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Joint Optimization Schemes for Cooperative

Wireless Information and Power Transfer over

Rician Channels
Deepak Mishra, Swades De, and Carla-Fabiana Chiasserini

Abstract—Simultaneous wireless information and power trans-
fer (SWIPT) can lead to uninterrupted network operation by
integrating radio frequency (RF) energy harvesting with data
communication. In this paper, we consider a two-hop source-
relay-destination network and investigate the efficient usage of a
decode-and-forward (DF) relay for SWIPT toward the energy-
constrained destination. In particular, by assuming a Rician
fading environment, we jointly optimize power allocation (PA),
relay placement (RP), and power splitting (PS) so as to minimize
outage probability under the harvested power constraint at
the destination node. We consider the two possible cases of
source-to-destination distance: (i) small distance with direct
information transfer link; and (ii) relatively large distance with
no direct reachability. Analytical expressions for individual and
joint optimal PA, RP, and PS are obtained by exploiting convexity
of outage minimization problem for the no direct link case. In
case of direct source-to-destination link, multi-pseudoconvexity of
joint-optimal PA, RP, and PS problem is proved, and alternating
optimization is used to find the global optimal solution. Numerical
results show that the joint optimal solutions, although strongly
influenced by the harvested power requirement at the destination,
can provide respectively 64% and 100% outage improvement over
the fixed allocation scheme for without and with direct link.

Index Terms—RF energy harvesting; Rician fading; decode
and forward; power allocation; relay placement; power splitting
ratio; outage-harvested power tradeoff; alternating optimization.

I. INTRODUCTION AND BACKGROUND

Relay-assisted data communication and cooperative trans-

mission strategies offer significant benefits over the direct

source-to-destination transmission. The advantages include co-

operative diversity, energy saving, increased secrecy, network

coverage extension, and improvement of quality-of-service in

wireless networks. Moreover, cooperative relaying techniques

can overcome high path-loss, blocking or shadowing losses,

and high transmit power requirements, by providing alternate

path(s) from source to destination via one or more relays.

There are several studies on optimal power allocation (PA)

and relay placement (RP) for cooperative amplify-and-forward

(AF) as well as decode-and-forward (DF) information relaying

under different fading conditions [1]–[6]. Minimization of

source-sum-power subject to outage constraints using DF relay
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is studied in [7] and [8], respectively with as well as without

direct links between multiple sources and single destination.

Another line of research that has recently emerged is radio

frequency (RF) energy harvesting (RFEH) at the energy-

constrained field nodes, which can prolong the lifetime of

wireless networks. Since most of the long-range communi-

cation is based on transmission of RF signals, usage of this

RF radiation for energy harvesting leads to simultaneous wire-

less information and power transfer (SWIPT) to the energy-

constrained receiver. SWIPT is discussed in the pioneering

works [9], [10]. The study in [11] introduces two mechanisms

for practical implementation of SWIPT: a) power splitting (PS)

and b) time switching (TS). Subsequently, PS-based and TS-

based routing protocols for RFEH AF relay node and single

source-destination (S − D) pair are proposed in [12]. A dual-

hop RFEH AF relaying system, with and without the presence

of co-channel interference is investigated in [13]. PA strategies

for RFEH DF relay for multiple S − D pairs are proposed

in [14]. The performance of a dual-hop RFEH full-duplex

relaying system is studied in [15] for both AF and DF relaying

protocols. Authors in [15], also investigated optimal TS ratio

under different communication modes. SWIPT without as

well as with cooperative energy relaying is discussed in [16],

and the impact of spatial randomness of relay locations on

the performance of SWIPT is studied in [17]. The work

in [18] demonstrated that there exists a trade-off between

information and energy transfer for relay selection in SWIPT,

as the preferable relay position is different for information

transfer and energy transfer. Yet, optimal PA and RP are not

considered in [12]–[18]. It is worth noting that [12]–[15] con-

sider source-relay and relay-destination distances as constants,

whereas [16]–[18] consider relay selection strategies. Also, the

optimal PA and RP problem investigated in [1]–[8] for two-

hop information relaying, do not consider the Rician fading

model, which is more appropriate to incorporate the effect of

strong line-of-sight (LOS) component in SWIPT [19], [20] and

information relaying systems [21].

Accounting for the system and wireless device constraints,

it is argued in [22] that multi-hop RF energy transfer can

improve RFEH efficiency by deploying relay nodes close to

the target energy receiver. In this technique, the relay first

collects the otherwise-dispersed RF energy of the source and

then transfers it to the energy receiver, which reduces path loss

and improves RF-to-DC conversion efficiency due to a higher

received power [23]. Two-hop RF energy transfer and multi-

path energy routing have been experimentally demonstrated



2

TABLE I: Joint cooperative optimization schemes for SWIPT.

Optimization
scheme

Practical setting

Node(s) where
optimization

is performed

Optimal PA

S and R, connected to the common power grid
or having common energy resource, cooperate

to share the total power budget optimally
S or R

Optimal RP

When there are no terrain asperities or blockage,
R can adjust, or can be instructed by S to adjust,
its position optimally to aid efficient SWIPT to D

R or S

Optimal PS
RFEH D has enough energy resources

to carry out the PS optimization
D

Joint-optimal
It has the luxury of combining the merits

of all three optimization schemes
S, R, and D

recently in [23] and [24]. These works however have not

looked into joint information and RF energy transfer aspects.

Intuitively, optimal PA and RP in SWIPT are quite different

from those in conventional information transfer [1]–[8], where

RF energy transfer using relay is not considered.

In this paper we study the outage performance of a two-hop,

half-duplex DF relay-assisted SWIPT with a single source S
and destination D. We consider the two possible cases: (i) rel-

atively short S-to-D distance where D is capable of receiving

information directly from S; and (ii) long S-to-D distance,

with no direct communication link [2]–[6]. However, in both

cases D is not capable of harvesting energy from S due to low

RF energy transfer range [23]. S and relay R are assumed to

have enough energy resources, whereas D operates with the

harvested RF energy from the received signal from R using the

PS technique. To improve the efficiency of DF relay-assisted

SWIPT, we propose four different optimization schemes under

varying real-world constraints (practical settings), as men-

tioned in Table I. The table also underlines at which node(s)

the optimization is performed. The practical settings for the

problem considered include self-sustainable broadcasting net-

works and multiuser downlink SWIPT systems, where the user

devices are battery constrained, whereas the broadcasting base

station and the relay are connected to the power grid [18].

S and R can also be considered as infrastructure nodes in

network-assisted device-to-device (D2D) communications or

Long-Term Evolution (LTE) Advanced system, which share

the total power for efficient information and energy transfer

to the nearby battery-constrained wireless devices.

To the best of our knowledge, this is the first work that

presents a joint optimization of PA, RP, and PS for SWIPT

to minimize the outage probability at D without and with

direct communication link from S . To incorporate the effect

of strong LOS component in SWIPT, outage performance

analysis is done using Rician fading model, which has not

been considered before. While minimizing outage probability

pout, we consider constraints on total transmit power P
T

(sum

of S and R power) and required harvested power ζP at D.

Our key contributions are as follows.

• Joint optimization schemes for cooperative SWIPT to

enhance outage performance of R-assisted S-to-D com-

munication are presented for both without and with S-to-

D direct link. All optimization results are derived under

practical RFEH constraints at D, while considering the

Rician channel fading to incorporate the dominant LOS

component of the links. The results for Rayleigh fading

can be easily generated by setting the Rice factor as zero.

• In SWIPT with no S-to-D link, analytical expressions are

obtained for both individual and joint-optimal PA, RP, and

PS to minimize pout, subject to P
T

and ζP constraints.

• For short S-to-D distance with direct communication link

between S and D, tri-pseudoconvexity of pout is proved.

Subsequently, for individual PA, RP, and PS optimization,

semi-closed-form solutions are obtained by exploiting

individual pseudoconvexity of pout for each problem. The

joint-optimal solution is obtained by using alternating

optimization technique along with bi-pseudoconvexity of

pout with optimized PS in Ps and d.

• Impact of RFEH requirement at D on optimal PA, RP, and

PS for efficient SWIPT is discussed via numerical results.

Improved performance of the proposed joint and indi-

vidual optimization schemes over non-cooperative fixed

allocation scheme is also demonstrated. For example,

with respect to fixed allocation scheme, joint optimization

offers about 64% and 100% improvement in pout for

without and with direct S-to-D link, respectively.

• Trade-off between pout and ζP is investigated in the

proposed joint optimization scheme under different Rice

factor values. The impacts of transmit power budget,

S-to-D distance, and channel conditions on optimized

solutions and minimized pout are also studied.

The rest of the paper is organized as follows. Network topol-

ogy considered and its motivation are discussed in Section II.

Problem definition is presented in Section III. Optimal PA

for fixed RP and PS, without and with direct S-to-D link

availability is presented in Section IV. Section V contains

analytical solutions for optimal RP with predetermined PA and

PS for both short and long S-to-D distance cases. PS ratio op-

timization is studied in Section VI. Joint-optimal PA, RP, and

PS scheme, exploiting convexity and multi-pseudoconvexity of

pout respectively for no direct link and with S-to-D direct link,

is analyzed in Section VII. Numerical results are presented in

Section VIII, followed by concluding remarks in Section IX.

II. SYSTEM MODEL

Here we discuss the network and channel models along with

motivation for these consideration.

A. Network topology and channel model

We consider a three-node, two-hop wireless network, con-

sisting of an information source S , a relay node R, and a

destination node D placed on a two-dimensional Euclidean

plane. We consider two system models for RP, depending

on the availability of direct S-to-D communication link:

linear and elliptical. In the first case (Fig. 1(a)), when D is

reasonably large, there is no direct S-to-D link available due

to large path loss, shadowing, and fading effects. Hence, here

R is placed on the LOS path between S and D to maximize

the gain from relaying. In the second case, with direct S-to-D
link availability (Fig. 1(b)), R is placed at a position along

the locus of the ellipse [6], [25] to avoid the obstruction to

direct S-to-D link. S and D, separated by a distance D, are

located at the two foci of the ellipse.

R operates in half-duplex DF mode. Thus, the information

transfer occurs in two slots: in the first slot from S to R (and
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Fig. 1: Three-node network topology considering two S-to-D distance-based cases with R having two directional antennas.

S to D if direct S-to-D link is available), and in the second

slot from R to D. It may be noted that, although the intended

half-duplex operation could be conducted using single omnidi-

rectional antenna at each node as in conventional cooperative

communication systems, we consider two directional antennas

at R (Fig. 1). One is directed towards D – essentially for

efficient R-to-D energy transfer (or SWIPT), and the other is

directed towards S for effective S-to-R information transfer.

