriented and performance-
related issues of adaptive multimedia delivery, performance of wired and
wireless communications, energy-aware networking, and personalized
e-learning. Dr. Muntean is an Associate Editor of the IEEE Transactions
on Broadcasting, the IEEE Communication Surveys and Tutorials, and
a reviewer for other important international journals, conferences, and
funding agencies. He is a member of the ACM, IEEE and the IEEE
Broadcast Technology Society.


