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Trinh Van Chien Student Member, IEEE, Emil Björnson, Senior Member, IEEE, and Erik G. Larsson, Fellow, IEEE

Abstract—This paper considers pilot design to mitigate pilot
contamination and provide good service for everyone in multi-cell
Massive multiple input multiple output (MIMO) systems. Instead
of modeling the pilot design as a combinatorial assignment
problem, as in prior works, we express the pilot signals using
a pilot basis and treat the associated power coefficients as
continuous optimization variables. We compute a lower bound on
the uplink capacity for Rayleigh fading channels with maximum
ratio detection that applies with arbitrary pilot signals. We
further formulate the max-min fairness problem under power
budget constraints, with the pilot signals and data powers as
optimization variables. Because this optimization problem is non-
deterministic polynomial-time hard due to signomial constraints,
we then propose an algorithm to obtain a local optimum with
polynomial complexity. Our framework serves as a benchmark
for pilot design in scenarios with either ideal or non-ideal
hardware. Numerical results manifest that the proposed opti-
mization algorithms are close to the optimal solution obtained
by exhaustive search for different pilot assignments and the new
pilot structure and optimization bring large gains over the state-
of-the-art suboptimal pilot design.

Index Terms—Massive MIMO, Pilot Design, Signomial Pro-
gramming, Geometric Programming, Hardware Impairments.

I. INTRODUCTION

The demands on capacity and reliability in wireless cellular

networks are continuously increasing. It is known that mul-

tiple input multiple output (MIMO) techniques can improve

both capacity and reliability [1]–[3], but current systems

only support up to eight antennas per base station (BS).

While codebook-based channel acquisition is attractive in such

small-scale MIMO systems, these methods are not scalable

and unable to support the fifth generation (5G) demands on

spectral efficiency (SE) in non-line-of-sight conditions [4].

Massive MIMO was proposed in [5] as a possible solution

and it has emerged as a key 5G technology, because it offers

significant improvements in both SE and energy efficiency

[4]–[8]. By equipping the BSs with hundreds of antennas,

mutual interference, thermal noise, and small-scale fading can

be almost eliminated by virtue of the channel hardening and

favorable propagation properties [6]. The BSs only need to

use linear detection schemes, such as maximum ratio (MR)

or zero forcing, to achieve nearly optimal performance [9].

In addition, the SE only depends on the large-scale fading
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coefficients, thus power control algorithms are easier to deploy

than in small-scale MIMO systems, which are greatly affected

by small-scale fading [10].

The uplink (UL) detection and downlink precoding in

Massive MIMO are based on instantaneous channel state

information (CSI), which the BSs obtain from UL pilot signals.

Mutually orthogonal pilots are desirable, but this is impractical

in multi-cell scenarios since the pilot overhead would be

proportional to the total number of users in the entire system.

The consequence is that the pilot signals need to be reused

across cells. This leads to pilot contamination [11], [12], where

users sending the same pilot degrade each others channel

estimation and cause large mutual interference. Hence, the

pilot design is of key importance in Massive MIMO and should

be optimized to mitigate the pilot contamination effects.

The baseline scheme for mitigating pilot contamination is

to introduce a pilot reuse factor f , such that each pilot is only

reused in 1/ f of the cells. This approach, which was studied

in [13]–[16], can greatly reduce the pilot contamination, even

if the pilots are randomly assigned within each cell. However,

this gain comes at the cost of using f times more pilots than

in a system reusing the pilots in every cell. For any given

cell, only a few users in the neighboring cells cause most

of the potential pilot contamination, thus it is most important

that these potential contaminators are assigned different pilots

from the users in the given cell. Algorithms for coordinated

pilot assignment were proposed in [17]–[20]. A pilot reuse

dictionary was defined in [17] and the corresponding pi-

lot assignment problem was shown to be non-deterministic

polynomial-time hard (NP-hard), which motivates the design

of heuristic assignment mechanisms. Although [17] proposed

several greedy algorithms, the optimized SE was far from

that with exhaustive search over all pilot assignments. Graph

theory was used for pilot assignment in [18], by exploiting

variations in the large-scale fading coefficients. A method

called “smart pilot assignment” was proposed in [20] to en-

hance the max-min fairness SE level, by optimizing a heuristic

mutual interference metric. Alternatively, [19] formulated the

pilot assignment problem as a potential game. The numerical

results in [18]–[20] show performance that is similar to an

exhaustive search, but with a substantially lower computational

complexity. Moreover, the authors of [21], [22] utilized par-

ticular channel properties to reduce channel estimation errors

and mitigate pilot contamination. In particular, [21] utilized the

orthogonality among different channels and an assumed low-

rankness of the channel covariance matrices. An adjustable

phase shift pilot construction was suggested in [22] based on

the relationship between channel correlations in the frequency
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domain and their power angle-delay spectrum. However, all

these algorithms rely on the assumption of fixed pilot and

data power.

The pilot and payload data powers are usually treated as

constants in the Massive MIMO literature, but it is known

from [12], [23] that the performance can be much improved

by using the optimal power allocation, which balances the

mutual interference levels. To improve the channel estimation

quality, more power might also be assigned to the pilots than

to the data transmissions [24], [25]. For single-cell systems,

[24] showed that a pilot-data power imbalance is especially

important for cell-edge users. Moreover, the power allocation

that maximizes the sum SE is much different from the one that

maximizes the max-min SE. Similar behaviors for multi-cell

systems were observed in [25]. The authors in [26] considered

power optimization problems with pilot reuse factors. To the

best of our knowledge, no prior work analyzes joint pilot

design and power control in Massive MIMO systems.

In this paper, we propose a novel pilot design and optimize

the UL performance in multi-cell Massive MIMO systems,

using the max-min fairness utility. Our main contributions are:

• We propose a new pilot design where the pilot signals

are treated as continuous variables. We demonstrate that

previous pilot designs are special cases of our proposal.

• Based on the proposed pilot design, we derive closed-

form expressions of the SE with Rayleigh fading channels

and MR detection, for the cases of ideal hardware and

with hardware impairments. These expressions explicitly

demonstrate how the SE is affected by mutual interfer-

ence, noise, and pilot contamination.

• We formulate the max-min fairness problem for the

proposed pilot design, by treating the pilot signals, pilot

powers, and data powers as optimization variables. This

is an NP-hard signomial program, so we propose an

algorithm that finds a local optimum in polynomial time.

For comparison the optimal solution by an exhaustive

search of different pilot assignments is also investigated.

• The proposed algorithms are evaluated numerically, with

either ideal hardware or hardware impairments. The re-

sults show that our local solution is close to the global

optimum by exhaustive search over different pilot assign-

ments and demonstrate significant improvements over the

heuristic algorithms in prior works.

A preliminary version of this work, focusing only on pilot

optimization with fixed data powers, was presented in [27].

The rest of this paper is organized as follows: Section

II presents our proposed pilot structure and compares it

with prior works. Lower bounds on the UL ergodic SE for

arbitrary pilots are derived in Section III, while Section IV

formulates the max-min fairness optimization problems and

provides the global and local solutions. Sections V and VI

extend our research to the case of hardware impairments and

correlated Rayleigh fading, respectively. Finally, Section VII

gives extensive numerical results and some conclusions are

provided in Section VIII.

Notations: Lower bold letters are used for vectors and upper

cases are for matrices. (·)T and (·)H stand for regular trans-

pose and Hermitian transpose, respectively. The superscript ∗

denotes the conjugate transpose of a complex number. In is

the identity matrix of size n× n. Cm×n (Rm×n) is the space of

complex (real) m×n matrices, while Cτp denotes the space of

τp-length complex vectors. R+ is the set of nonnegative real

numbers. E{·} denotes the expectation of a random variable

and ‖ · ‖ is the Euclidean norm. Finally, CN (·, ·) is the

circularly symmetric complex Gaussian distribution, while

N (·, ·) is the normal distribution.

II. PILOT DESIGNS FOR MASSIVE MIMO SYSTEMS

We consider the UL of a multi-cell Massive MIMO system

with L cells. Each cell consists of a BS equipped with M

antennas that serves K single-antenna users. All tuples of cell

and user indices belong to a set S defined as

S = {(i, t) : i ∈ {1, . . . , L}, t ∈ {1, . . . , K }} . (1)

The radio channels vary over time and frequency. We divide

the time-frequency plane into coherence intervals, each con-

taining τc samples, such that the channel between each user

and each BS is static and frequency flat. In each coherence

block, the pilot signaling utilizes τp symbols and the remaining

is dedicated to data transmission. In this paper, we focus

on the UL, so the fraction (1 − τp/τc) of the coherence

interval is dedicated to UL data transmission. However, it

is straightforward to extend our work to the downlink by

using time division duplex (TDD) and channel reciprocity. We

assume 1 ≤ τp < τc to keep the training process feasible and

stress that the case τp < K L is of practical importance since

it gives rise to pilot contamination and since L is large in

practice.