Indeed, D has RFEH capability. The RFEH operation is

based on PS technique [11], in which the received power is

split into two parts with a PS ratio ρ ∈ (0, 1). A fraction ρ of

the received power at D is used for data detection or decoding,

and the remaining fraction (1 − ρ) is used for RFEH. For

simplicity, an ideal PS is assumed, neglecting the power loss,

noise degradation, and synchronization errors. The received

signal y0 at D and y1 at R from S in the first slot, and y2 at

D from R in the second slot are given by:

y0=h0

√
Psx1+n0, y1=h1

√
Psx1+n1, y2=h2

√
Prx2+n2 (1)

where n0, n1, and n2 are mutually independent Additive White

Gaussian Noise at the respective receivers, with zero mean

and same noise power N0. Ps and Pr are the transmit powers

of S and R, respectively, with P
T

= Ps + Pr as the total

transmit power budget. x1 and x2 are the signals transmitted

by S and R, respectively. We also assume that E[xi] = 0
and E[|xi|

2] = 1, ∀i ∈ {1, 2}. h0, h1, and h2 are the Rician

channel gain coefficients. Over Rician fading channels, the

instantaneous signal-to-noise ratio (SNR) γ0 for S-to-D link,

γ1 for S-to-R link, and γ2 for R-to-D link follow the weighted

noncentral-χ2 distribution with two degrees of freedom, whose

cumulative distribution function (CDF) is given by [26]:

Fγi
(γ) = 1−Cγi

(γ) = 1−Q1

(
√

2Ki,

√
2(Ki + 1)γ

γi

)
(2)

where Cγi
(·) is the complimentary CDF of γi and Q1 (·, ·)

is the first order Marcum Q-function [26]. Ki is the Rice

factor defined as the ratio of power of LOS component to

the scattered components. γi = E [γi] is the average SNR of

the respective links, given by: γ0 =
a
d
Ps

N0Dl , γ1 = asPs

N0dl , and

γ2 = arPr

N0(
D
ǫ
−d)l

, where d and
(
D
ǫ − d

)
are S-to-R and R-

to-D distances, respectively. ǫ is the eccentricity; ǫ = 1 for

linear case (cf. Fig. 1(a)) when there is no direct S-to-D link

available. a
d
, as, and ar account for the channel parameters,

namely, fading and antenna gains, in the respective link, and

l is the path loss exponent. The average harvested power at

D is PH
D

= ηar(1−ρ)Pr

(D
ǫ
−d)

l , where η is the RF-to-DC conversion

efficiency of the RFEH circuitry at D.

B. Motivation for proposed system model

Our consideration of Rician fading channel model is mo-

tivated by the fact that a strong LOS component is present

in practical SWIPT and information relaying scenarios with

direct link availability or short communication ranges. Fol-

lowing this, we have employed a commonly used elliptical

topology [6], [25] for RP which helps to extend the conven-

tional line topology to a more generic two-dimensional RP

model, while considering the possibility of a direct LOS path

between S and D. Also, it offers flexibility in realization of

a realistic non-blocking model that incorporates the behavior

of practical directional antennas having reduced gains with

increase in angle away from the direction of main beam [27].

Hence, it allows R (blocking object) to come closer to S and

D (transmitting and receiving directional antennas) from the

perpendicular direction, yet stay far away from the main beam.

In optimal power (system resource) allocation, if indepen-

dent transmit power budgets P
TS

and P
TR

are considered at S
and R respectively, minimum pout will trivially occur at full

power utilization
(
Ps=P

TS
, Pr=P

TR

)
. Instead, we consider

controlled relaying where S and R are either administered by

the same service provider, or have a common energy resource

that they share for efficient SWIPT to D. One such practical

setting includes S being a base station in a cellular scenario

with R as a network operator controlled relay node. So, in

our PA optimization, we consider a joint total transmit power

budget P
T
= Ps + Pr and optimally distribute it between S

and R to minimize pout, which is also influenced by RP.

It is also worth noting that, in the proposed system model

information transfer from S-to-D is over two hops in addition

to the possible direct S-to-D communication link, whereas

the energy is transferred via only one hop, from R-to-D.

Two-hop energy transfer is not considered because of very

low RFEH sensitivity [28], which leads to a very low RF

energy transfer range as compared to the typical wireless data

communication range [23], [24]. Hence, for a typical S-to-

D information transfer distance and with the current state of

RFEH technology [28], for practical feasibility of RFEH at D,

the transmit power Ps at S has to be very large. The Effective
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Isotropic Radiated Power (EIRP) required at S in order to have

ζP amount of DC power available after RF-to-DC conversion

at D is given by: EIRP , PsGs =
ζP

η(1−ρ)GD

(
4πDf

c

)l
, where

Gs and GD are the antenna gains of S and D, respectively, c

is the speed of light, and f is the frequency of the transmitted

signal. Considering two values of ζP as 0 dBm and 10
dBm for RFEH at D using commercially-available Powercast

RF harvester and antennas [29], ρ = 0.01, D = 10 m,

Gs = GD = 6.1 dBi, f = 915 MHz, and l = 3, the EIRP

required is at least 23.35 kW and 198.55 kW, respectively.

Thus, even at very low D, the transmit power requirements are

much higher than the maximum transmit power limits defined

by FCC regulations in different frequency bands. For example,

at 900 MHz band the allowable maximum EIRP is 4 W [30].

At last, we comment on the practical reference scenarios

for the system setting considered in the paper. As noted

in [9]–[19], a SWIPT-enabled network can overcome the finite

lifetime limitation of battery-driven nodes, or high energy

and infrastructure cost involved with the networks that are

connected to the power grid. So, in order to enhance the

practical applicability of SWIPT under different real-world

constraints, we have proposed four optimization schemes, as

mentioned in Table I. These optimization schemes can be

employed individually or jointly, depending on the underlying

reference scenario. For example, if we have a central controller

for PA to S and R, no terrain blockage for RP, and PS

optimization capability at D, all three parameters (PA, RP,

and PS) can be jointly optimized. The proposed optimization

is performed by the node(s) with the help of full channel state

information (CSI) acquired by (i) R for S-to-R link, (ii) D for

R-to-D link, and (iii) D for S-to-D link, from the pilot signals

sent by S , R, and S , respectively. This collected CSI is fed

back to the node which performs the optimization. Intuitively,

the joint optimization scheme requires the most signaling cost

due to the involvement of all three nodes, i.e., S , R, and D,

in the cooperative optimization of PA, RP, and PS to realize

minimum pout for a given total power budget P
T

, S-to-D
distance, and energy demand ζP at D.

III. PROBLEM DEFINITION

We now derive outage probability expressions and present

the proposed optimization framework.

A. Outage probabilty analysis

The outage probability pout, a grade of service measure

of the sent data, is the probability that the received signal

strength falls below an information outage threshold ζI . Its

representation in terms of the end-to-end SNR γ
E2E

at D is:

pout = Pr

(
1

2
log2 (1 + γ

E2E
) < ζI

)
. (3)

The outage probability expressions in the two cases of S-

to-D reachability are obtained below.

1) No S-to-D direct link available: Here, γ
E2E

is bottle-

necked by the weaker of the two SNRs: from S-to-R and from

R-to-D [31]. Hence, outage probability, denoted as pout1 , can

be represented as a function of transmit powers (Ps, Pr) and

the corresponding path losses as [32]:

pout1 = Pr

[
1

2
log2 (1 + min {γ1, ργ2}) < ζI

]

= Pr
[
min {γ1, ργ2} < 22ζI − 1

]

Z,22ζI−1
= 1− (1− Pr [γ1 < Z])

(
1− Pr

[
γ2 <

Z

ρ

])

= 1− Cγ1
(Z) Cγ2

(
Z

ρ

)

using (2)
= 1−Q1


√2K1,

√
2(K1+1)N0dlZ

asPs


×

Q1


√2K2,

√
2(K2+1)N0

(
D
ǫ −d

)l
Z

ρarPr


.(4)

To gain analytical insights on the performance of the proposed

optimization schemes for SWIPT over Rician channels, we

consider a recently developed tight exponential-type approxi-

mation [33] for Q1 (·, ·), which is being widely considered for

Rician fading performance analysis [34]:

Q1 (a, b) ≈ exp
(
−eφ(a)bϕ(a)

)
. (5)

In above equation, the parameters φ (a) and ϕ (a) are functions
of a, and are given by:

φ (a) =











45π2+72 ln 2+20.7798−496

64(9π2−80)
a4 − a2

2
− ln 2, a≪ 1

−0.0045a4 + 0.0858a3 − 0.7529a2

+0.3504a− 0.8526, otherwise

(6a)

and ϕ (a) =











9

8(9π2−80)
a4 + 2, a≪ 1

0.0053a4 − 0.0910a3

+0.5895a2 − 0.5916a+ 2.1793, otherwise.

(6b)

Employing the approximation (5) in (4), we obtain:

pout1 ≈ 1− e
−
(
α1

(
dl

asPs

)β1
+α2

(
(D−d)l

ρar(PT
−Ps)

)β2
)

(7)

where αi = eφ(
√
2Ki) (2(Ki + 1)N0Z)

βi and βi =
ϕ(

√
2Ki)
2

∀i ∈ {0, 1, 2} are positive functions of Rice factor Ki, noise

power N0, and outage threshold ζI (as Z , 22ζI−1). Also note

that Pr = P
T
− Ps. The accuracy of this exponential approx-

imation has also been numerically verified in Section VIII-D.

2) S-to-D direct link available: Here D combines signals

y0 received from S in first slot and y2 received from R in

second slot using maximal ratio combining [7]. γ
E2E

at D is:

γ
E2E

= min {γ1, γ0 + ργ2} = min {γ1,Υ02} (8)

where Υ02 is the effective SNR in the second slot which is

the sum of positive weighted noncentral-χ2 random variables.

Although the distribution of this sum can be obtained in terms

of Laguerre expansions [35], we consider its integral definition

to avoid the unnecessary complications. Using (3) and (8), in

this case the outage probability, denoted by pout2 , can be rep-

resented as a function of transmit powers (Ps, Pr = P
T
− Ps),

S-to-R distance d, and ρ as given in (9). Though the integral

in (9) cannot be solved analytically, an efficient numerical

solution can be easily obtained using commonly available

commercial software, such as Matlab or Mathematica.
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pout2 = Pr
[
min {γ1,Υ02} < 22ζI − 1

]
= 1− Cγ1

(Z) CΥ02
(Z) = 1− Cγ1

(Z)


1−

Z∫

0

dFγ0
(x)

dx
Fγ2

(
Z − x

ρ

)
dx




using (2),(5)
≈ 1− e

−eφ(
√

2K1)
(

2(K1+1)N0Zdl

asPs

)β1


1−

∫ Z

0

β0

x

(
2(K0 + 1)N0xD

l

adPs

)β0

eφ(
√
2K0)

×e
−eφ(

√
2K0)

(
2(K0+1)N0xDl

adPs

)β0


1− e

−eφ(
√

2K2)

(
2(K2+1)N0(Z−x)(D

ǫ
−d)

l

ρar(PT
−Ps)

)β2

 dx


 . (9)

B. Optimization formulation

Given the outage probability pout expressions (7) and (9)

as functions of transmit powers (Ps, Pr), inter-nodal distances

(d, D
ǫ −d), and PS ratio ρ, we are interested in finding optimal

PA for S and R, optimal RP between S and D, and optimal ρ

to minimize pout, subject to harvested power constraint (C1),

total power constraints (C2–C3), relay placement constraints

(C4–C5), and normalization constraints on ρ (C6–C7). The

optimization problem can be formulated as:

(J0) :minimize
Ps,d,ρ

pout=

{

pout1 , if S-to-D direct link is not available

pout2 , if S-to-D direct link is available

subject to C1: Pcon(Ps, d, ρ) , ζP −
ηar(1− ρ)(P

T
− Ps)

(

D
ǫ
− d
)l

≤0,

C2 : Ps ≤ P
T
, C3 : Ps ≥ 0, C4 : d ≤ D

ǫ
− δ,

C5 : d ≥ δ, C6 : ρ ≤ 1, C7 : ρ ≥ 0.
(10)

In (10), ζP is the minimum average harvested power re-

quired at D to have its continued operation. With normalized

slot duration assumption, ζP is equivalent to the energy

requirement at D. In C4 and C5, δ = 2fL2

c is the minimum

separation required between S and R, or R and D, for the

antennas to be in far-field (Fraunhofer) region [27], where L

is the largest dimension of the antenna structure, c is the speed

of light, and f is the frequency of the transmitted signal.

1) Equivalence of exact and asymptotic pout1 minimization:

Minimizing exponential approximation of exact outage prob-

ability pout1 in (7) is equivalent to minimize its asymptotic

(high SNR) version p̂out1 , obtained using e−x ≈ 1−x, ∀x ≪ 1,

p̂out1 = α1

(
dl

asPs

)β1

+ α2

(
(D − d)

l

ρar (PT
− Ps)

)β2

. (11)

Above observation holds because pout1 = 1 − e−p̂out1 is a

strictly increasing function of p̂out1 . As a result, the minimiza-

tion problem with pout1 as objective function is equivalent [36]

to the one with p̂out1 as objective function, and both problems

share the same set of optimal points (P ∗
s , d

∗, ρ∗). The optimal

values, though different, are related as p∗out1=1− e−p̂out1
∗

.

IV. OPTIMAL POWER ALLOCATION FOR FIXED RP AND PS

A. Optimal PA with no direct S-to-D link available

Here we use the equivalence of exact and asymptotic pout1
minimization for SWIPT without S-to-D direct link (see

Section III-B1) to obtain analytical expression for optimal PA.

For a given ρ and RP d between S and D, the problem of

optimal PA for S and R that minimizes p̂out1 (or equivalently

pout1 ), is obtained from (J0) with p̂out1 as objective function,

Ps as optimization variable, and C1–C3 as constraints. Since

R is placed on LOS path between S and D, ǫ = 1.

Associating the Lagrange multiplier λ with C1 and keeping

the boundary constraints C2 and C3 (0 ≤ Ps ≤ P
T

) implicit,

the Lagrangian function of (PA1) is formulated as:

L1(Ps, d, ρ, λ) = α1

(
dl

asPs

)β1

+ α2

( (
D
ǫ − d

)l

ρar (PT
− Ps)

)β2

+λ

(
ζP −

ηar(1− ρ)(P
T
− Ps)

(Dǫ − d)l

)
. (12)

As
∂2p̂out1

∂P 2
s

=
α1β1(β1+1)

(
dl

asPs

)β1

P 2
s

+
α2β2(β2+1)

(
(Dǫ −d)

l

arρ(P
T

−Ps)

)β2

(P
T
−Ps)2

> 0, ∀Ps ∈ [0, P
T
]
(
and 0 < d < D

ǫ

)
, p̂out1 is a strictly con-

vex function of Ps in the feasible region defined by C1–C3.

Since the constraints C1–C3 are affine functions of Ps, the

global optimal solution for (PA1), denoted as P ∗
s , is obtained

using the Karush-Kuhn-Tucker (KKT) conditions [37] given

by: C1–C3, λ ≥ 0,

∂L1

∂Ps
=

α2β2(
D
ǫ − d)β2l

(ρar)
β2 (P

T
− Ps)

β2+1
−

α1β1d
β1l

a
β1
s P

β1+1
s

+λ
ηar(1− ρ)
(
D
ǫ − d

)l =0,

(13a)

and λ

(
ζP −

ηar(1− ρ)(P
T
− Ps)

(Dǫ − d)l

)
= 0. (13b)

If P ∗
s = P

T
, C1 cannot be satisfied ∀ ζP > 0. Thus, P ∗

s < P
T

.

If λ∗ 6= 0, then

P ∗
s = P th

s , P
T
−

ζP
(
D
ǫ − d

)l

ηar(1− ρ)
(14)

so that (13b) is satisfied. Using (13a), λ∗ = λth
Ps

for P ∗
s = P th

s

is given by (15).

Here, P th
s is the maximum threshold power that can be

allocated to S so that PA to R, P ∗
r = P

T
− P th

s satisfies C1.

As P th
s is a decreasing function of ζP , PA to S decreases with

increasing ζP and more power is allocated to R to meet C1
(harvested power constraint), which leads to increasing pout1
due to weakening of S-to-R link. However, if P th

s < 0, then

(PA1) is infeasible, as C1 is never satisfied. Mathematically,

P ∗
s = 0 is a feasible solution, though it gives pout1 = 1.
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λth
Ps
=
α1β1ρ

β2ζ
β2+1
P

[
arη (1− ρ) dl

]β1
(
D
ǫ − d

)l
− α2β2a

β1
s

[
ηarPT

(1− ρ)− ζP
(
D
ǫ − d

)l ]β1+1[
η(1− ρ)

]β2

a
β1
s ρβ2ζ

β1+1
P

[ (
ηarPT

(1− ρ)− ζP
(
D
ǫ − d

)l) ]β+1
. (15)

If P ∗
s < P th

s , then λ∗ = 0 to satisfy (13b), which on

substitution in (13a) gives:

(P
T
− Ps)

β2+1

P
β1+1
s

=
α2β2

α1β1

(as
dl

)β1

(
(D − d)

l

ρar

)β2

. (16)

P ∗
s for λ∗ = 0, denoted by P 0

s1 , can be obtained by using the

standard root-finding algorithms to find the efficient numerical

solution of (16). However, for the same Rice factor, i.e.,

K , K1 = K2, which implies α1 = α2 and β1 = β2,

analytical closed form solution of (16) is given by: P ∗
s =

P 0
s1 ,

P
T

(
arρ( d

D−d )
l
) β1

β1+1

a

β1
β1+1
s +

(
arρ( d

D−d )
l
) β1

β1+1

. From the expression of P 0
s1 it

is clear that optimal PA is such that higher power is allocated

to S , if R is closer to D. It may be noted that with P 0
s1 ≤ P th

s ,

we have the special case where the expression for P 0
s1 , which

is independent of ζP , is similar to the ones obtained in [2]–[4].

This is because, the condition P 0
s1 ≤ P th

s arises when ζP is

very low and the harvested power constraint C1 is implicitly

satisfied, thereby reducing the PA optimization solely to make

information transfer efficient, i.e., only to minimize pout1 .

However, if ζP is increased, P th
s decreases, and once it drops

below P 0
s1 , the role of harvested power constraint becomes

significant which influences the minimum pout1 . It follows that

there exists a tradeoff between minimized pout1 and the lower

bound ζP on required harvested power at D for P 0
s1 > P th

s .

Hence, the optimal solution of (PA1) is given by:

(P ∗
s , λ

∗)=





(
P 0
s1 , 0

)
, P 0

s1 ≤ P th
s(

P th
s , λth

Ps

)
, 0 ≤ P th

s < P 0
s1

Infeasible, P th
s < 0.

(17)

For P th
s < P 0

s1 , P
T

<
ζP (D−d)l

ηar(1−ρ)


1+

(
arρ( d

D−d )
l

as

) β1
β1+1


,

which after some simplification gives:

ζP

[

arρd
l (D−d)l

]

β1
β1+1

> a

β1
β1+1
s

[

ηarPT
(1−ρ)− ζP (D−d)l

]

. (18)

From (15) and (18), λth
Ps

> 0 ∀ P th
s , subject to 0 ≤ P th

s < P 0
s1 .

B. Optimal PA with direct S-to-D link available

For a fixed RP and ρ, the problem of optimal PA at S and R
with direct S-to-D link available, denoted by (PA2) is similar

to (PA1), but with pout2 being the objective function to be

minimized. From (9), pout2 is a nonconvex function of Ps.

So, we first define pseudoconvex function [37] and then claim

that pout2 is a pseudoconvex function of Ps satisfying C1–C3.

Definition 1: A differentiable function f : Rn → R, defined

on a nonempty open convex set Ω, is called pseudoconvex if ∀
x, y ∈ Ω with x 6= y, ∇f (x)

⊺
(y−x) ≥ 0 =⇒ f(y) ≥ f(x).

A pesudoconvex function f has a similar property as in convex

functions, which states that, if ∃ a critical point, i.e., ∇f(x) =
0, then x is a global minimum [36].

Lemma 1: pout2 is a pseudoconvex function of Ps ∈
{Ps | (Pcon (Ps, d, ρ) ≤ P

T
) ∧ (0 ≤ Ps ≤ P

T
)}}.

Proof: See Appendix A-A.

To find the global optimal PA (P ∗
s , P

∗
r = P

T
− P ∗

s ) for a

fixed RP and ρ problem (PA2), while accounting the harvested

power constraint (C1) and the total power constraints (C2 and

C3), we use the convexity of C1–C3, along with the proposed

Lemma 1 and the following lemma.

Lemma 2 ([36, Theorem 4.3.8]): Consider a constraint

minimization problem (CMP) with an objective function to

be minimized over a feasible region S being pseudoconvex at

x ∈ S, constraint functions are differentiable and quasiconvex

at x, and the KKT conditions hold at x. Then x is a global

optimal solution to CMP.

Associating the Lagrange multiplier µ with the harvested

power constraint C1 and keeping the boundary constraints

C2–C3 implicit, Lagrangian function of (PA2) is given by:

L2(Ps, d, ρ, µ) = pout2 +µ

(
ζP −

ηar(1−ρ)(P
T
−Ps)(

D
ǫ − d

)l

)
. (19)

Following Lemma 2 and (19), KKT conditions (stationarity

and complimentary slackness only, as the primal and dual

feasibility are given by C1–C3 and µ ≥ 0) for (PA2) are:

∂L2

∂Ps
=

∂pout2
∂Ps

+ µ

(
ηar(1− ρ)
(
D
ǫ − d

)l

)
= 0 (20)

µ

(
ζP −

ηar(1− ρ)(P
T
− Ps)(

D
ǫ − d

)l

)
= 0. (21)

With P ∗
s = P

T
, C1 cannot be satisfied ∀ ζP > 0. Thus,

P ∗
s < P

T
. If µ∗ 6= 0, then P ∗

s = P th
s , as defined in (14) so

that (21) is satisfied. µ∗ = µth
Ps

> 0 for P ∗
s = P th

s can be

obtained using the value of derivative of (9) with respect to

Ps at P th
s

(
i.e., ∇

Ps
pout2

(
P th
s

))
and (20) as:

µth
Ps
=−

[
∇

Ps
pout2

(
P th
s

)] (
D
ǫ − d

)l

ηar(1− ρ)
. (22)

Similar to (PA1), if P th
s < 0, then (PA2) is infeasible, as

C1 is never satisfied. P ∗
s =0 is a feasible solution, though it

gives pout2 = 1. If µ∗ = 0, then P ∗
s < P th

s ; (21) is satisfied

and (20) implies finding the critical point of pout2(Ps). From

(9) and the discussion in Section III-A2, it can be observed

that, due to the presence of highly non-linear terms in pout2 ,

it is not possible to obtain the explicit analytic solution for

(20) in Ps with µ = 0. Thus, we use the Conjugate Gradient

Method (CGM) with positive Polak-Ribiere (PR) beta [38] to

find the global optimal solution P ∗
s for (PA2) by numerically

solving
∂pout2

∂Ps
= 0, if the critical point exists. Let us denote

the global optimal PA P ∗
s returned by the CGM algorithm by

P 0
s2 . We also use Golden-section (GS) based linear search [39]

technique to restrict the search in CGM within the upper and
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lower bounds (0 ≤ Ps ≤ P
T
) such that feasibility constraints

are met. Note that, this iterative algorithm provides very good

convergence due to the pseudoconvexity of the problem.

P 0
s2 is independent of ζP and, since for P 0

s2 < P th
s ,

C1 is not active, it implies that P ∗
s = P 0

s2 provides the

minimum pout2 for a predetermined RP and ρ. Similar to

(PA1), a tradeoff between minimized pout2 and ζP exists for

P 0
s2 > P th

s . The optimal solution is given by:

(P ∗
s , µ

∗)=





(
P 0
s2 , 0

)
, P 0

s2 ≤ P th
s(

P th
s , µth

Ps

)
, 0 ≤ P th

s < P 0
s2

Infeasible, P th
s < 0.