A. Proposed Pilot Design

Let us denote the τp mutually orthonormal basis vectors

{φφφ1, . . . , φφφτp }, where φφφb ∈ Cτp is a vector whose bth element

has unit magnitude, and all other elements are equal to zero.

The corresponding basis matrix is

ΦΦΦ = [φφφ1, . . . , φφφτp ]. (2)

We assume that the pilot signals of the users can span

arbitrarily over the above τp basis vectors. We aim at designing

a pilot signal collection {ψψψ1,1, . . . , ψψψL,K } comprising the K L

pilot signals used by all users in the network and each of

them has the length of τp symbols. The pilot signal of user k

in cell l is ψψψl,k = [ψ1
l,k
, . . . , ψ

τp

l,k
]T ∈ Cτp and the power that

this user assigns to the bth pilot basis is denoted as p̂b
l,k
≥ 0.

Thus, the pilot of user k in cell l is

ψψψl,k =

τp∑

b=1

√
p̂b
l,k
φφφb,∀l, k . (3)

We stress that the pilot construction in (3) can be used to

create any set of τp orthogonal pilot signals (up to a unitary

transformation) and many different sets of non-orthogonal

signals. 1 The total pilot power consumption utilized by user k

1The pilot signals in (3) are formed as linear combinations of basis vectors
in the complex field. The new pilot design allows the use of nonorthogonal
pilot signals even within a cell in order to get extra degrees of freedom to
minimize the interference in the network.
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in cell l is ‖ψψψl,k ‖2 =
∑τp

b=1
p̂b
l,k

and we assume that it satisfies

the power constraint

1

τp

τp∑

b=1

p̂bl,k ≤ Pmax,l,k,∀l, k, (4)

where Pmax,l,k is the maximum pilot power for user k in cell l.

The inner product of two pilot signals ψψψl,k and ψψψi,t is

ψψψH
l,kψψψi,t =

τp∑

b=1

√
p̂b
l,k

p̂b
i,t
. (5)

These pilot signals are orthogonal if the product is zero, which

only happens when they allocate their powers to different

subsets of basis vectors. Otherwise, they are non-orthogonal

and then the two users cause pilot contamination to each other.

If the square roots of the powers allocated to the K users in

cell l are gathered in matrix form as

PPPl =



√
p̂1
l,1

√
p̂1
l,2
· · ·

√
p̂1
l,K√

p̂2
l,1

√
p̂2
l,2
· · ·

√
p̂2
l,K

...
...

. . .
...√

p̂
τp

l,1

√
p̂
τp

l,2
· · ·

√
p̂
τp

l,K


∈ Rτp×K

+
, (6)

then the users in cell l utilize a pilot matrix defined as

Ψl = [ψψψl,1, . . . , ψψψl,K ] = ΦΦΦPPPl . (7)

We now describe the difference between this new pilot struc-

ture and the prior works, for example [18], [20], [24], [25].

B. Other Pilot Designs

The works [18], [20] considered the assignment of τp
orthogonal pilot signals under the assumption of fixed equal

pilot power. Using our notation, the pilot matrix in cell l is

Ψ̂ΨΨl = [ψ̂ψψl,1, . . . , ψ̂ψψl,K ] =
√

p̃ΦΦΦΠΠΠl, (8)

where 0 < p̃ ≤ τpPmax,l,k is the equal power level of all users.

ΠΠΠl ∈ R
τp×K
+

is a permutation matrix, that assigns the pilot

signals to each user in cell l. The assignment is optimized in

[18], [20] to minimize a heuristic mutual interference metric.

Note that these works assume orthogonal pilot signals and

equal power allocation, which are simplifications compared to

(7). These assumptions are generally suboptimal. Apart from

this, the selection of the optimal permutation matrices for

cell l is a combinatorial problem, so to limit the computational

complexity [18], [20] and the references therein only study the

special case of τp = K .

The previous work [24] optimized the pilot powers to

maximize functions of the SE, but the paper only considered

a single cell without pilot contamination. The authors of [25]

optimized the pilot powers to minimize the UL transmit power

for a multi-cell system. This work assumed τp = K and a fixed

pilot assignment. If p̃l,k is the pilot power of user k in cell l,

the square root of the power matrix allocated to the K users

in cell l is a diagonal matrix defined as

P̃PPl = diag
(√

p̃l,1, . . . ,
√

p̃l,K
)
, (9)

where diag(x) denotes the diagonal matrix with the vector x

on the diagonal. The pilot matrix in cell l is then formulated

as

Ψ̃l = ΦΦΦP̃PPl . (10)

Similar to (4), the pilot power at user k in cell l is limited as

0 ≤ p̃l,k ≤ τpPmax,l,k . (11)

Since orthogonal pilots and fixed pilot assignment are as-

sumed, this is also a special case of (7). We can combine the

pilot structure in (10) and the idea of selecting a permutation

matrix in (8) to jointly optimize the power allocation and pilot

assignment. In particular, the pilot signals of the users in cell l

are now defined as

Ψ̆l = [ψ̆ψψl,1, . . . , ψ̆ψψl,K ] = ΦΦΦΠΠΠlP̃PPl . (12)

This modified pilot design is a special case of (7) and has

not been studied in prior works, but will be considered herein.

In order to analyze the channel estimation, we define a pilot

reuse set Pl,k including all tuples of cell and user indices that

cause pilot contamination to user k in cell l:

Pl,k = {(i, t) ∈ S : ψ̆ψψ
H

i,tψ̆ψψl,k , 0}. (13)

We stress that designing an exhaustive search to obtain the

best pilot assignment strategy is extremely computationally

expensive.2 As in prior works, we only consider the case τp =

K when using (12) and we further assume that orthogonal

pilots are used within each cell; that is, Pl,k∩Pl,k′ = ∅ for any

user indices k , k ′ in cell l. To perform an exhaustive search,

we need to construct a dictionary D, see Fig. 1, with all the

possible combinations of pilot assignments in the network. Let

χk
l
∈ {1, . . . , K } denote the index of the pilot signal assigned

to user k in cell l. It follows that χk
l
, χk

′

l
for k , k ′ since all

users within a cell use different pilots. The pilot assignment

matrix A ∈ {1, . . . , K }L×K containing the pilot indices of the

K L users is

A =



χ1
1

χ2
1
· · · χK

1

χ1
2

χ2
2
· · · χK

2
...

...
. . .

...

χ1
L

χ2
L
· · · χK

L


. (14)

Each row of A contains 1 to K and there are K! different

combinations, each defining a permutation matrix ΠΠΠl for the

pilot signals in (8) and (12). The dictionary D ∆
= {A} contains

all the (K!)L pilot assignment matrices. For each A ∈ D, we

can extract the pilot reuse sets PA
l,k
,∀l, k as3

PA
l,k = {(i, t) ∈ S : χkl = χti }. (15)

The dictionary D will be later used to obtain the pilot

assignment that maximizes the SE performance.

III. UPLINK MASSIVE MIMO TRANSMISSION

This section provides ergodic SE expressions with arbitrary

pilot signals, which are later used for pilot optimization.

2For the first user in the first cell (l = 1, k = 1), there are (K!)L−1

possibilities of P1,1. There are then (K − 1)!L−1 possible P1,2 and so on.
3Each collection {PA

l,k
} of pilot reuse sets is generated by K! different

A ∈ D. By eliminating the K! − 1 copies, the size of the dictionary D can
be reduced to (K!)L−1, which still grows rapidly with K and L.
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Fig. 1. The dictionary D contains all possible pilot assignment indices for
all users in the network.

A. Channel Estimation with Arbitrary Pilots

During the UL pilot transmission, the received signal Yl ∈
C
M×τp at the BS of cell l is

Yl =

∑

(i,t)∈S
hl
i,tψψψ

H
i,t + Nl, (16)

where hl
i,t
∈ CM denotes the channel between user t in cell i

and BS l. Nl ∈ CM×τp is the additive noise with independent

elements distributed as CN (0, σ2). Correlating Yl in (16) with

the pilot ψψψl,k of user k in cell l, we obtain

yl,k = Ylψψψl,k =

∑

(i,t)∈S
hl
i,tψψψ

H
i,tψψψl,k + Nlψψψl,k . (17)

We consider uncorrelated Rayleigh fading since results ob-

tained with this tractable model well matches the results

obtained in non-line-of-sight measurements [28]. The channel

between user t in cell i and BS l is distributed as

hl
i,t ∼ CN

(
0, βli,tIM

)
, (18)

where the variance βl
i,t

determines the large-scale fading,

including geometric attenuation and shadowing. By using

minimum mean squared error (MMSE) estimation, the dis-

tributions of the channel estimate and estimation error when

using the pilot structure in (7) are given in Lemma 1.