(23)

V. OPTIMAL RELAY PLACEMENT FOR FIXED PA AND PS

A. Optimal RP with no direct S-to-D link available

For a predetermined PA (Ps, Pr) and ρ, we now obtain

optimal RP, i.e., distance d∗ between S and R, or (D − d∗)
between R and D, with R placed on the direct S-to-D path

(Fig. 1(a)). The optimal RP (d∗, D − d∗) problem, denoted as

(RP1), is obtained from (10), with p̂out1 as objective function

to be minimized over the variable d subject to C1, C4–C5.

As
∂2p̂out1

∂d2 = α1β1l(β1l−1)dβ1l−2

(asPs)
β1

+
α2β2l(β2l−1)(D

ǫ
−d)

β2l−2

(arρ(PT
−Ps))

β2
>

0, ∀d ∈
[
δ, D

ǫ − δ
] (

and (l > 1) ∧ (Ps ∈ [0, P
T
])
)
, p̂out1 is a

strictly convex function of d in the feasible region defined by

C1, C4–C5. Since C1, C4–C5 are convex functions of d, the

global solution for (RP1), d∗, can be obtained using the KKT

conditions given by (24), (13b), C1, C4–C5, and λ ≥ 0.

∂L1

∂d
=

α1β1ld
β1l−1

(asPs)
β1

−
α2β2l

(
D
ǫ − d

)β2l−1

[ρar (PT
− Ps)]

β2

+λ

(
−
ηarl(1− ρ)(P

T
− Ps)(

D
ǫ − d

)l+1

)
= 0. (24)

If λ∗ 6= 0, d∗ = dth that satisfies (13b) is defined as follows:

d∗ = dth ,
D

ǫ
−

(
ηar(1− ρ)(P

T
− Ps)

ζP

)1/l

. (25)

Using (24), for d∗=dth, λ∗=λth
d is given by (26). Note that,

dth is the minimum threshold distance of R from S , such that

the received power Pr at D satisfies C1. dth is an increasing

function of ζP and, if dth > D
ǫ − δ, then (RP2) is infeasible.

If d∗ > dth, then λ∗ = 0, which, by using (24) gives,

dβ1l−1

(D − d)
β2l+1

=
α2β2 (asPs)

β1

α1β1 (ρar (PT
− Ps))

β2
. (27)

Although closed-form analytical solution cannot be ob-

tained for (27), an efficient numerical solution, denoted by

d01, can be obtained using easily available standard root-

finding algorithms. If we again consider same Rice factor

for all the links, i.e., α1 = α2 and β1 = β2, analytical

closed form solution of (27) is given by: d∗ = d01 ,

max

[
δ,min

{
D(asPs)

β1
β1l−1

[arρ(PT
−Ps)]

β1
β1l−1 +(asPs)

β1
β1l−1

, D − δ

}]
, so

that d01 does not violate upper and lower bounds on d. Optimal

solution of (RP1) is given by:

(d∗, λ∗) =





(
d01, 0

)
, d01 ≥ dth(

dth, λth
d

)
, d01 < dth ≤ D − δ

Infeasible, dth > D − δ.

(28)

(28) gives the feasible region for (RP1) if Ps < P
T

(or

Pr > 0). If dth > d01, then D >
(

ηar(1−ρ)(P
T
−Ps)

ζP

) 1
l

[
1+

(
asPs

arρ(PT
−Ps)

) β1
β1l−1

]
, which after some rearrangement gives:

dth[arρ(PT
− Ps)]

β1
β1l−1 >

(
D − dth

)
(asPs)

β1
β1l−1 . (29)

From (26) and (29), λth
d > 0 ∀ dth, with d01 < dth ≤ D − δ.

Similar to as noted in Section IV-A, with d01 ≥ dth, we have a

special case where the expression for d01 is similar to the ones

obtained in [2]–[4]. This is because, the condition d01 ≥ dth

arises when ζP is very low and C1 is implicitly met, so optimal

RP is carried out solely to minimize pout1 . Also, optimal RP in

this case, d∗=d01, is such that for higher PA to S , R is placed

closer to D. But, as ζP is increased depending on the energy

requirements at D, dth increases. If dth>d01, then optimal RP

d∗=dth, is dependent on ζP , and thus there exists a tradeoff

between the minimized pout1 and ζP .

B. Optimal RP with S-to-D direct link available

For a predetermined PA (Ps, Pr) and ρ, optimal RP problem

(RP2) of finding the optimal distance d∗ between S and R, or(
D
ǫ − d∗

)
between R and D, with R placed on the elliptical

path with S and D as the foci (see Fig. 1(b)) that minimizes

pout2 , has same optimization variable and constraints as (RP1),

except the objective function to be minimized being pout2 .

The constraint function defined in C1 is convex in d, and

C4 and C5 are affine functions of d. In the following lemma,

we claim that pout2 is pseudoconvex in d in the feasible RP

region F
d
=
{
d
∣∣ (Pcon (Ps, d, ρ) ≤ 0) ∧ (δ ≤ d ≤ D

ǫ − δ)
}

as defined by the constraints C1, C4, and C5.

Lemma 3: Outage probability pout2 is a pseudoconvex

function of S-to-R distance d ∈ F
d
.

Proof: See Appendix B-A.

The pseudoconvexity of pout2 in d is due to the log-concavity

of complimentary CDFs of γ1 and Υ02, i.e., Cγ1 and CΥ02 ,

respectively, in S-to-R distance d (see Appendix B for details).

The KKT conditions for (RP2) are given by (30) and (21),

along with C1, C4–C5, and µ ≥ 0.

∂L2

∂d
=

∂pout2
∂d

+ µ

(
−
ηarl(1− ρ)(P

T
− Ps)(

D
ǫ − d

)l+1

)
= 0. (30)

If µ∗>0, d∗=dth as defined in (25) with ǫ<1, so that C1
and (13b) are satisfied. The value of µ∗ = µth

d at d∗ = dth is

obtained using ∇
d
pout2

(
dth
)

and (30) as:

µth
d =

[
∇

d
pout2

(
dth
)] (

D
ǫ − d

)l+1

ηarl(1− ρ)(P
T
− Ps)

. (31)

If µ∗ = 0, then d∗ > dth; (21) is satisfied and (30)

implies finding the critical point of pout2 , i.e.,
∂pout2

∂d = 0.

Observe from (9) that similar to pout2 ,
∂pout2

∂d contains highly

non-linear terms. Therefore, it is not possible to obtain the

explicit analytic solution of (30) for d∗ with µ = 0. Again,
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λth
d =

α1β1

(
D − dth)(dth

)β1l
(arρ (PT

− Ps))
β2 − α2β2 (asPs)

β1 dth
(
D − dth

)β2l

η (1− ρ) (asPs)
β1 (ar (PT

− Ps))
β2+1

dth
[
(D − dth)l

]−1 . (26)

we use CGM with positive PR beta and GS based linear

search techniques to find d∗ for (RP2) by indirectly solving
∂pout2

∂d = 0 (if the critical point exists), while restricting the

search within the upper and lower bounds
(
δ ≤ d ≤ D

ǫ − δ
)
.

We denote the global optimal PA d∗ obtained from CGM

algorithm by d02. So, optimal solution of (RP2) is given by:

(d∗, µ∗) =





(
d02, 0

)
, d02 ≥ dth(

dth, µth
d

)
, d02 < dth ≤ D

ǫ − δ

Infeasible, dth > D
ǫ − δ.

(32)

Thus, (32) gives the feasible region for (RP2) if Ps < P
T

(i.e., some power is allocated to R). Also, µth
d > 0 ∀ dth,

with d02 < dth ≤ D
ǫ − δ. d02, independent of ζP , corresponds

to the case when C1 is not active, thus providing the minimum

outage probability for a predetermined PA and ρ. Similar to

as noted in Section V-A, with increased energy requirement

ζP at D, dth increases and, if d02 < dth ≤ D
ǫ − δ, then there

exists a tradeoff between minimized pout2 and ζP .

VI. OPTIMAL PS RATIO FOR FIXED PA AND RP

In this section we derive optimal PS for a predetermined

PA and RP. The PS optimization problem (PS0) is formulated

using (10) with ρ as the optimization variable and C1, C6–C7
as constraints. Due to the monotonicity of outage probability in

ρ, we consider the same optimization problem (PS0) for both

with and without direct S-to-D link cases. As ρ is the ratio

of total power received at D, which is utilized for information

decoding, higher ρ gives lesser pouti∀i = 1, 2. Next we discuss

convexity of (PS0) and then obtain optimal ρ∗.

A. Convexity of p̂out1 in ρ

As
∂2p̂out1

∂ρ2 = α2β2(β2+1)
ρ2

(
(D−d)l

ρar(PT
−Ps)

)β2

> 0, ∀ρ ∈ [0, 1]

(and 0 < Ps < P
T

, δ < d < D− δ), p̂out1 is a strictly convex

function of ρ in the feasible region defined by C1, C6–C7.

Since the constraints C1, C6–C7 are linear functions of ρ, and

the gradient of p̂out1 does not vanish in the feasible region,

the global solution for (PS0), ρ∗, is given by the corner point

obtained by solving C1 at strict equality, i.e., ρ∗ = ρth , 1−
ζP (D

ǫ
−d)

l

ηar(PT
−Ps)

. Here ρth is the maximum portion of the average

received power at D that can be allocated for data decoding

while satisfying C1. With L1 as the Lagrangian function for

(PS0), the Lagrange multiplier λth
ρ in this case is:

λ
th
ρ =

α2β2

η

(

(D − d)l

arρth (P
T
− Ps)

)β2+1

> 0∀ {(d≤D)∧(Ps≤P
T
)}.(33)

B. Pseudoconvexity of pout2 in ρ

Lemma 4: Outage probability pout2 is a pseudoconvex

function of ρ ∈ F
ρ
= {ρ | 0 ≤ ρ ≤ 1}.

Proof: See Appendix C.

So, using Lemma 2 and Lemma 4, the KKT point of (PS0)

provides the global optimal solution. However, like in Sec-

tion VI-A, here also the KKT point is obtained by solving C1

for ρ at strict equality, which gives ρ∗ = ρth. The Lagrange

multiplier µth
ρ , obtained by solving ∂L2

∂ρ = 0, is:

µth
ρ =−

[

∇ρ pout2
(

ρth
)]

(

D
ǫ
− d

)l

ηar (PT
− Ps)

>0, because ∇ρ pout2

(

ρth
)

<0.(34)

It may be noted that PS optimization has least complexity
in terms of implementation, among the three proposed semi-
adaptive schemes. The optimal solution of (PS0) is given by:

(ρ∗, λ∗) =











(

ρth, λth
ρ

)

, ρth≥0 with no direct S-to-D link,
(

ρth, µth
ρ

)

, ρth≥0 with direct link availability,

Infeasible, ρth<0.

(35)

VII. JOINT OPTIMIZATION OF PA, RP, AND PS

Here we derive the joint-optimal solutions with and without

S-to-D direct link.

A. Joint optimization with no direct S-to-D link available

As noted in Section VI, outage probability is a strictly

decreasing function of ρ, which implies that C1 in joint

optimization problem should be satisfied with strict equality.

This reduces three-variable minimization problem (J0) for

pout1 in (7) into an equivalent two-variable problem (J1).

(J1) : minimize
Ps,d

p̂out1J , α1

(
dl

asPs

)β1

+

α2

(
η (D − d)

l

ηar (PT
− Ps)− ζP (D − d)

l

)β2

subject to C2, C3, C4, C5, and

C8 : gC8 ,
ζP
(
D
ǫ − d

)l

ηar (PT
− Ps)

− 1 ≤ 0.

(36)

Theorem 1: Outage probability p̂out1J is a convex function

of source power Ps and S-to-R distance d over feasible region

defined by the convex constraints C2–C5 and C8. So, the

KKT point yields the global optimal solution of (J1).

Proof: The joint convexity of p̂out1J is proved in Ap-

pendix D. C2–C5 are affine functions of Ps and d. Whereas,

C8 is a convex function of Ps and d (see Appendix E). Using

these results, along with Lemma 2, proves that KKT point is

the global optimal solution of (J1).

Constraint C8 along with C2–C3 provide upper and lower

bounds on Ps, given as: 0 ≤ Ps ≤ max
{
0, P

T
− ζP (D−d)l

ηar

}
.

Similarly, bounds on d, obtained using C4–C5 and C8, are

given as max
{
δ,D−

(
ηar(PT

−Ps)
ζP

) 1
l }

≤ d ≤ D−δ. Keep-

ing these boundary constraints implicit, (J1) can be solved

as an unconstrained problem, whose Lagrangian function is

p̂out1J itself. So, the stationarity KKT conditions for (J1) are:

α2β2η
β2+1ar (D − d)β2l

(

ηar (PT
− Ps)− ζP (D − d)l

)β2+1
− α1β1d

β1l

a
β1
s P

β1+1
s

= 0, (37a)

α1β1ld
β1l−1

(asPs)
β1
−α2β2η

β2+1ar (PT
−Ps) l (D−d)β2l−1

(

ηar (PT
−Ps)−ζP (D−d)l

)β2+1
=0. (37b)
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On solving (37a), (37b) for Ps=P J
s and d=dJ with α1=α2,

β1=β2, we obtain dJ ,
DPJ

s

P
T

, where P J
s is obtained by finding

root of (38) in interval

[

max

{

0, P
T
−
[

(

P
T

D

)l
arη

ζP

] 1
l−1

}

, P
T

]

.

ηβ2+1D(β2−β1)laβ1
s arP

(β1+1)l

T

(
P

T
−PJ

s

)β2(l−1)−1

(
ηarP l

T
−ζPDl

(
P

T
−PJ

s

)l−1
)β2+1

(PJ
s )β1(l−1)−1

=
α1β1

α2β2

. (38)

So, d∗ = max
[
δ,min

{
dJ , D − δ

}]
, using which P ∗

s is

obtained as,

P ∗
s =





ηarpT
−ζP (D−d∗)l

(
ara

β1
s ηβ1+1(D−d∗)β1l

(d∗)β1l

) 1
β1+1

+ηar

,
[
(d∗ = δ) ∨

(d∗ = D−δ)
]

P J
s , δ <d∗<D−δ.

(39)

Following this, ρ∗ = 1 − ζP (D−d∗)l

ηar(PT
−P∗

s )
. So, (P ∗

s , d
∗, ρ∗) is

the joint-optimal solution of (J1) if ζP ≤
ηarPT

δl
; otherwise

the problem is infeasible. As P ∗
s , d

∗, and ρ∗ are all functions

of ζP , there exists a tradeoff between minimized pout1 and ζP .

Minimized pout1 obtained from the joint optimization is better

(lower) than the three partially-adaptive optimization schemes

(only PA, or only RP, or only PS), as shown via numerical

results in Section VIII-E. Indeed, besides utilizing the optimal

amount of received energy for harvesting, simultaneously R
can be moved closer to D and the weaker S-to-R link can be

improved by allocating a higher power to S .

B. Joint optimization with S-to-D direct link available

Using the problem definitions for (J0) and (J1) provided

in Sections III-B and VII-A, respectively, an equivalent two-

variable joint optimization problem that minimizes pout2 is:

(J2) : minimize
Ps,d

pout2J

subject to C2, C3, C4, C5, C8.
(40)

Here, pout2J , obtained by substituting ρ=1−
ζP (D

ǫ
−d)

l

ηar(PT
−Ps)

in

(9), is jointly nonconvex in Ps and d. Here we first define a

bi-pseudoconvex function and then we use it in Theorem 2.

Definition 2: A function f (x, y) with x ∈ X and y ∈
Y , defined over a bi-convex set B ⊂ X × Y , is called a

bi-pseudoconvex if upon fixing x = x, fx(y) = f(x, y) is

pseudoconvex over Y , and fixing y = y, fy(x) = f(x, y) is

pseudoconvex over X .

Theorem 2: Outage probability pout2J is a bi-pseudoconvex

function of source power Ps and S-to-R distance d over the

bi-convex set B′ defined by the constraints C2–C5 and C8.

Proof: Outage probability pout2J : B′ → [0, 1] is a bi-

pseudoconvex function of Ps and d, because: (i) pout2J is

pseudoconvex in Ps for every fixed d (see Appendix A-B),

(ii) pout2J is a pseudoconvex function of d for every fixed Ps

(see Appendix B-B), and (iii) feasible region B′ defined by

C1–C5 and C8 is a convex set (see Section VII-A).

Remark 1: Generalizing the concept of bi-pseudoconvexity,

from Lemmas 1, 3, and 4, it may be noted that pout2 is a multi-

pseudoconvex (or tri-pseudoconvex) function of Ps, d, and ρ,

because it is individually pseudoconvex in each of them (Ps,

d, and ρ), with the other two being fixed.

Using Theorem 2 and Lemma 2, the global optimal solution

for (J2), (P ∗
s , d

∗), is obtained using KKT conditions. It may

be noted that C2 and C3 cannot be satisfied at strict equality

because they respectively lead to ρ < 0 and pout2J = 1.

Moreover, if C8 is satisfied with strict equality, it will lead to

ρ = 0, which cannot meet C1 ∀ ζP > 0. Thus, only d can be

satisfied at its two extremes, i.e., δ and D
ǫ −δ. So, keeping the

boundary constraints C3–C4 on d implicit, finding the KKT

point reduces to finding the critical point of pout2J (Ps, d) if

it exists, or finding the minimum pout2J subject to boundary

constraints C2–C5 and C8. Minimization of pout2J over both

Ps and d simultaneously is nonconvex, however minimization

of pout2J with respect to either of them while keeping the

other one fixed is pseudoconvex. In this situation, following

Theorem 2 and exploiting the merits of bi-pseudoconvexity of

pout2J , we next propose an alternating optimization algorithm

described in Algorithm 1 to find the joint-optimal solution.

Algorithm 1 Alternating optimization to find joint-optimal PA,

RP, and PS to minimize pout2 .

Input: d0 and ξ
Output: p∗out2J , P ∗

s , d∗, ρ∗

1: Set i← 0, p
(0)
out ← pout2J

(

1
2
max

{

0, P
T
− ζP (D

ǫ
−d0)

l

ηar

}

, d0

)

2: repeat (Main Loop)
3: Set i← i+ 1
4: Apply CGM with positive PR beta and GS method

to find optimal PA satisfying C2, C3, C8, for fixed RP

d = di−1 and fixed PS ρ = 1 − ζP (D
ǫ
−di−1)

l

ηar(PT
−Ps)

:
[

Psi ← argmin

0≤Ps≤max




0,P
T

−
ζP (D

ǫ
−di−1)

l

ηar






pout2J (Ps, di−1)

]

5: Apply CGM with positive PR beta and GS method
to find optimal RP satisfying C4, C5, C8, for fixed

PA Ps = Psi and fixed PS ρ = 1 − ζP (D
ǫ
−d)l

ηar(PT
−Psi)

:
[

di ← argmin

max





δ,D

ǫ
−
(

ηar(PT
−Psi

))
ζP

) 1
l





≤d≤D

ǫ
−δ

pout2J (Psi , d)

]

6: Set p
(i)
out ← pout2J (Psi , di), p∗out2J ← p

(i)
out,

7: Set P ∗
s ← Psi , d∗ ← di, ρ∗ ← 1− ζP (D

ǫ
−di)

l

ηar(PT
−Psi)

8: until
(

p
(i)
out − p

(i−1)
out

)

≤ ξ.

Algorithm 1 starts with a feasible starting point given by:

d0 , 1
2

(
δ + max

{
δ, D

ǫ −
(

ηarPT

ζP

) 1
l

})
and generates

an alternating minimization sequence of PA and RP, i.e.,

Ps1 → d1 → Ps2 → d2 → · · · . It returns the joint-

optimal PA, RP, and PS (P ∗
s , d

∗, ρ∗) along with the minimum

outage probability p∗out2J . It can be observed that the sequence

p
(i)
out is non-increasing and converges to global minimum [40]

because pout2J is individually a pseudoconvex function of

Ps and d, and is bounded from below, i.e., pout2J ≥ 0.

Algorithm 1 terminates when
(
p
(i)
out − p

(i−1)
out

)
≤ ξ, where ξ

is an acceptable tolerance. If ζP ≤
ηarPT

δl
, then joint-optimal

solution returned by Algorithm 1 is a feasible KKT point and,
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TABLE II: Summary of proposed joint cooperative optimization schemes for SWIPT over Rician channels.

Optimization scheme Features of optimization problem Remarks on optimal solution(s)

W
it

h
o
u
t

d
ir

ec
t
S

-t
o
-D

li
n
k Optimal PA

(PA1)

Feasibility condition P th
s ≥ 0 P ∗

s = P 0
s1

implies that higher power is allocated to transmitter

of the weaker link, i.e., P ∗
s ≥ P ∗

r if as

dl
≤ arρ

(D−d)l
and vice-versa.

P ∗
s = P th

s implies that sufficient power is allocated to R to meet ζP .

Objective function convex

Convex constraints C1–C3

Optimal RP

(RP1)

Feasibility condition dth ≤ D − δ d∗ = d01 implies that R is placed closer to S if S-to-R link is weaker

than the R-to-D link,
(

d∗ ≤ D − d∗ if asPs ≤ arρ (PT
− Ps)

)

.

d∗ = dth implies that R is placed sufficiently close to D to meet ζP .

Objective function convex

Convex constraints C1, C4–C5

Joint optimization

of PA, RP, and PS

(J1)

Feasibility condition ζP ≤
ηarPT

δl
P ∗
s obtained using (39), d∗ = max

[

δ,min
{

dJ , D − δ
}]

, and ρ∗ =

1−
ζP (D−d∗)l

ηar(PT
−P∗

s )
depend on ζP . This leads to a tradeoff between

minimized pout1 and underlying ζP . Also, if d∗ = dJ , then
P∗
s

P
T

= d∗

D
.

Objective function jointly convex

Convex constraints C2–C5, C8

Optimal PS (PS0)

common for without and

with direct S-to-D link

Feasibility condition ρth ≥ 0 ρ∗ = ρth = 1−
ζP (D

ǫ
−d)l

ηar(PT
−Ps)

is obtained by solving C1 at strict

equality. ρ∗ and minimized outage probability are respectively

decreasing and increasing functions of ζP . Also, p̂out1 is convex in ρ.

Objective function pseudoconvex

Convex constraints C1, C6–C7

W
it

h
d
ir

ec
t
S

-t
o
-D

li
n
k

Optimal PA

(PA2)

Feasibility and constraints same as (PA1) P ∗
s = P 0

s2
obtained using iterative algorithm provides lower pout2 as

compared to P ∗
s =P th

s where minimized pout2 increases with ζP .Objective function pseudoconvex

Optimal RP

(RP2)

Feasibility and constraints same as (RP1) Iterative solution d∗ = d02 is independent of ζP , whereas for d02 < dth,

both d∗ = dth and minimized pout2 increase with increasing ζP at D.Objective function pseudoconvex

Joint optimization of

PA, RP, and PS (J2)

Feasibility and constraints same as (J1) Optimal solutions (P ∗
s , d

∗, ρ∗), dependent on ζP , are obtained by mini-

mizing pout2J alternatively in Ps and d, with ρ∗ in terms of P ∗
s and d∗.Objective function multi-pseudoconvex
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Fig. 2: Optimal PA with fixed RP and influence of minimum
required harvested power ζP at D for ρ = 1

2
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Fig. 3: Variation of pout with Ps for different ζP , ρ, and K
values with ǫd

D
= 0.5. Optimal P ∗

s is also plotted.

hence, it is the optimal solution. Otherwise, (J2) is infeasible.