Lemma 1. If the system uses the pilot structure in (7), the

MMSE estimate of hl
l,k

based on yl,k in (17) is computed as

ĥl
l,k =

βl
l,k

τp∑
b=1

p̂b
l,k

∑
(i,t)∈S

βl
i,t

(
τp∑
b=1

√
p̂b
i,t

p̂b
l,k

)2

+ σ2
τp∑
b=1

p̂b
l,k

yl,k . (19)

The channel estimate is distributed as

ĥl
l,k ∼ CN

(
0, γll,kIM

)
, (20)

where

γll,k =

(βl
l,k

)2

(
τp∑
b=1

p̂b
l,k

)2

∑
(i,t)∈S

βl
i,t

(
τp∑
b=1

√
p̂b
i,t

p̂b
l,k

)2

+ σ2
τp∑
b=1

p̂b
l,k

. (21)

The estimation error el
l,k
= hl

l,k
− ĥl

l,k
is independent of the

channel estimate and distributed as

ell,k ∼ CN
(
0,

(
βll,k − γ

l
l,k

)
IM

)
. (22)

Proof. The proof follows directly from standard MMSE esti-

mation techniques in [29]. �

Lemma 1 provides the MMSE estimator for the pilot design

in (7). The pilot powers as well as inner products between pilot

signals appear explicitly in the expressions. We now compute

the channel estimate and estimation error of hl
l,k

when using

the pilot structure in (12).

Corollary 1. If the system uses the alternative pilot structure

in (12), the MMSE channel estimate in (19) is simplified to

ĥl
l,k =

βl
l,k∑

(i,t)∈PA
l,k

βl
i,t

p̃i,t + σ2
yl,k . (23)

The estimate channel and estimation error are distributed as

ĥl
l,k ∼ CN

*....
,
0,

(βl
l,k

)2 p̃l,k
∑

(i,t)∈PA
l,k

βl
i,t

p̃i,t + σ2
IM

+////
-
, (24)

ell,k ∼ CN
*....
,
0, βll,k

∑
(i,t)∈PA

l,k
\(l,k)

βl
i,t

p̃i,t + σ
2

∑
(i,t)∈PA

l,k

βl
i,t

p̃i,t + σ2
IM

+////
-
. (25)

Proof. This follows from replacing the terms
∑τp

b=1
p̂b
l,k

and
∑

(i,t)∈S β
l
i,t

(∑τp

b=1

√
p̂b
i,t

p̂b
l,k

)2

in Lemma 1 by p̃l,k and
∑

(i,t)∈PA
l,k
βl
i,t

p̃i,t p̃l,k , and then doing some algebra. �

Corollary 1 reveals that the quality of the estimated channel

heavily depends on both the pilot power control and the pilot

reuse set PA
l,k

. A proper selection of PA
l,k

mitigates channel

estimation errors, and will also reduce the coherent interfer-

ence during data transmission. Aligned with prior works, in

the special case of p̃l,k = p̃,∀l, k, the channel estimate and

estimation error are obtained for the pilot structure in (8). We

now use the distributions in Lemma 1 and Corollary 1 to derive

lower bounds on the UL ergodic capacity.

B. Uplink Data Transmission

In the UL data transmission, user t in cell i transmits the

signal xi,t ∼ CN (0, 1). The M × 1 received signal vector at

BS l is the superposition of the transmitted signals

yl =
∑

(i,t)∈S

√
pi,th

l
i,t xi,t + nl, (26)

where pi,t is the transmit power corresponding to the signal

xi,t and the additive noise is nl ∼ CN (0, σ2IM ). To detect the

transmitted signal, BS l selects a detection vector vl,k ∈ CM

and applies it to the received signal as

vH
l,kyl =

∑

(i,t)∈S

√
pi,tv

H
l,khl

i,t xi,t + vH
l,knl . (27)

A general lower bound on the UL ergodic capacity of user k

in cell l is computed in [9] as

Rl,k =

(
1 −

τp

τc

)
log2

(
1 + SINRl,k

)
, (28)
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SINRMR
l,k =

M (βl
l,k

)2pl,k

(
τp∑
b=1

p̂b
l,k

)2

*
,

∑
(i,t)∈S

βl
i,t

(
τp∑
b=1

√
p̂b
i,t

p̂b
l,k

)2

+ σ2
τp∑
b=1

p̂b
l,k
+
-
( ∑

(i,t)∈S
pi,t β

l
i,t
+ σ2

)
+ M

∑
(i,t)∈S\(l,k)

pi,t (β
l
i,t

)2

(
τp∑
b=1

√
p̂b
i,t

p̂b
l,k

)2
. (32)

ISINR
MR

l,k =

M (βl
l,k

)2pl,k p̃l,k

*.
,

∑
(i,t)∈PA

l,k

βl
i,t

p̃i,t + σ2+/
-
( ∑

(i,t)∈S
pi,t β

l
i,t
+ σ2

)
+ M

∑
(i,t)∈PA

l,k
\(l,k)

pi,t p̃i,t (β
l
i,t

)2

. (35)

where the effective SINR value, SINRl,k , is

pl,k |E{vH
l,k

hl
l,k
}|2

∑
(i,t)∈S

pi,tE{|vH
l,k

hl
i,t
|2} − pl,k |E{vH

l,k
hl
l,k
}|2 + σ2E{‖vl,k ‖2}

.

(29)

The lower bound on the UL ergodic capacity in (28) is com-

puted by using the use-and-then-forget bounding technique [6]

and its tightness compared to the other possible bounds is

discussed in Appendix D in [6]. Although the channel capacity

for Massive MIMO in the case of imperfect CSI is unknown,

we believe that the lower bound in (28) is quite close to the

actual capacity. This is because the effective noise is comprised

of a sum of many uncorrelated terms, it is close to Gaussian.

This agrees with the worst-case-is-Gaussian assumption made

when obtaining the bound. As a contribution of this paper, we

compute a closed form expression for this lower bound in the

case of MR detection with

vl,k = ĥl
l,k . (30)

Lemma 2. This is a highly computationally scalable detection

method for Massive MIMO systems. If the system uses the pilot

structure in (7) and MR detection, the SE in (28) for user k

in cell l becomes

RMR
l,k =

(
1 −

τp

τc

)
log2

(
1 + SINRMR

l,k

)
, (31)

where SINRMR
l,k

is shown in (32).

Proof. The proof is available in Appendix A. �

From (32), we notice that it is always advantageous to add

more BS antennas since the numerator grows linearly with

M (and only some terms in the denominator have the same

scaling). The first term in the denominator represents non-

coherent interference that only depends on the number of BSs

and users, while it is independent of M . The second term in the

denominator represents coherent interference caused by pilot

contamination and it grows linearly with M . As a consequence,

as M → ∞, we have

SINRMR
l,k →

(βl
l,k

)2pl,k

(
τp∑
b=1

p̂b
l,k

)2

∑
(i,t)∈S\(l,k)

pi,t (β
l
i,t

)2

(
τp∑
b=1

√
p̂b
i,t

p̂b
l,k

)2
. (33)

This limit depends only on the pilot design (i.e., inner products

between pilot signals) and data power. An optimized selection

of the power terms pl,k, p̂b
l,k
,∀l, k, b, improves the SE by

enhancing the channel estimation quality and reducing the

coherent interference.

We also consider the achievable SE for the modified pilot

structure in (12) as shown in Corollary 2.

Corollary 2. If the system uses the pilot structure in (12),

a lower bound on the capacity for user k in cell l with

uncorrelated Rayleigh fading channels and MR detection is

RMR
l,k =

(
1 −

τp

τc

)
log2

(
1 + ISINR

MR

l,k

)
, (34)

where the SINR value, ISINR
MR

l,k , is given in (35).

Proof. This follows as a special case of Lemma 2. �

The SE in Corollary 2 depends explicitly on the choice of

PA
l,k
,∀l, k, thus the optimization of the pilot assignment is a

combinatorial problem. We stress that the SINR expressions

reflect the joint effects of pilot design, channel estimation qual-

ity, pilot contamination, and data power control, in contrast to

the MSE that cannot distinguish between pilot contamination

and noise. Hence, the SINR is a good metric to consider in the

max-min fairness optimization as shown in the next section.

IV. MAX-MIN FAIRNESS OPTIMIZATION

In this section, we first utilize the SE expressions in

Lemma 2 and Corollary 2 to formulate max-min fairness prob-

lems with joint pilot and data optimization. We demonstrate

that these optimization problems are NP-hard and propose an

algorithm to find the globally optimal solution with the pilot

design in (12) by making an exhaustive search over all pilot

assignments. In addition, instead of looking for the global

optimum, an algorithm to obtain a locally optimal solution in

polynomial time is presented when using the new pilot design

in (7).

A. Problem Formulation

A key vision of Massive MIMO is to provide uniformly

good quality of service for everyone in the network. We will

investigate how to optimize the pilots and powers towards this

goal. We consider the pilot and data powers as optimization
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IISINR
MR
l,k =

M (βl
l,k

)2pl,k

τp∏
b=1

(
p̂b
l,k
/αb

l,k

)2αb
l,k

*
,

∑
(i,t)∈S

βl
i,t

(
τp∑
b=1

√
p̂b
i,t

p̂b
l,k

)2

+ σ2
τp∑
b=1

p̂b
l,k
+
-
( ∑

(i,t)∈S
pi,t β

l
i,t
+ σ2

)
+ M

∑
(i,t)∈S\(l,k)

pi,t (β
l
i,t

)2

(
τp∑
b=1

√
p̂b
i,t

p̂b
l,k

)2
. (47)

variables. The max-min fairness optimization problem is first

formulated for the proposed pilot design in (7) as4

maximize
{p̂b

l,k
,pl,k ≥0}

min
(l,k)

log2

(
1 + SINRMR

l,k

)

subject to
1

τp

τp∑

b=1

p̂bl,k ≤ Pmax,l,k,∀l, k,

pl,k ≤ Pd
max,l,k,∀l, k,

(36)

where Pd
max,l,k

is the maximum power that users can provide

for each data symbol. Note that this optimization problem

jointly generates the pilot signals and performs power control

on the pilot and data transmission. The epigraph-form repre-

sentation of (36) is

maximize
ξ, {p̂b

l,k
,pl,k ≥0}

ξ (37a)

subject to SINRMR
l,k ≥ ξ,∀l, k, (37b)

1

τp

τp∑

b=1

p̂bl,k ≤ Pmax,l,k,∀l, k, (37c)

pl,k ≤ Pd
max,l,k,∀l, k . (37d)

From the expression of the SINR constraints in (37b), we

realize that the proposed optimization problem is a signomial

program.5 Therefore, the max-min fairness optimization prob-

lem is NP-hard in general and seeking the optimal solution has

very high complexity in any non-trivial setup [31]. However,

the power constraints (37c) and (37d) ensure a compact

feasible domain and make the SINRs continuous functions of

the optimization variables. According to Weierstrass’ theorem

[32], an optimal solution always exists.

For the alternative pilot design in (12), the max-min fairness

optimization problem is formulated as

maximize
ξ,A∈D, {p̃l,k,pl,k ≥0}

ξ

subject to ISINR
MR

l,k ≥ ξ,∀l, k,

p̃l,k ≤ τpPmax,l,k,∀l, k,

pl,k ≤ Pd
max,l,k,∀l, k .

(38)

4The optimization problem (36) requires coordination among the cells to
be solved, but the main target in this paper is to investigate how much
the max-min fairness SE can be improved in multi-cell Massive MIMO by
joint pilot design and UL power control. One potential way to deal with
practical limitations such as backhaul signaling, delays, and scalability is to
implement the optimization problem in a distributed manner using dual/primal
decomposition [30].

5A function f (x1, . . . , xN1
) =

∑N2
n=1

cn
∏N1

m=1
x
an,m
m defined in R

N1
+

is
signomial with N2 terms (N2 ≥ 2) if the exponents an,m are real numbers
and the coefficients cn are also real but at least one must be negative. In case
all cn, ∀n, are positive, f (x1, . . . , xN1

) is a posynomial function.

The optimization problem (38) is non-convex since it contains

a combinatorial pilot assignment selection. Fortunately the

optimal solution to this problem can be obtained by looking up

every instance A in the dictionary D. For each A we attain the

pilot reuse sets PA
l,k
,∀l, k, and then convert (38) to a convex

problem as shown in Corollary 3.

Corollary 3. For a given pilot assignment matrix A ∈ D, (38)

reduces to the geometric program

maximize
ξ, {p̃l,k,pl,k ≥0}

ξ

subject to ISINR
MR

l,k ≥ ξ,∀l, k,

p̃l,k ≤ τpPmax,l,k,∀l, k,

pl,k ≤ Pd
max,l,k,∀l, k .

(39)

The optimal solution to (39) is obtained in polynomial time due

to its convexity. By checking every instance A in the dictionary

D and solving the corresponding problem (39), the global

optimum to (38) is obtained as the highest objective value to

(39).

In more detail, the globally optimal solution to (38) is ob-

tained as shown in Algorithm 1. The ith iteration seeks the op-

timal solution ξ (i),opt, p̃
(i),opt

l,k
, and p

(i),opt

l,k
,∀l, k for given {PA

l,k
}

by considering (39) as the main cost function. The algorithm

is terminated when the iteration index equals (K!)L−1. The

global optimum to the pilot and data power control together

with the pilot reuse set are obtained from the maximum values

of all {ξ (i),opt}. This is a practical issue. We are indeed able to

find the solution, but it will take very long time. Algorithm 1

is computationally heavy since the number of iterations grows

rapidly with K and L, but it obtains the global optimum to the

max-min SE problem (38). Specifically, the main cost of each

iteration in Algorithm 1 is the geometric program (40) which

includes 2K L + 1 optimization variables and 3K L constraints.

Based on [33], in general, the computational complexity of

this algorithm is of the order of

O
(
(K!)L−1 max{(2K L + 1)3, 3K L(2K L + 1)2, F1}

)
, (41)

where F1 is the cost of evaluating the first and second

derivatives of the objective and constraint functions in (40).

Therefore, this approach will serve as a benchmark for com-

parison in Section VII. For the sake of completeness, we

also include another benchmark whereas the data powers are

fixed at their maximum value then Algorithm 1 is solved with

respect to the remaining pilot power variables, as was done in

our previous work [27].

B. Local Optimality Algorithm

This subsection provides a method to obtain a local op-

timum to the optimization problem (37). To this end, the
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Algorithm 1 Global solution to (38) by exhaustive search

Input: Set i = 1; Select the initial values of Pmax,l,k and

Pd
max,l,k

for ∀k, l; Set up the dictionary D.

1. Iteration i:

1.1. Assign the reuse pilot set index PA
l,k
,∀l, k, by an

instance A ∈ D.

1.2. Solve the following geometric program to obtain

ξ (i),opt, p
(i),opt

l,k
, and p̃

(i),opt

l,k
,∀l, k :

maximize
ξ (i), {p̃(i)

l,k
,p

(i)

l,k
≥0}

ξ (i)

subject to ISINR
(i),MR

l,k ≥ ξ (i),∀l, k,

p̃
(i)

l,k
≤ τpPmax,l,k,∀l, k,

p
(i)

l,k
≤ Pd

max,l,k,∀l, k .

(40)

2. If i = (K!)L−1 → Stop. Otherwise, go to Step 3.

3. Restore ξ (i),opt,p̃
(i),opt

l,k
, and p

(i),opt

l,k
. Set i = i + 1, then go

to Step 1.

Output: Set iopt
= argmax

i

{ξ (i),opt}, then the optimal solutions:

ξopt
= ξ (iopt),opt, p̃

opt

l,k
= p̃

(iopt),opt

l,k
, and p

opt

l,k
= p

(iopt),opt

l,k
,∀l, k .

signomial SINR constraints are converted to monomial ones by

using the weighted arithmetic mean-geometric mean inequality

[34] stated in Lemma 3.6

Lemma 3. [34, Lemma 1] Assume that a posynomial

function g(x) is defined from the set of τp monomials

{u1(x), . . . , uτp (x)} as

g(x) =

τp∑

b=1

ub (x), (42)

then it is lower bounded by a monomial function g̃(x) as

g(x) ≥ g̃(x) =

τp∏

b=1

(ub (x)/αb)αb , (43)

where αb is a non-negative weight corresponding to ub (x).

We say that g̃(x0) is the best approximation to g(x0) near the

point x0 in the sense of the first order Taylor expansion, if the

weight αb is selected as

αb =
ub (x0)

∑τp

b=1
ub (x0)

. (44)

By using this lemma, the max-min fairness optimization

problem (37) is converted to a geometric program by bounding

the term
∑τp

b=1
p̂b
l,k

in the numerators of the SINR constraints:

τp∑

b=1

p̂bl,k ≥
τp∏

b=1

(
p̂bl,k/α

b
l,k

)αb
l,k , (45)

where αb
l,k

is the weight value corresponding to p̂b
l,k

. This

leads to a lower bound on the SINR value for user k in cell l

obtained as

SINRMR
l,k ≥ IISINR

MR
l,k , (46)

6A function f (x1, . . . , xN1
) = c

∏N1
m=1

x
am
m defined in R

N1
+

is monomial
if the coefficient c > 0 and the exponents am, ∀m, are real numbers.

where the IISINR
MR
l,k value is presented in (47).

The optimal solution ξ to the max-min SE optimization

problem (37) is lower bounded by solving the geometric

program

maximize
ξ, {p̂b

l,k
,pl,k ≥0}

ξ

subject to IISINR
MR
l,k ≥ ξ,∀l, k,

1

τp

τp∑

b=1

p̂bl,k ≤ Pmax,l,k,∀l, k,

pl,k ≤ Pd
max,l,k,∀l, k .

(48)

By virtue of the successive approximation technique [35], a

locally optimal Karush-Kuhn-Tucker (KKT) point to the max-

min fairness optimization problem (37) can be obtained if we

solve (48) iteratively as shown in Theorem 1.