Table II presents a summary of the main analytical results

derived in Sections IV-VII. It is worth noting that the unavail-

ability of analytical optimization solutions for direct S-to-D
link case (minimization of pout2 ) corroborates the importance

of analytical results derived for optimal PA, RP, and PS in

no direct link case (minimization of pout1 ). These analytical

solutions are derived by exploiting the individual and joint

convexity of p̂out1 and p̂out1J in Ps, d, and ρ.

VIII. NUMERICAL INVESTIGATION AND DISCUSSION

Here we analyze the performance of the optimization

schemes proposed in Sections IV-VII with the help of nu-

merical examples. We consider a , as = ar = ad = 0.1,

l = 3, ζI = 10 bits/sec/Hz (outage threshold), P
T

= 40
dBm, N0 = −99.85 dBm, K = 6 dB (Rice factor), δ = 1
m (minimum distance between S–R or R–D), and η = 0.5.

The S-to-D distance is: with direct link D = 20 m with

ǫ = 0.8, and without direct link D = 100 m with ǫ = 1. Fixed

(non-cooperative) allocations are assumed to be uniform, i.e.,

Ps = Pr = 0.5P
T

, d = 0.5D
ǫ , and ρ = 0.5 (PS ratio). The

tolerance for Algorithm 1 is set as ξ = 10−15.

A. Optimal PA for fixed RP and PS
[
(PA1) and (PA2)

]

Figs. 2(a) and 2(b) illustrate the outage performance ver-

sus source power, along with optimal PA P ∗
s as obtained

in (17) and (23), at three different relay positions: ǫd
D ∈

{0.25, 0.5, 0.75} with ρ = 0.5. In the plots, optimal PA is

shown under different harvested power requirements ζP . Very

low values of ζP < −30 dBm, have been considered to

observe the performance of the proposed optimization schemes

(i) with no energy harvesting requirement (that provides best

outage performance) and (ii) for the applications with ex-

tremely low energy requirements. However, for most of the

practical RFEH applications ζP ≥ −20 dBm. The minimum

pout1 and pout2 (in all 3 cases of RP) is achieved when ζP is

very low
(
−32.6 dBm in Fig. 2(a) and −30 dBm in Fig. 2(b)

)

and, thus, P ∗
s = P 0

si < P th
s ∀ i = 1, 2. Also, it is shown that

increasing ζP leads to increasing pouti ∀ i = 1, 2 resulted by

optimal PA as the corresponding P th
s drops below P 0

si .

Remark 2: For no direct S-to-D link with very low ζP ,

minimum p∗out1 is achieved for d
D = 1

2 . d
D = 1

4 has the

worst outage performance. On the other hand, p∗out2 increases

with increased d. However with increasing d, optimal PA to

S increases in both cases to strengthen the weakened S-to-

R link, though this increase in direct S-to-D link case is

relatively lower than without direct link.

Remark 3: At very high Ps, pout1 increases with Ps(
Figs. 2(a) and 3(a)

)
due to weakened R-to-D link. However,

pout2 almost monotonically decreases with Ps

(
Figs. 2(b)

and 3(b)
)

due to strengthened S-to-D and S-to-R links.
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respective figures. Starred points are joint-optimal solutions.

In Figs. 3(a) and 3(b), the variation of outage versus Ps

is plotted for different ρ and K values. For both without

and with direct link availability, outage performance improves

with increasing ρ and K. However, for high ζP , only low ρ

provides feasible solution
(
see Fig. 3(a)

)
because it allows

higher harvested power. Also, as noted in Fig. 3(b), lower ρ

helps to meet higher ζP .

Remark 4: Impact of ρ on pout is almost negligible when di-

rect link is available (Fig. 3(b)), though increased K provides

significantly improved outage performance in both cases.

Remark 5: The variation of K has negligible impact on P ∗
s .

However, P ∗
s increases with increased ρ, though this increase

is negligible for direct link case as compared to no direct link.

B. Optimal RP for fixed PA and PS
[
(RP1) and (RP2)

]

Figs. 4(a) and 4(b) depict pouti ∀i = 1, 2 as a function

of relay position for fixed PA and PS (ρ = 0.5), along with

optimal RP d∗, as given in (28) and (32). Three different fixed

PAs have been considered: Ps ∈ {0.25, 0.5, 0.75}P
T

. Results

in Fig. 4(a) show that pout1 achieved by optimal RP decreases

with increasing Ps and optimal RP d∗ moves closer to D
in no direct link case to strengthen the weaker R-to-D link.

However, this trend is observed more clearly only at high ζP
for direct link case

(
Fig. 4(b)

)
. Moreover, for all values of

Ps, pouti ∀i = 1, 2 due to optimal RP increases with ζP as

in case of optimal PA, because increasing dth goes above d0i .

Minimum pouti is achieved when ζP is very low
(
−36 dBm in

Fig. 4(a) and −23 dBm in Fig. 4(b)
)

and, thus, d∗ = d0i > dth.

Remark 6: Outage performance of optimal RP for both with

and without direct link is better than optimal PA, signifying

that optimal RP is a better partially-adaptive scheme.

For further insight on the performance of optimal RP

scheme, we plot the optimal normalized RP
(

ǫd∗

D

)
versus

relay power ratio
(

P
T
−Ps

P
T

)
with ρ = 0.5,K = 6 dB, and

different P
T

and ζP in Figs. 5(a) and 5(b) for the two cases

of S-to-D link availability.

Remark 7: With higher P
T

and lower ζP , optimal RP moves

closer to S with increased PA to R in order to have lower

path loss on S-to-R link. However, for higher harvested power

requirements (increased ζP ), R has to be positioned near D,

as shown in Figs. 5(a) and 5(b).

Remark 8: With very low ζP , optimal RP d∗ is close to

S when direct S-to-D link is available (see Fig. 5(b)) and

close to middle position between S and D for no direct link

case (Fig. 5(a)). A similar trend is observed for optimal RP

obtained from the joint optimization scheme. However for high

ζP , both optimal RP scheme and joint optimization scheme

place R closer to D.

C. Optimal PS for fixed PA and RP
[
(PS0)

]
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Fig. 6: Optimal PS with fixed PA and RP, and influence of ζP on
outage probability and ρ∗.

Figs. 6(a) and 6(b) corroborate the monotonically decreasing

behavior of pout with increased ρ for different PA and RP

values. Although this decrease in outage is significant for no

direct link case
(
Fig. 6(a)

)
, the decrease for direct link case is

negligible. The minimized outage probability p∗out1 (and p∗out2 )

increases and optimal PS ρ∗ decreases with increased ζP .

Remark 9: For no direct link case
(
Fig. 6(a)

)
, lower Ps and

higher d provide lower pout1 . In contrast, with S-to-D direct

link availability
(
Fig. 6(b)

)
, higher Ps and lower d provide

lower pout2 . However, in both the cases, higher d (R closer

to D) can help to meet higher ζP .

Remark 10: The optimal PS for fixed PA and RP scheme

plays a more significant role in no direct link case than in the

direct S-to-D link availability case.

D. Joint-optimal PA, RP, and PS
[

(J1) and (J2)
]

The harvested power constraint C1 plays a significant role

in the outage performance of the joint optimization and other

individual optimization schemes. Figs. 7(a) and 7(b) plot the

minimized pouti ∀i = 1, 2 obtained by joint optimization

scheme for varying ζP , under different values of Rice factor

K ∈ {−∞, 0, 3, 6, 10} dB. Total power budget is P
T

= 40
dBm. The plots are obtained by solving joint optimization

problems
(
(J1) and (J2)

)
for different ζP values, one for

each point on the curve. There is no feasible PA, RP, and

PS for ζP > 27 dBm for both with and without direct link

cases for all five considered values of K. As ζP is decreased,
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Fig. 7: (a) and (b) Optimal tradeoff between the minimized outage probability provided by joint optimization scheme and lower
bound ζP on required harvested power at D. (c) Comparison of jointly-optimized solutions (P ∗

s , d
∗, ρ∗) that minimize the exact

pout1 expression (4) and its tight exponential approximation (7) with varying ζP .

the minimized pouti decreases sharply first, then more slowly

until C1 is no longer active. Finally, a globally Pareto-optimal

tradeoff between pouti and ζP is obtained.

The minimum pouti is achieved when ζP is very low
(
−50

dBm in Fig. 7(a) and −30 dBm in Fig. 7(b)
)
. Results show

that increasing ζP beyond −40 dBm and −20 dBm for no

direct link and with direct link cases, respectively, leads to

an increase in minimized outage probability p∗out1 and p∗out2 .

Also, for the considered numerical examples, Algorithm 1

requires on an average eight iterations for converging to joint-

optimal solution within acceptable tolerance.

Remark 11: Without direct S-to-D link, the normalized

optimal PA and RP increase in the same proportion with

increased ζP for medium and low ζP , because as R is moved

closer to D to meet its ζP , Ps is increased to strengthen the

weakened S-to-R link
(
see Fig. 7(a)

)
.

Remark 12: For very low ζP in no direct link case, joint

optimization scheme allocates equal power to S and R
( P∗

s

P
T

≈

0.5
)
, and center position

(
ǫd∗

D ≈ 0.5
)

is optimal RP. However,

ρ∗ ≈ 0 for very high ζP , and ρ∗ ≈ 1 for very low ζP in both

with and without direct link cases.

Remark 13: With direct link availability, optimal PA P ∗
s

and PS ρ∗ provided by joint optimization scheme decreases,

whereas optimal RP d∗ increases with increased ζP . However,

there is no trend observed for normalized proportionality of

P ∗
s and d∗, as in case of no direct link.

Remark 14: Higher K helps to achieve lower pout, sig-

nifying that outage performance of joint optimization for

SWIPT over Rician channels is better than that over Rayleigh

channels. The exact optimization results for Rayleigh fading

can be easily generated from our formulation, by substituting

K = 0 (which implies αi = 0.5 and βi = 1 ∀ i = 1, 2, 3).

Finally, we plot jointly-optimized solutions (obtained nu-

merically using exhaustive three-dimensional search) for min-

imizing exact pout1 expression (4) in Fig.7(c) and compare

them with the analytical solutions derived in Section VII-A to

validate the effectiveness of the derived optimal solutions.

Remark 15: Fig. 7(c) shows that the normalized jointly

optimal solutions for minimizing (4) and (7) match very tightly

with a minor difference of < 1%. This corroborates the

consideration of (5) as a tight approximation for Q1 (·, ·) to

obtain analytical and computationally-efficient solutions for

the proposed optimization schemes in SWIPT.

Remark 16: Due to the log-concavity of Q1 (a, b) in b [41],

the obtained results are not much affected by considering

other tight approximations and bounds for Q1 (·, ·) [26], [33].

However, using (5) helps in obtaining closed-form optimal

solutions for (PA1), (RP1), (PS0), and (J1).

E. Outage performance comparison

1) Without direct S-to-D link: Here we present the per-

formance comparison of the proposed optimization schemes

against non-cooperative fixed (uniform) allocation scheme.