Theorem 1. Selecting an initial point p̂
b, (0)

l,k
,∀l, k, b, in the

feasible domain and solving (48) in an iterative manner by

consecutively updating the weight values αb
l,k

from the optimal

powers of the previous iteration, the solution will converge to

a KKT local point to (37).

Proof. The proof is adapted from the general framework in

[35] and is sketched in Appendix B. �

In particular, we first select the initial powers p̂
b,(0)

l,k
,∀l, k, b

that satisfy p̂
b, (0)

l,k
≥ 0,

∑τp

b=1
p̂
b, (0)

l,k
≤ τpPmax,l,k . Then the

corresponding weight values are computed as in (44). Further-

more, in each iteration, the SINR constraints are converted to

the corresponding monomials by bounding the pilot power of

user k in cell l as in (47), by using the weight values computed

from the optimal pilot powers in the previous iteration. The

pilot and data allocation solution is obtained by solving the

geometric program (48) before the weight values are updated

again at the end of each iteration. We repeat the procedure

until this algorithm has converged to a KKT point. The

convergence can be declared, for example, when the variation

between two consecutive iterations is sufficient small. The

proposed algorithm for obtaining a locally optimal solution

is summarized in Algorithm 2. Note that one can also fix the

data powers and only optimize the pilot signals in Algorithm 2,

as was done in our previous work [27]. Algorithm 2 involves

optimization with K L(τp+1)+1 variables and 3K L constraints,

and it has a computational complexity of the order of [33] 7

O
(
N max{(K L(τp + 1) + 1)3, 3K L(K L(τp + 1) + 1)2, F2}

)
,

(49)

where F2 is the cost of evaluating the first and second

derivatives of the objective and constraint functions in (48).

N is the number of iterations needed for this algorithm to

converge to the KKT point. Even though each iteration in

Algorithm 2 is more costly than in Algorithm 1 since we

carefully design powers for all pilot signals, the successive

approximation approach converges after only a few iterations.

7The exact complexity or the runtime of the proposed algorithms are not
suitable metrics since they depend significantly on the computer configuration
and how much time is spent to optimize the implementations. However (41)
and (49) give basic insights into the general computational complexity scaling.
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Algorithm 2 Successive approximation algorithm for (37)

Input: Set i = 1; Select the maximum powers Pmax,l,k

and Pd
max,l,k

for ∀l, k; Select the initial values of pow-

ers p̂
b, (0)

l,k
for ∀l, k, b; Compute the weight values α

b, (1)

l,k
=

p̂
b, (0)

l,k
/
∑τp

b=1
p̂
b,(0)

l,k
,∀l, k, b.

1. Iteration i:

1.1. Solve the geometric program (48) with αb
l,k
= α

b, (i)

l,k

to get the optimal values ξ (i),opt, p̂
b,(i),opt

l,k
,∀l, k, b, and

p
(i),opt

l,k
,∀l, k .

1.2. Update the weight values: α
b, (i+1)

l,k
=

p̂
b, (i),opt

l,k
/
∑τp

b=1
p̂
b, (i),opt

l,k
,∀l, k, b.

2. If Stopping criterion satisfied → Stop. Otherwise, go to

Step 3.

3. Set ξopt
= ξ (i),opt, p̂

b,opt

l,k
= p̂

b, (i),opt

l,k
,∀l, k, b, and p

opt

l,k
=

p
(i),opt

l,k
,∀l, k; Set i = i + 1, go to Step 1.

Output: The solutions ξopt, p̂
b,opt

l,k
,∀l, k, b, and p

opt

l,k
,∀l, k .

V. PILOT OPTIMIZATION FOR CELLULAR MASSIVE MIMO

SYSTEMS WITH HARDWARE IMPAIRMENTS

The previous sections considered Massive MIMO with ideal

transceiver hardware. However practical transceivers are non-

ideal in the sense of creating distortions that can have a

substantial impact on the SE. Thanks to the non-coherent com-

bining of the independent distortion caused at each of the BS

antennas, the hardware impairments at the BS can be neglected

in Massive MIMO [36]. However, the distortion caused by the

single-antenna users leads to coherent self-interference, which

can be viewed as pilot contamination that the user causes

to itself. The pilot optimization problem is fundamentally

different when accounting for self-interference, because pilot

contamination from distant users can now be neglected when

it is substantially weaker than the self-interference. In this

section, we investigate how the distortions from hardware

impairments at the users affect the proposed pilot design and

the optimization problems.

A. Channel Estimation under Hardware Impairments

We model the distortion caused by the hardware impair-

ments at a user as a reduction of the signal amplitude by√
1 − ǫ2 and the addition of Gaussian distortion with a power

that equals the reduction in signal power [36]. We refer to ǫ

as the impairment level. The received pilot signal at BS l is

Yl =

∑

(i,t)∈S
hl
i,t

(√
1 − ǫ2ψψψH

i,t + εεε
H
p,i,t

)
+ Nl . (50)

Similar to [37], we assume that the UL distortion term of user t

in cell i is distributed as

εεεp,i,t ∼ CN
(
0,ΛΛΛi,t

)
, (51)

where ΛΛΛi,t = ǫ
2diag(p̂1

i,t
, . . . , p̂

τp

i,t
). Since the distortion term is

multiplied with the unknown channel, just as the pilot signals,

the channel estimation is more complicated in this case. An

estimate ĥl,k of hl,k channel can be obtained from

yl,k = Ylψψψl,k =∑

(i,t)∈S
hl
i,t

(√
1 − ǫ2ψψψH

i,tψψψl,k + εεε
H
p,i,tψψψl,k

)
+ Nlψψψl,k,

(52)

where the received signal in (50) is correlated with the pilot

sequence used by the user of interest. We note that the MMSE

estimator is intractable, but we can derive the linear minimum

mean square error (LMMSE) estimator as shown in Lemma 4.

Lemma 4. Under hardware impairments, the LMMSE channel

estimate of hl
l,k

at BS l is

ĥl
l,k =

√
1 − ǫ2 βl

l,k

τp∑
b=1

p̂b
l,k

∑
(i,t)∈S

βl
i,t
κi,t + σ2

τp∑
b=1

p̂b
l,k

yl,k, (53)

where

κi,t = (1 − ǫ2) *,
τp∑

b=1

√
p̂b
i,t

p̂b
l,k
+
-

2

+ ǫ2

τp∑

b=1

p̂bi,t p̂
b
l,k . (54)

The channel estimate ĥl
l,k

and estimation error eeel
l,k

are un-

correlated, but not independent, have zero mean, and the

covariance matrices as

Cov{ĥl
l,k, ĥ

l
l,k } =

(1 − ǫ2)(βl
l,k

)2

(
τp∑
b=1

p̂b
l,k

)2

∑
(i,t)∈S

βl
i,t
κi,t + σ2

τp∑
b=1

p̂b
l,k

IM, (55)

Cov{ell,k, e
l
l,k } =

∑
(i,t)∈S\(l,k)

βl
i,t
κi,t + σ

2
τp∑
b=1

p̂b
l,k
+ ǫ2

τp∑
b=1

(p̂b
l,k

)2

∑
(i,t)∈S

βl
i,t
κi,t + σ2

τp∑
b=1

p̂b
l,k

IM .

(56)

Proof. The proof follows the standard LMMSE estimation

technique as described in [29]. �

This lemma shows that the variance of the estimation error

grows with the impairment level. In the special case of ǫ = 0,

we obtain ideal hardware and the estimate is the same as in

Lemma 1. In contrast, the estimate is zero (equal to the mean

value) if ǫ = 1. We now use the statistics in Lemma 4 to

derive a lower bound on the UL achievable SE and formulate

the corresponding optimization problems.

B. UL Data Transmission and Max-min Fairness Optimization

under Hardware Impairments

Similar to [36], the received signal at BS l during data

transmission for the case of hardware impairments at the users

is modeled as

yl =
∑

(i,t)∈S
hl
i,t

(√
(1 − ǫ2)pi,t xi,t + εi,t

)
+ nl . (57)

We assume that the distortion caused by user t in cell i is

worst-case Gaussian distributed with εi,t ∼ CN (0, ǫ2pi,t ). A
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lower bound on the UL ergodic capacity of user k in cell l is

obtained in Theorem 2.

Theorem 2. Under hardware impairments, if the system uses

the pilot structure in (7) and MR detection, the SE in (28) for

user k in cell l becomes

Rl,k =

(
1 −

τp

τc

)
log2

(
1 + SINR

MR

l,k

)
, (58)

where the effective SINR value, SINR
MR

l,k , is

M (1 − ǫ2)2pl,k (βl
l,k

)2

(
τp∑
b=1

p̂b
l,k

)2

( ∑
(i,t)∈S

βl
i,t
κi,t + σ2

τp∑
b=1

p̂b
l,k

) ( ∑
(i,t)∈S

pi,t β
l
i,t
+ σ2

)
+ ηl,k

,

(59)

where

ηl,k =M
∑

(i,t)∈S\(l,k)

κi,tpi,t (β
l
i,t )

2
+ Mǫ2pl,k (βll,k )2

τp∑

b=1

(p̂bl,k )2

+ Mǫ2(1 − ǫ2) *,
τp∑

b=1

p̂bl,k
+
-

2

pl,k (βll,k )2.

(60)

Proof. The proof is given in Appendix C. �

In comparison to having ideal hardware, the hardware

impairments reduce the coherent gain in the numerator of

the SINR by a factor (1 − ǫ2)2. There is now coherent self-

interference from user k, which behave similarly to pilot

contamination. This contamination can be relatively large

since the user generally has a stronger channel than the

pilot-contaminating interferers. In the asymptotic limit when

M → ∞, only the signal term in the numerator and the term

ηl,k with self-interference and coherent interference from pilot

contamination remain.

Based on the SE expression with hardware impairments, we

consider the max-min fairness optimization problem

maximize
ξ, {pl,k, p̂b

l,k
≥0}

ξ

subject to SINR
MR

l,k ≥ ξ,∀l, k,

1

τp

τp∑

b=1

p̂bl,k ≤ Pmax,l,k,∀l, k,

pl,k ≤ Pd
max,l,k,∀l, k .

(61)

We stress that (61) is a generalization of (37), but all algo-

rithms we proposed for the case of ideal hardware can be

readily extended. Similar to (37), by utilizing the successive

approximation method similar to Algorithm 2, a local optimum

to (61) is obtained in polynomial time. The performance with

heuristic pilot designs and power allocation is obtained directly

from Theorem 2 by using the corresponding values on p̂b
l,k

and for example, in the case of using the combinatorial pilot

structure in (12), similar to the procedures in Algorithm 1,

the global max-min SE solution under hardware impairments

is obtained by jointly optimizing pilot and data powers with

exhaustive search over all A ∈ D.

VI. GENERALIZATION TO CORRELATED RAYLEIGH

FADING

Since the propagation channels may be spatially correlated

in practice, we now consider a correlation model where the

channel between user t in cell i and BS l is modeled as

hl
i,t ∼ CN

(
0,Rl

i,t

)
, (62)

where Rl
i,t
∈ CM×M is the covariance matrix with equal

diagonal elements denoted by βl
i,t

since the BS antennas are

co-located. This assumption also leads to convex optimization

problems. Meanwhile the non-zero off-diagonal elements rep-

resent the spatial correlation. By using the pilot transmission

model in (16) and element-wise MMSE estimation [24], [38],

the channel estimate of hl
l,k

is

ĥl
l,k = ̺

l
l,kyl,k, (63)

where

̺ll,k =

βl
l,k

τp∑
b=1

p̂b
l,k

∑
(i,t)∈S

βl
i,t

(
τp∑
b=1

√
p̂b
i,t

p̂b
l,k

)2

+ σ2
τp∑
b=1

p̂b
l,k

. (64)

After that, a closed-form expression of the achievable SE is

obtained by computing the moments of Gaussian distributions

in (29):

RMR
l,k =

(
1 −

τp

τc

)
log2

(
1 + ESINR

MR

l,k

)
, (65)

where the effective SINR, denoted by ESINR
MR

l,k , is

ESINR
MR

l,k =

M (βl
l,k

)2pl,k
(∑τp

b=1
p̂b
l,k

)2

Inon + Icoh

. (66)

By denoting the trace of a matrix as tr(·), the non-coherent

interference and thermal noise Inon, and the coherent interfer-

ence Icoh in (66) are respectively given as

Inon =

∑

(i,t)∈S

pi,t

M

∑

(i′,t′)∈S
tr

(
Rl
i,tR

l
i′,t′

) *
,
τp∑

b=1

√
p̂b
i′,t′ p̂

b
l,k
+
-

2

+ σ2

τp∑

b=1

p̂bl,k

∑

(i,t)∈S
pi,t β

l
i,t +

βl
l,k
σ2 ∑τp

b=1
p̂b
l,k

̺l
l,k

, (67)

Icoh = M
∑

(i,t)∈S\(l,k)

pi,t (β
l
i,t )

2 *
,
τp∑

b=1

√
p̂b
i,t

p̂b
l,k
+
-

2

. (68)

From the SINR expression in (66), the correlation between

channels only effects the non-coherent interference while the

coherent interference remains the same as in the case of

uncorrelated Rayleigh fading. We now can formulate the max-

min fairness optimization problem as

maximize
ξ, {pl,k, p̂b

l,k
≥0}

ξ

subject to ESINR
MR

l,k ≥ ξ,∀l, k,

1

τp

τp∑

b=1

p̂bl,k ≤ Pmax,l,k,∀l, k,

pl,k ≤ Pd
max,l,k,∀l, k .

(69)
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The optimization problem (69) has the same general structure

as the problems considered in Section IV. For example, with

the proposed pilot design, we can directly use Algorithm 2 to

obtain a local optimum, while the global solution of the max-

min fairness optimization can obtained with the pilot design

in (12) by making simple modifications to Algorithm 1.

VII. NUMERICAL RESULTS

In this section, we use numerical simulations to quantify and

discuss the effectiveness of the proposed pilot designs, using

the exact closed-form expressions of the SE in (31), (34), (58),

and (65). A Massive MIMO system with a coverage area 1

km2 comprising of four square cells is considered. In each cell,

a BS is located at the center, while the K users are uniformly

distributed at distance not closer to the BS than 35 m. To even

out interference, the coverage area is wrapped around, and

therefore one BS has eight neighbors. The coherence interval

contains 200 symbols and the system bandwidth is 20 MHz.

The noise variance is −96 dBm. We deploy the 3GPP LTE

model from [39] where the large-scale fading coefficient βl
i,t

[dB] is

βli,t = −148.1 − 37.6 log10 dl
i,t + zli,t, (70)

where, dl
i,t

denotes the distance in km between user t in

cell i and BS l. The shadow fading zl
i,t

has a Gaussian

distribution with zero mean and the standard derivation 7 dB.8

The maximum pilot and data power constraints are Pmax,l,k =

Pd
max,l,k

= 200 mW, ∀l, k.

For Algorithm 2 and its modification with fixed data power

(which was considered in [27]), we observe better performance

with a hierarchical initialization of p
b, (0)

l,k
than with an all-equal

initialization. Consequently, we initialize p
b, (0)

l,k
as uniformly

distributed over the range [0; Pmax,l,k].9 Algorithm 2 converges

quite fast, so the stopping criteria was specified in number of

iterations (e.g., 15 iterations). The proposed algorithms are

compared with related works and exhaustive search:

(i) Random pilot assignment, as considered in [11], [16].

The same pilots are reused in every cell and assigned

randomly to the users within the cell. Equal pilot and data

powers of 200 mW are used by all users. This method is

denoted as Random P. assignment in the figures.

(ii) Smart pilot assignment, as proposed in [20]. Orthogonal

pilots are assumed within a cell and reused in every

cell. They are assigned to the users based on the mutual

interference information, determined by the large-scale

fading coefficients. Equal pilot and data powers 200 mW

are used by all users. This method is denoted as Smart

P. assignment in the figures.

(iii) Pilot power optimization with exhaustive search, as pro-

posed in [27], utilizes the pilot structure in (12) and the

optimal solution to the max-min SE is obtained by a

8Shadow fading realizations were sometimes regenerated to ensure that
the home BS has the largest large-scale fading to its users (i.e., βl

l,k
is the

maximum over all βl
i,k

, i = 1, . . . , L). This makes sure that the coverage

area of each BS is a square also with shadow fading, while retaining the
macro-diversity towards shadow fading that exists in practice.

9The maximum power settings indicate relatively low median SNRs at the
cell-edge users of the network.
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Fig. 2. Cumulative distribution function (CDF) versus the max-min SE
[b/s/Hz] with M = 300, K = τp = 2.
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Fig. 3. Cumulative distribution function (CDF) versus the UL transmit power
[mW] with M = 300, K = τp = 2.

modification of Algorithm 1 with fixed data powers of

pl,k = 200 mW at all users. This method is denoted as P.

opt. w. exhaustive in the figures.

(iv) Joint pilot and data power optimization with exhaustive

search utilizes the pilot structure in (12) and the optimal

solution to the max-min SE is obtained as shown in

Algorithm 1. This method is denoted as P&D opt. w.

exhaustive in the figures.

(v) Proposed pilot optimization with full data power, as

presented in [27], utilizes the pilot structure in (7) and

the local optimum to the max-min SE is obtained by a

modification of Algorithm 2 with fixed data powers of

pl,k = 200 mW at all users. This method is denoted as

Pro. P. opt. w. full D. power in the figures.

(vi) Proposed joint pilot and data power optimization utilizes

the pilot structure in (7) and the local optimum to the

max-min SE is obtained as shown in Algorithm 2. This

method is denoted as Pro. P&D opt. in the figures.