The following cases are considered: (a) varying P
T

with

D = 100 m and K = 6 dB; (b) varying D with P
T
= 40

dBm and K = 6 dB; and (c) varying K with P
T
=40 dBm

and D = 100 m, for ζP = −25 dBm under two different

channel conditions: (i) Good: as = ar = 0.5, l = 2 with

noise power = N0 and (ii) Bad: as = ar = 0.1, l = 3 with

noise power =2N0. Figs. 8(a), 8(b), and 8(c) show that pout1
resulted in each scheme reduces with increased total power

P
T

budget and Rice factor K values, whereas pout1 increases

with increased S-to-D distance D. The relative performances

for different P
T
, D, and channel conditions are captured in

Fig 9. The average percentage improvement by optimal PA,

optimal RP, optimal PS, and joint optimization schemes over

the fixed allocation scheme are respectively around 3.86%,

12.61%, 36.18%, and 36.31%, in Good channel conditions,

and around 10.15%, 19.45%, 30.68%, and 42.33% in Bad

channel conditions (when pout1 < 1 for fixed allocation

scheme). The imposition of C1 increases the significance of

optimal PA, RP, and PS, because fixed allocation sometimes

cannot provide a feasible solution as shown in Figs. 8(a) (P
T
≤

42 dBm), 8(b), and 8(c) for Bad channel conditions (pout1 for

infeasible case is plotted as 1). Even optimal PA and optimal

PS schemes are infeasible at lower values of P
T

and higher

values of D. Due to this, in Bad channel conditions when fixed

allocation scheme cannot meet ζP and hence pout1 =1 due to

its infeasibility, the proposed optimization schemes provide

much higher outage improvement. The average percentage

improvement by optimal PA, optimal RP, optimal PS, and

joint optimization schemes over the fixed allocation scheme

with pout1 = 1 (infeasibility of fixed allocation scheme) are

respectively around 27.25%, 89.42%, 23.55%, and 92.0%.
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Fig. 8: Outage performance comparison of fixed allocation, optimal PA (OPA), optimal RP (ORP), optimal PS (OPS), and joint
optimization schemes under Good and Bad channel conditions for no direct link case.
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Fig. 9: Performance comparison of the proposed optimization schemes for the no direct link case with fixed allocation scheme for
different total power budget P

T
, S-to-D distance D, and Rice factor K.

Remark 17: Impact of the proposed optimization schemes

is much more significant when there is no direct link avail-

ability because non-cooperative fixed allocation scheme for

SWIPT mostly suffers from total outage even for low energy

requirements (ζP ≈ −25 dBm) at D.

Remark 18: Joint optimization scheme always performs

the best because it has the highest degree of freedom. The

outage performance order (best to worst) is: {joint-optimal,

optimal PS, optimal RP, optimal PA} for low ζP or good

channel conditions, and {joint-optimal, optimal RP, optimal

PA, optimal PS} for high ζP or bad channel conditions.

2) With S-to-D direct link available: A similar comparison

is performed when direct S-to-D link is available, with ζP = 0
dBm. The variations of the following four parameters are

studied: (a) transmit power budget P
T

; (b) S-to-D distance

D; (c) channel conditions; (d) Rice factor K (see Fig. 10).

Under each variation other three parameters are respectively

kept fixed as P
T

= 40 dBm, D = 20 m, K = 6 dB, and

Good channel conditions (a = 0.5, l = 2, N0 = −99.85
dBm). The channel deterioration is implemented by decreasing

the channel gains (as, ar, and ad) and increasing path loss

exponent l and noise power N0 with respect to the Good

channel conditions (0% deterioration). Figs. 10(a) and 10(d)

show that pout2 resulted in each scheme reduces with increased

P
T

and K, respectively. Instead, Figs. 10(b) and 10(c) show

that pout2 increases with increased S-to-D distance D and

channel deterioration, respectively. In all four variations, joint-

optimal PA, RP, and PS has the best outage performance,

closely followed by optimal RP with fixed PA and PS. Optimal

PA with fixed RP and PS also provides significant outage

performance improvement, except being infeasible in certain

cases, like very low P
T

and very poor channel conditions.

However, optimal PS does not provide any practical improve-

ment, except in the case when the fixed allocation scheme

results in an infeasible solution (i.e., pout2 = 1).
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Fig. 10: Outage pout2 performance comparison of the proposed
optimization schemes with fixed allocation scheme.

The relative performance results for direct S-to-D link case

are summarized in Fig 11. The average outage performance

improvement by optimal PA, optimal RP, optimal PS, and joint

optimization schemes over fixed allocation scheme (when it

provides a feasible solution, i.e., pout2 < 1), are respectively

around 43.62%, 99.35%, 7.36× 10−4%, 99.55%.

Remark 19: The proposed optimization schemes for efficient

SWIPT outperform the fixed allocation, which suffers from
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Fig. 11: Performance comparison of the proposed optimization schemes against fixed allocation for direct link case. The percentage
improvement results are with respect to pout2 resulted from fixed allocation scheme. Channel condition is varied as: c1=(0.5, 2, N0)
(Good channel), c2=(0.3, 2.5, 1.5N0), and c3=(0.1, 3, 2N0) (Bad channel).

total outage while meeting energy requirements at D for low

P
T

, high D, and poor channel conditions. This efficiency

improvement provided by optimal PA, optimal RP, and joint-

optimal schemes is much more evident and significant in case

of direct S-to-D link availability (Fig 11) as compared to the

no direct link case (Fig 9).

Remark 20: The optimal RP scheme performs much better

than optimal PA and optimal PS schemes, and closely follows

the best outage performance provided by the jointly optimized

scheme for direct link case. However, the scenarios where due

to terrain asperities/blockage, R has to be placed at some

specific position, optimal PA is the only efficient optimization

scheme possible, because optimal PS does not provide much

improvement over fixed allocation scheme.

IX. CONCLUDING REMARKS

This paper has investigated the optimization of PA, RP,

and PS in two-hop information relaying and energy transfer

to minimize the outage probability in SWIPT over Rician

channels, subject to total transmit power and harvested power

constraints. Two scenarios of source-to-destination (S-to-D)

distances, direct S-to-D link availability and no direct S-

to-D link have been considered. Analytical expressions have

been obtained for the four optimization schemes: optimal PA,

optimal RP, optimal PS, and joint optimization of PA, RP, and

PS for no direct link scenario. In direct link case, joint global

optimal PA, RP, and PS has been derived by exploiting multi-

pseudoconvexity of outage probability and using an alternating

optimization based iterative scheme. Numerical results show

that, in general, the joint optimization scheme performs the

best, respectively followed by optimal RP and optimal PA.

The results also highlight that the direct link case has different

outage performance under the four optimization schemes as

compared to the case without direct link. For low required

harvested power at D without direct S-to-D link, optimal RP

is close to the center position between S and D, whereas

when direct link is available, optimal RP is closer to S with

higher PA to S . With increasing required harvested power, the

normalized optimal PA and RP increase in same proportion

in no direct link scenario, whereas no such trend is observed

when direct link is available. Also, in general, the optimal PS

ratio in no direct link scenario is relatively higher as compared

to when direct link is available. The performance of all four

optimization schemes are strongly influenced by the required

harvested power due to the tradeoff between the minimized

outage probability and the required harvested power at D.

APPENDIX A

INDIVIDUAL PSEUDOCONVEXITY OF OUTAGE

PROBABILITY pout2 IN SOURCE POWER Ps

Here we provide proof of Lemma 1 and the claims made in

Theorem 2. In this regard, we first propose Lemma 5 which

will be used in proving tri-pseudoconvexity of pout2 in Ps, d, ρ.

Lemma 5: A positive differentiable function f , which is log-

concave over a convex set F, is also pseudoconcave over F.

Proof: A function f is concave if and only if F is convex

and it satisfies (A.1) [42].

f(y) ≤ f(x) +∇f(x)⊺(y − x) ∀x, y ∈ F. (A.1)

A similar relationship for a positive differentiable log-concave

function f is given by (A.2).

log f(y) ≤ log f(x) +∇ log f(x)⊺(y − x) ∀x, y ∈ F. (A.2)

A function f is pseudoconcave if −f is pseudoconvex, or

∀ x, y ∈ F (a convex set), ∇f(x)⊺(y − x) ≤ 0 =⇒
f(x) − f(y) ≥ 0. Applying ∇f(x)⊺(y − x) ≤ 0 in (A.2)

and using the positivity of f(x), we obtain: log f(y) ≤
log f(x) + 1

f(x)∇f(x)⊺(y − x) ≤ log f(x), which on using

the monotonicity of log (·) implies f(y) ≤ f(x). This proves

that log-concavity of a positive differentiable function f also

implies the pseudoconcavity of f .

A. Proof of Lemma 1: pout2 is pseudoconvex in Ps for fixed

RP and PS

First of all we recall a very important property, which

states that, for a single variable function the concepts of pseu-

doconcavity and unimodality are completely equivalent [43].

Using this property, if we show that a function is unimodal

in Ps over the feasible region defined by C1–C3, it also

implicitly implies its pseudoconcavity in Ps. Using pout2 =
1− Cγ1 (Z) CΥ02 (Z), we obtain:

pout2 = 1+Cγ1 (Z)

∞∫

Z

(
dFγ0 (x)

dx

)


dFγ2

(
Z−x
ρ

)

dx


dx

= 1− Cγ1
(Z)

∞∫

Z

G1 (Ps, d, ρ, x) dx. (A.3)
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Here G1(Ps, d, ρ, x) ,

[

α′
0β0α

′′
2 β2

x(Z−x)

(

Dl

adPs

)β0
(

(D
ǫ
−d)l

ρar(PT
−Ps)

)β2

×

e
−α′

0

(
Dl

adPs

)β0
−α′′

2



 (D
ǫ

−d)l

ρar(PT
−Ps)




β2
]

, α′
0=eφ(

√
2K0)(2(K0+1)N0x)

β0

and α′′
2 = eφ(

√
2K2) (2(K2 + 1)N0 (Z − x))β2 .

Next we find the critical point of G1 in Ps by solving

∂G1

∂Ps
= 0. Except the trivial case with α′

0

(
Dl

adPs

)β0

= 1

and α′′
2

(
(D

ǫ
−d)

l

ρar(PT
−Ps)

)β2

=1, critical point of G1 is obtained

by numerically solving (A.4). Let the solution of (A.4) be

Ps. Now if α′
0

(
Dl

adPs

)β0

> 1 and α′′
2

(
(D

ǫ
−d)

l

ρar(PT
−Ps)

)β2

> 1,

G1 is respectively an increasing and a decreasing function of

Ps for Ps < Ps and Ps > Ps. This behavior gets reversed

if α′
0

(
Dl

adPs

)β0

< 1 and α′′
2

(
(D

ǫ
−d)

l

ρar(PT
−Ps)

)β2

< 1. This

proves that G1 is a pseudoconcave function [43] of Ps. As

integration preserves the pseudoconcavity of positive pseu-

doconcave function [44], pseudoconcavity of G1 in Ps also

implies pseudoconcavity of CΥ02
(Z) =

∫∞
Z G1dx. Apart from

this, since
∂2 log[Cγ1 (Z)]

∂P 2
s

= −α1β1(β1+1)dβ1l

a
β1
s P

β1+2
s

< 0 ∀ Ps > 0, it

implies log-concavity, and hence pseudoconcavity of Cγ1 in Ps

on applying Lemma 5. Also, it may be noted that the product

of two positive pseudoconcave functions is also pseudocon-

cave [43]. Hence, Cγ1
(Z) CΥ02

(Z) is pseudoconcave in Ps,

which implies pseudoconvexity of pout2 in Ps.