The SE is measured over different random user locations and

shadow fading realizations. The SE achieved by (i)–(iv) are

also averaged over different pilot reuse locations, while for

(v) and (vi) the SE is also averaged over different initial-

izations of p̂
b,(0)

l,k
,∀l, k, b. The solutions to the optimization

problems are obtained by utilizing the MOSEK solver [40]

in CVX [41]. Fig. 2 shows the cumulative distribution
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function (CDF) of the max-min SE level [b/s/Hz] for the

case K = τp = 2 and M = 300. Random pilot assignment

yields the worst performance due to the pilot contamination

and mutual interference. At the 95%-likely point, smart pilot

assignment brings significant improvements: it is about 6.86×
better since it attempts to reduce the mutual interference

between the users [20]. Although the performance of smart

pilot assignment is very close to optimal pilot assignment with

exhaustive search for a predetermined pilot power level [20],

by jointly optimizing power and allocation of the pilot signals,

the proposed method outperforms smart pilot assignment by

providing an additional 1.53× gain in average max-min SE.

Fig. 2 also demonstrates the superiority of jointly optimizing

both data and pilot powers. It yields 1.86× higher average

SE than optimizing only the pilots. Furthermore, the similar

performance between the proposed pilot design and exhaustive

search confirms the effectiveness of the proposed algorithms

for finding locally optimal solutions. The proposed approach

for joint optimization pilot and data power on average achieves

84% of the SE with the optimal solution, with a substantially

lower computational complexity.

Fig. 3 plots the CDF of power allocated to each pilot/data

symbol with K = τp = 2 and M = 300. We do not

include random pilot assignment and smart pilot assignment

because they consume full power 200 mW. We observe a

vast energy saving for the remaining methods. For the pilot

and data power control with exhaustive search, the power
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Fig. 6. Max-min SE [b/s/Hz] versus the length of pilot signals, K = 4.
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Fig. 7. Max-min SE [b/s/Hz] versus the impairment level, M = 300, K =
τp = 2.

consumption on pilot signaling is on average only 111 mW.

The proposed design without data power control, each pilot

symbol on average only spends 50 mW. In comparison to the

previous pilot design (e.g., the max-min SE in Fig. 2 and the

corresponding power consumption in Fig. 3), we conclude that

the proposed pilot structure can reduce the transmit power

more significantly than the prior works while producing better

max-min SE. This is because the prior works mitigate pilot

contamination by assigning the orthogonal pilot signals to the

users; that is, each user assigns power to only one of the basis

vectors. In contrast, our design allows for non-orthogonal pilot

signals with increasing feasible domain to minimize the total

coherent interference in the network. By counting 95% of the

pilot energy, the average number of non-zero pilot symbols

in each pilot signal is on average about 1.02 and 1.32 for

τp = K = 2 and τp = K = 4, respectively. Hence, some users

have non-orthogonal pilots. The pilot power optimization with

exhaustive search has a computational complexity that grows

exponentially in K . When increasing the number of users, we

henceforth only compare the three pilot designs: proposed pilot

design, smart pilot assignment, and random pilot assignment.

Fig. 4 displays the max-min SE as a function of the number of

users and pilots with M = 300, K = τp . Our proposed design

yields the highest performance among the related algorithms.

Specifically, in comparison to random pilot assignment, the

improvement varies from 2.39× with K = τp = 2 to 4.58×
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Fig. 8. Max-min SE [b/s/Hz] for the cases of uncorrelated Rayleigh fading
and correlated Rayleigh fading, M = 300, K = τp = 2.

with K = τp = 8. Even though smart pilot assignment

also performs much better than random pilot assignment, our

proposed scheme provides substantial improvements over the

state-of-the-art (e.g., we gain 1.72× with K = τp = 8 for

fixed data power). The figure also demonstrates a significant

improvement with jointly optimizing pilot and data power for

all the tested cases of the user and pilot number. In comparison

to the case of only optimizing the pilots, the performance gain

is from 1.87× to 4.01× as the number of users and pilots

increases from 2 to 8. In addition, we observe a dramatic

reduction of the max-min SE of all the pilot designs when the

number of users increases due to stronger mutual interference.

According to Fig. 4, the performances of the different pilot

designs and power control algorithms are about the same for

large numbers of users.

Fig. 5 shows the max-min SE in the network as a function of

the number of BS antennas. Among the three pilot structures,

we still observe the worst performance with random pilot

assignment, for which the max-min SE only increases from

0.10 [b/s/Hz] to 0.23 [b/s/Hz], when the number of antennas

increases from 100 to 900 antennas. Our proposed pilot design

obtains better performance than smart pilot assignment and the

gap grows as more antennas BSs are added. For example, with

100 BS antennas, the smart pilot assignments yields a max-min

SE 0.20 [b/s/Hz], while optimizing pilot signaling for fixed

data powers gives 0.27 [b/s/Hz] and the joint optimization

of pilot and data powers yields 1.18 [b/s/Hz]. The max-min

SE is respectively 0.60, 1.08, and 2.12 [b/s/Hz] for the three

methods when the BSs are equipped with 900 antennas. Hence

the proposed pilot structure is especially suitable for Massive

MIMO systems with the large ratios M/K . Moreover, due to

the pilot contamination, a saturation of the SE at about 2.10

[b/s/Hz] is observed with the proposed joint optimization of

pilot and data powers.

Only the special case K = τp has been investigated so

far due to the high computational complexity of the pilot

assignments from [17], [20]. In contrast, our algorithms can be

applied for arbitrary lengths of the pilots. This is demonstrated

in Fig. 6, which displays the max-min SE as a function of the

length of the pilot signals. We observe noticeable gains when

the pilot length increases for both (v) and (vi). For instance,

when the pilot length per coherence interval increases from 1

to 19, we observe a gain up to 12.17× with the proposed joint

pilot and data power optimization. Moreover, the pilot signals

with lengths τp > K L still bring an increasing SE since it

produces better channel estimation quality. However the gain

is not significant, and therefore τp = K L is a good choice to

eliminate pilot contamination and maximize the minimum SE

if we have enough time-frequency resources.

The impact of hardware impairments is shown in Fig. 7.

Increasing the impairment level leads to a decrease in max-min

SE, but the reduction is not dramatic since we are operating

at low SE where the performance is already interference

limited, so the additional self-interference has no dominant

impact. When the impairment level reaches 0.2, there is only

a reduction of about 15.04%, 16.51%, 18.88%, and 28.87%

for random pilot assignment, smart pilot assignment, proposed

pilot design with full data power, and proposed joint pilot and

data power optimization respectively. This impairment level

is hardly found in practice. For a more realistic impairment

level of ǫ = 0.1, the reduction only varies from 3.61% to

7.27%. Furthermore that hardware impairments reduce more

the performance of the algorithms giving higher SEs. Finally,

we stress that our proposed algorithms provide substantial

performance gains also under hardware impairments.

Motivated by the fact that practical channels may be spa-

tially correlated, Fig. 8 shows the max-min SE of the pilot

design (please refer to Section VI for the analysis) where

the channel between user i in cell t and BS l is modeled

by using the exponential correlation model [42]. In particular,

hl
i,t
∼ CN (0,Rl

i,t
) and Rl

i,t
is defined as

Rl
i,t = βli,t



1 r
l,∗
i,t

· · · (r
l,∗
i,t

)M−1

r l
i,t

1 · · · (r
l,∗
i,t

)M−2

...
...

. . .
...

(r l
i,t

)M−1 (r l
i,t

)M−2 · · · 1


, (71)

where the correlation coefficient r l
i,t
= ρl

i,t
e
θ l
i, t and θl

i,t
is

the angle between the BS-user vector and the horizontal line.

The coefficient magnitude ρl
i,t

is in the range of [0, 1] and it

equals 0.5 in our simulation. The figure demonstrates that our

pilot design provides much higher max-min SE than the other

pilot designs. Although the spatial correlation affects the user

channels, the differences in SE are not significant compared

to uncorrelated Rayleigh fading.

VIII. CONCLUSION

This paper proposed a novel pilot design for cellular Mas-

sive MIMO systems and combines the pilot assignment and

uplink power allocation into a unified optimization framework.

A key difference from prior work is that we treat the pilot

signals as continuous optimization variables, instead of prede-

fined vectors that should be assigned combinatorially. We used

the proposed pilot structure to compute a new SE on the UL

ergodic SE for Rayleigh fading channels with MR detection,

both with ideal hardware and hardware impairments. A general

max-min SE optimization problem was formulated. Although
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finding the globally optimal solution is NP-hard, we developed

an algorithm that finds a local optimum that outperforms the

previous state-of-the-art algorithms for pilot assignment and

is close to the optimum obtained by the exhaustive search.

The numerical results demonstrate the importance of jointly

optimizing the pilots and transmit powers in order to improve

the max-min SE.

APPENDIX

A. Proof of Lemma 2

The SINR value in the theorem is obtained by computing

the expectations in (29). Due to the independence of the

channel estimate and estimation error, the numerator of (29)

is computed as

pl,k |E{vH
l,khl

l,k }|
2
= pl,k |E{| |ĥl

l,k | |
2}|2

= pl,k *,M βll,k ̺
l
l,k

τp∑

b=1

p̂bl,k
+
-

2

.
(72)

Note that this term also appears in the denominator of (29).

The first expectation in the denominator is reformulated as

E{|vH
l,khl

i,t |2}/(̺ll,k )2
= E

{
|yH

l,khl
i,t |2

}

= E


�������

∑

(i′,t′)∈S

τp∑

b=1

√
p̂b
l,k

p̂b
i′,t′ (h

l
i′,t′ )

Hhl
i,t

�������
2

+ E

{���(Nlψψψl,k

)H
hl
i,t
���2
}

(73)

by utilizing the independence of the noise and the channels.

Decomposing the first expectation into two parts, one related

to hl
i,t

and the other comprises of the remaining channels, we

obtain

E


�������

∑

(i′,t′)∈S

τp∑

b=1

√
p̂b
l,k

p̂b
i′,t′ (h

l
i′,t′ )

Hhl
i,t

�������
2

= E


������
τp∑

b=1

√
p̂b
l,k

p̂b
i,t

(hl
i,t )

Hhl
i,t

������
2

+ E


�������

∑

(i′,t′)∈Si, t \(i,t)

τp∑

b=1

√
p̂b
l,k

p̂b
i′,t′ (h

l
i′,t′ )

Hhl
i,t

�������
2

(a)
= M (M + 1) *,

τp∑

b=1

√
p̂b
l,k

p̂b
i,t
+
-

2

(βli,t )
2

+ M

∑

(i′,t ′)∈Si,t\(i,t)

*
,
τp∑

b=1

√
p̂b
l,k

p̂b
i′,t′

+
-

2

βli′,t′ β
l
i,t

= M2 *
,
τp∑

b=1

√
p̂b
l,k

p̂b
i,t
+
-

2

(βli,t )
2

+ M
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(i′,t′)∈S

*
,
τp∑

b=1

√
p̂b
l,k

p̂b
i′,t′

+
-

2

βli′,t′ β
l
i,t,

(74)

where (a) is obtained by using Lemma 2.9 in [43] to compute

the fourth-order moment E{| |hl
i,t
| |4}. The second expectation

in (73) is computed from the independence property between

additive noise and the original channel hl
i,t

as

E{| (Nlψψψl,k

)H
hl
i,t |2} = M βli,tσ

2

τp∑

b=1

p̂bl,k . (75)

Plugging (74) and (75) into (73), the first expectation in the

denominator of (29) is

E{|vH
l,khl

i,t |2} = M (̺ll,k )2
∑

(i,t)∈S
pi,t β

l
i,t×

*.
,
βl
l,k

∑τp

b=1
p̂b
l,k

̺l
l,k

+ M *
,
τp∑

b=1

√
p̂b
l,k

p̂b
i,t
+
-

2

βli,t
+/
- .

(76)

The last expectation in the denominator of (29) is

E{‖vl,k ‖2} = M βll,k ̺
l
l,k

τp∑

b=1

p̂bl,k, (77)

by using the definition of MR detection in (30) and the

estimated channel distribution in Lemma 1. Plugging (72),

(76), and (77) into (29), we obtain the SINR value as shown

in the theorem after some simple algebra.

B. Proof of Theorem 1

Let us denote the feasible set of the optimization problem

(37) as

F =
{
pl,k, p̂bl,k,∀l, k, b : pl,k, p̂bl,k ∈ R+, pl,k ≤ Pd

max,l,k,

1

τp

τp∑

b=1

p̂bl,k ≤ Pmax,l,k

}
.

(78)

The optimal solution set to the optimization problem (48) in

the ith iteration is denoted as

I (i)
=

{
p

(i),opt

l,k
, p̂

b, (i),opt

l,k
,∀l, k, b

}
. (79)

Let SINRMR
l,k

( f̃ ) denote the SINR value computed from (32)

for any feasible point f̃ ∈ F , while IISINR
(i),MR

l,k (I (i)) denotes

the approximated SINR value at the ith iteration computed

from (47) using the solution I (i) obtained in the ith iteration.

By using the approximation in (46), our family of SINR

functions satisfies the following properties [34], ∀l, k, b:

SINRMR
l,k

(
f̃
)
≥ IISINR

(i),MR

l,k

(
f̃
)
,∀ f̃ ∈ F , (80)

SINRMR
l,k

(
I (i)

)
= IISINR

(i+1),MR

l,k

(
I (i)

)
, (81)

∂SINRMR
l,k

(
I (i)

)

∂ p̂b
l,k

=

∂IISINR
(i+1),MR

l,k

(
I (i)

)

∂ p̂b
l,k

, (82)

∂SINRMR
l,k

(
I (i)

)

∂pl,k
=

∂IISINR
(i+1),MR

l,k

(
I (i)

)

∂pl,k
. (83)

The property (80) implies that the globally objective value to

the geometric program (48) is also feasible for the signomial

program (37) and we can construct the following chain of

inequalities:

. . . = IISINR
(i),MR

l,k

(
I (i−1)

) (a)
≤ IISINR

(i),MR

l,k

(
I (i)

)

(b)
≤ SINRMR

l,k

(
I (i)

) (c)
= IISINR

(i+1),MR

l,k

(
I (i)

)
≤ . . . ,

(84)



14

SINR
MR

l,k =

(1 − ǫ2)pl,k |E{yH
l,k

hl
l,k
}|2

∑
(i,t)∈S

pi,tE{|yH
l,k

hl
i,t
|2} − (1 − ǫ2)pl,k |E{yH

l,k
hl
l,k
}|2 + σ2E{‖yl,k ‖2}

. (85)

where (a) is obtained by solving the geometric optimization

problem (48). (b) and (c) follow by (80) and (81), respectively.

Thus, if ξ (i),opt is the optimal objective value of (48), then

we obtain ξ (i+1),opt ≥ ξ (i),opt. The objective function is non-

decreasing with the iteration index i, while the pilot and data

power ranges make the SINR expressions continuous functions

and they are bounded from above (i.e., IISINR
MR
l,k < ∞,∀l, k)

ensuring that (48) converges. If the convergence holds at the ith

iteration (i.e., ξ (i+1),opt
= ξ (i),opt), then the optimal solution set

I (i) must also be a solution in the (i+1)th iteration (otherwise,

it leads to ξ (i+1),opt > ξ (i),opt). Hence (48) converges to a limit

point. Furthermore, our constraint functions in (48) satisfy

Slater’s condition [33] and ensure that the KKT conditions

of (37) and (48) coincide, if we use (82) and (83) to do a

matching procedure as in the proof of Theorem 1 in [35].

Consequently, the limit point obtained when solving (48) in

an iterative manner is a KKT local point to (37).

C. Proof of Theorem 2

We use Lemma 4 [16] to obtain the effective SINR of user k

in cell l with MR detection as in (85). It remains to compute

the expectations, which is similar to proof of Lemma 2, but

more complicated since the channel estimates and estimation

errors are neither Gaussian nor independent. Therefore, we

summarize the main steps to compute these expectations.

By utilizing the uncorrelation property among the noise, the

distortion and the propagation channels, the numerator of (85)

is computed as

(1 − ǫ2)pl,k |E{yH
l,khl

l,k }|
2
= (1 − ǫ2)2pl,k M2(βll,k )2‖ψψψl,k ‖4

= (1 − ǫ2)2pl,k M2(βll,k )2 *
,
τp∑

b=1

p̂bl,k
+
-

2

.

(86)

Similarly, thanks to the uncorrelation of the noise, the propa-

gation channels, and the distortion term, the first expectation

in the denominator of (85) is computed as

E{|yH
l,khl

i,t |2} =

M βli,t
*.
,

∑

(i′,t′)∈S
βli′,t′ κi′,t′ + ‖ψψψl,k ‖2σ2+/

- + M2κi,t (β
l
i,t )

2,
(87)

where κi,t = (1 − ǫ2) |ψψψH
i,t
ψψψl,k |2 + ψψψH

l,k
ΛΛΛi,tψψψl,k , and then by

utilizing (5) we obtain the alternative expression for κi,t that

is shown in (54). In the same manner, the last expectation in

the denominator of (85) is

E{‖yl,k ‖2} = M
*.
,

∑

(i,t)∈S
βli,t κi,t + σ

2‖ψψψl,k ‖2+/- . (88)

Plugging (86)–(88) into (85), we obtain the SINR given in the

theorem by using the following identities:

‖ψψψl,k ‖4 = *
,
τp∑

b=1

p̂bl,k
+
-

2

(89)

|ψψψH
i,tψψψl,k |2 = *

,
τp∑

b=1

√
p̂b
i,t

p̂b
l,k
+
-

2

(90)

ψψψH
l,kΛ
ΛΛi,tψψψl,k = ǫ

2

τp∑

b=1

p̂bi,t p̂
b
l,k . (91)
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