B. pout2J is pseudoconvex in Ps for fixed RP

As pout2J can be obtained from pout2 by substituting ρ =

1−
ζP (D

ǫ
−d)

l

ηar(PT
−Ps)

, the proof of pseudoconvexity of pout2J in Ps

is similar as the proof of pseudoconvexity of pout2 .

pout2J
=1− Cγ1

(Z)



1−
Z∫

0

dFγ0
(x)

dx
Fγ2

(
ηar

(
P

T
− Ps

)
(Z − x)

ηar

(
P

T
− Ps

)
− ζP

(
D
ǫ

− d
)l

)
dx





=1−Cγ1 (Z)

∞∫

Z

Ĝ1 (Ps, d, x) dx (A.5)

with Ĝ1 (Ps, d, x) ,
α′
0β0α′′

2 β2
x(Z−x)

(
Dl

adPs

)β0

(
η
(
D
ǫ

−d
)l

ηar

(
P
T

−Ps

)
−ζP

(
D
ǫ

−d
)l

)β2

×e

−α′
0

(
Dl

adPs

)β0
−α′′

2




η
(
D
ǫ

−d
)l

ηar

(
P
T

−Ps

)
−ζP

(
D
ǫ

−d
)l




β2

. The critical point

of Ĝ1 in Ps (i.e., ∂Ĝ1

∂Ps
= 0) is obtained by numerically solving

(A.6). Let the solution of (A.6) be P̂s. Now, similar to the

observation in Appendix A-A, if α′
0

(
Dl

adPs

)β0

> 1 and

α′′
2

(
η(D

ǫ
−d)

l

ηar(PT
−Ps)−ζP (D

ǫ
−d)

l

)β2

> 1, Ĝ1 is respectively an

increasing and a decreasing function of Ps for Ps < P̂s

and Ps > P̂s. The function behavior gets reversed for

α′
0

(
Dl

adPs

)β0

< 1 and α′′
2

(
η(D

ǫ
−d)

l

ηar(PT
−Ps)−ζP (D

ǫ
−d)

l

)β2

< 1.

This proves that Ĝ1 is a pseudoconcave function of Ps. This

along with the discussions related to the integration and

product of positive pseudoconcave functions, as mentioned in

Appendix A-A, proves pseuodoconvexity of pout2J in Ps.

APPENDIX B

INDIVIDUAL PSEUDOCONVEXITY OF OUTAGE

PROBABILITY pout2 IN S -TO-R DISTANCE d

This appendix provides proofs for Lemma 3 and the claims

made in Theorem 2 regarding pseudoconvexity of pout2J in d

for fixed PA. We note that, pout2 in (A.3) can be rewritten as:

pout2 = 1− Cγ1
(Z) CΥ02

(Z) = 1− Cγ1
(Z)

[
Cγ0

(Z)

+

Z∫

0

dFγ0
(x)

dx
Cγ2

(
Z − x

ρ

)
dx

]
. (B.1)

∂2 log[Cγ1
(Z)]

∂d2 = −α1β1l(β1l−1)dβ1l−2

(asPs)
β1

< 0 ∀ (d > 0) ∧ (l > 1)

implies log-concavity of d in Cγ1
(Z).

A. Proof of Lemma 3: pout2 is pseudoconvex in d for fixed PA

and PS

Let G2 (Ps, d, ρ, x) ,
dFγ0

(x)

dx Cγ2

(
Z−x
ρ

)
=

α′

0β0

x

(
Dl

adPs

)β0

e
−α′

0

(
Dl

adPs

)β0−α′′

2

(
(D

ǫ
−d)

l

ρar(PT
−Ps)

)β2

. Using G2 definition in (B.1),

CΥ02 (Z) = Cγ0 (Z) +

Z∫

0

G2 (Ps, d, ρ, x) dx. (B.2)

∂2 log G2

∂d2 = −
α′′

2 β2l(β2l−1)(D
ǫ
−d)

β2l−2

(ρar(PT
−Ps))

β2
< 0 implies that G2

is a log-concave function of d. Since the log-concavity of

a positive function is preserved under integration [42], [45],

we note that
∫ Z
0

G2 (Ps, d, ρ, x) dx is also log-concave in d.

Since Cγ0 (Z) = e
−α0

(
Dl

adPs

)β0

is independent of d and log-

concavity is preserved under affine transformation, CΥ02 (Z)
is log-concave in d. As the product of two log-concave

functions is also log-concave [42], it results in log-concavity

of Cγ1
(Z) CΥ02

(Z), which by using Lemma 5 implies pseu-

doconvexity of pout2 in d.

P
T

[
−1 + α′

0

(
Dl

adPs

)β0
]
= Ps


−2 + α′

0

(
Dl

adPs

)β0

+ α′′
2

( (
D
ǫ − d

)l

ρar (PT
− Ps)

)β2

 . (A.4)

(

α
′
0

(

Dl

adPs

)β0

−1
)(

ηar (PT
−Ps)−ζP

(

D

ǫ
− d

)l
)

=
β2

β0
ηarPs



α
′′
2

(

η
(

D
ǫ
− d
)l

ηar (PT
−Ps)− ζP

(

D
ǫ
−d
)l

)β2

−1



 (A.6)
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B. pout2J is pseudoconvex in d for fixed PA

pout2J in terms of Fγ0
, Cγ0

, Cγ1
, and Cγ2

is expressed as:

pout2J = 1− Cγ1 (Z)

[
Cγ0 (Z) +

Z∫

0

dFγ0 (x)

dx

Cγ2

(
ηar (PT

− Ps) (Z − x)

ηar (PT
− Ps)− ζP

(
D
ǫ − d

)l

)
dx

]
.(B.3)

Let Ĝ2 (Ps, d, ρ, x) ,
dFγ0

(x)

dx Cγ2

(
Z−x
ρ

)
=

α′

0β0

x

(
Dl

adPs

)β0

e
−α′

0

(
Dl

adPs

)β0−α′′

2

(
η(D

ǫ
−d)

l

ηar(PT
−Ps)−ζP (D

ǫ
−d)

l

)β2

. Hence, ∂2 log Ĝ2

∂d2 =

−
ηβ2+1(β2l−1)ar(PT

−Ps)−ζP (l+1)(D
ǫ
−d)

l
[α′′

2 β2ηlar(PT
−Ps)]

(D
ǫ
−d)

2−β2l
[
ηar(PT

−Ps)−ζP (D
ǫ
−d)

l
]β2+2 <

0∀

{
d

∣∣∣∣
(
d≤ D

ǫ

)
∧ (Ps ≤ P

T
)∧ (l≥ 1)∧

(
ζP (D

ǫ
−d)

l

ηar(PT
−Ps)

≤ 1

)}
.

Similar to Appendix B-A, using Lemma 5, independence

of Cγ0
in d, log-concavity preservation properties of affine

transformation, integration, and product of log-concave

functions, it is inferred that pout2J is pseudoconvex in d.

APPENDIX C

PROOF OF LEMMA 4: OUTAGE PROBABILITY pout2 IS

PSEUDOCONVEX IN PS RATIO ρ

To show pseudoconvexity of pout2 = 1− Cγ1
(Z) CΥ02

(Z)
where CΥ02 (Z) defined in (B.2), we first prove log-

concavity of G2 in ρ, followed by the pseudoconcavity of

Cγ1 (Z) CΥ02 (Z) in ρ. On taking second order derivative of G2

with respect to ρ, ∂2 log G2

∂ρ2 =−
α′′

2 β2(β2+1)
ρ2

[
(D

ǫ
−d)

l

ρar(PT
−Ps)

]β2

<

0 ∀
{
ρ
∣∣ (ρ > 0) ∧

(
d ≤ D

ǫ

)
∧ (Ps ≤ P

T
)
}

implies that G2

is a log-concave function of ρ. Since Cγ0
(Z) and Cγ1

(Z)
are independent of ρ, and log-concavity is preserved under

affine transformation [42], integration [45], and positive scalar

multiplication, it can be inferred from (B.1) and (B.2) that

Cγ1(Z) CΥ02(Z) is log-concave in ρ. This, by using Lemma 5,

also implies that Cγ1
(Z) CΥ02

(Z) is pseudoconcave in ρ.

Hence, pout2 is pseudoconvex in ρ.

APPENDIX D

PROOF OF JOINT CONVEXITY OF APPROXIMATED OUTAGE

PROBABILITY p̂out1J WITH ρ=ρth

p̂out1J can be represented as a sum of two functions g1 =

α1

(
dl

asPs

)β1

and g2 = α2

(
η(D

ǫ
−d)

l

ηar(PT
−Ps)−ζP (D

ǫ
−d)

l

)β2

. Joint

convexity of p̂out1J in Ps and d can be proved by showing the

convexity of g1 and g2. The Hessian matrix of g1 is: H (g1) =[
∂2g1
∂P 2

s

∂2g1
∂Ps∂d

∂2g1
∂d∂Ps

∂2g1
∂d2

]
=




α1β1(β1+1)dβ1l

a
β1
s P

β1+2
s

−
α1β

2
1 ld

β1l−1

a
β1
s P

β1+1
s

−
α1β

2
1 ld

β1l−1

a
β1
s P

β1+1
s

α1β1l(β1l−1)dβ1l−2

(asPs)
β1


.

The determinant det [H (g1)] =
α2

1β
2
1 l(β1(l−1)−1)d2(β1l−1)

a
2β1
s P

2(β1+1)
s

≥ 0

and ∂2g1
∂P 2

s
, ∂2g1

∂d2 ≥ 0 ∀ {(Ps, d) | (d≥ 0) ∧ (Ps ≥ 0) ∧ (l > 1)}.

This proves joint-convexity of g1 in Ps and d.

Similarly, on computing Hessian of g2 to prove its convexity,

we observe that ∂2g2
∂P 2

s
=

α2β2(β2+1)(arη)
2
[
η(D

ǫ
−d)

l
]β2

[
arη(PT

−Ps)−ζP (D
ǫ
−d)

l
]2β2

, ∂2g2
∂d2 =

(PT
−Ps)(D

ǫ
−d)

β2l−2
(arη(β2l−1)(PT

−Ps)+ζP (l+1)(D
ǫ
−d)l)

[α2β2ηβ2+1lar]
−1
[arη(PT

−Ps)−ζP (D
ǫ
−d)l]

β2+2 , and

det [H (g2)] =

[
arη(β2(l−1)−1)(PT

−Ps)+ζP l(D
ǫ
−d)

l

(arη(PT
−Ps)−ζP (D

ǫ
−d)l)

3 (α2β2ar)
2

×η2(β2+1)l
(
D
ǫ −d

)2(β2−1)

]
≥0 ∀

{
(Ps, d)

∣∣ (d≤ D
ǫ

)
∧ (Ps ≤

P
T
) ∧ (l ≥ 2)}. This implies convexity of p̂out1J in Ps and d.

APPENDIX E

PROOF OF JOINT CONVEXITY OF CONSTRAINT C8

In this appendix, we prove the joint convexity of gC8 =
ζP (D

ǫ
−d)

l

ηar(PT
−Ps)

− 1 in Ps and d. The determinant of the Hessian

matrix of gC8 is det [H (gC8)] =
ζ2
P (l−2)l(D

ǫ
−d)

2(l−1)

η2a2
r(PT

−Ps)
4 ≥

0 ∀
{
(Ps, d)

∣∣ (d ≤ D
ǫ ) ∧ (Ps ≤ P

T
) ∧ (l ≥ 2)

}
. This along

with non-negativity of ∂2gC8

∂P 2
s

=
2ζP (D

ǫ
−d)

l

ηar(PT
−Ps)

3 and ∂2gC8

∂d2 =

ζP (l−1)l(D
ǫ
−d)

l−2

ηar(PT
−Ps)

for Ps ≤ P
T

, d ≤ D
ǫ , and l ≥ 1 implies

joint-convexity of gC8 in Ps and d.
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