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Joint Power Allocation and User Association

Optimization for Massive MIMO Systems
Trinh Van Chien Student Member, IEEE, Emil Björnson, Member, IEEE, and Erik G. Larsson, Fellow, IEEE

Abstract—This paper investigates the joint power allocation
and user association problem in multi-cell Massive MIMO
(multiple-input multiple-output) downlink (DL) systems. The
target is to minimize the total transmit power consumption
when each user is served by an optimized subset of the base
stations (BSs), using non-coherent joint transmission. We first
derive a lower bound on the ergodic spectral efficiency (SE),
which is applicable for any channel distribution and precoding
scheme. Closed-form expressions are obtained for Rayleigh fading
channels with either maximum ratio transmission (MRT) or zero
forcing (ZF) precoding. From these bounds, we further formulate
the DL power minimization problems with fixed SE constraints
for the users. These problems are proved to be solvable as
linear programs, giving the optimal power allocation and BS-
user association with low complexity. Furthermore, we formulate
a max-min fairness problem which maximizes the worst SE
among the users, and we show that it can be solved as a
quasi-linear program. Simulations manifest that the proposed
methods provide good SE for the users using less transmit power
than in small-scale systems and the optimal user association
can effectively balance the load between BSs when needed.
Even though our framework allows the joint transmission from
multiple BSs, there is an overwhelming probability that only one
BS is associated with each user at the optimal solution.

Index Terms—Massive MIMO, user association, power alloca-
tion, load balancing, linear program.

I. INTRODUCTION

The exponential growth in wireless data traffic and number

of wireless devices cannot be sustained by the current cel-

lular network technology. The fifth generation (5G) cellular

networks are expected to bring thousand-fold system capacity

improvements over contemporary networks, while also sup-

porting new applications with massive number of low-power

devices, uniform coverage, high reliability, and low latency

[2], [3]. These are partially conflicting goals that might need

a combination of several new radio concepts; for example,

Massive MIMO [4], millimeter wave communications [5], and

device-to-device communication [6].

Among them, Massive MIMO, a breakthrough technology

proposed in [4], has gained lots of attention recently [7]–[10].

It is considered as an heir of the MIMO technology since its

scalability can provide very large multiplexing gains, while

previous single-user and multi-user MIMO solutions have

been severely limited by the channel estimation overhead and
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unfavorable channel properties. In Massive MIMO, each BS is

equipped with hundreds of antennas and serves simultaneously

tens of users. Since there are many more antennas than users,

simple linear processing techniques such as MRT or ZF, are

close to optimal. The estimation overhead is made proportional

to the number of users by sending pilot signals in the uplink

(UL) and utilizing the channel estimates also in the DL by

virtue of time-division duplex (TDD).

Because 80% of the power in current networks is consumed

at the BSs [11], the BS technology needs to be redesigned to

reduce the power consumption as the wireless traffic grows.

Many researchers have investigated how the physical layer

transmissions can be optimized to reduce the transmit power,

while maintaining the quality-of-service (QoS); see [11]–[16]

and references therein. In particular, the precoding vectors and

power allocation were jointly optimized in [12] under perfect

channel state information (CSI). The algorithm was extended

in [13] to also handle the BS-user association, which is of

paramount importance in heterogeneously deployed networks

and when the users are heterogeneously distributed. However,

[13] did not include any power constraints at the BSs, which

could lead to impractical solutions. In contrast, [14] showed

that most joint power allocation and BS-user association prob-

lems with power constraints are NP-hard. The recent papers

[15], [16] consider a relaxed problem formulation where each

user can be associated with multiple BSs and show that these

problems can be solved by convex optimization.

The papers [12]–[16] are all optimizing power with re-

spect to the small-scale fading, which is very computationally

demanding since the fading coefficients change rapidly (i.e.,

every few milliseconds). It is also unnecessary to compensate

for bad fading realizations by spending a lot of power on

having a constant QoS, since it is typically the average QoS

that matters to the users. In contrast, the small-scale fading

has negligible impact on Massive MIMO systems, thanks to

favorable propagation [17], and closed-form expressions for

the ergodic SE are available for linear precoding schemes [7].

The power allocation can be optimized with respect to the

slowly varying large-scale fading instead [8], which makes

advanced power control algorithms computationally feasible.

A few recent works have considered power allocation for

Massive MIMO systems. For example, the authors in [18]

formulated the DL energy efficiency optimization problem

for the single cell Massive MIMO systems that takes both

the transmit and circuit powers into account. The paper [19]

considered optimized user-specific pilot and data powers for

given QoS constraints, while [20] optimized the max-min SE

and sum SE. None of these papers have considered the BS-
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user association problem.

Massive MIMO has demonstrated high energy efficiency in

homogeneously loaded scenarios [7], where an equal number

of users are preassigned to each BS. At any given time, the

user load is typically heterogeneously distributed, such that

some BSs have many more users in their vicinity than others.

Large SE gains are often possible by balancing the load over

the network [21], [22], using some other user association rule

than the simple maximum signal-to-noise ratio (max-SNR)

association. Instead of associating a user with only one BS,

coordinated multipoint (CoMP) methods can be used to let

multiple BSs jointly serve a user [23]. This can either be

implemented by sending the same signal from the BSs in a

coherent way, or by sending different simultaneous signals in

a non-coherent way. However, finding the optimal association

is a combinatorial problem with a complexity that scales

exponentially with the network size [22]. Such association

rules are referred to as a part of CoMP joint transmission and

have attracted significant interest because of their potential

to increase the achievable rate [21], [23]. While load bal-

ancing is a well-studied problem for heterogeneous multi-tier

networks, the recent works [24]–[26] have shown that large

gains are possible also in Massive MIMO systems. From the

game theory point of view, the author in [24] proposed a

user association approach to maximize the SE utility while

taking pilot contamination into account. Apart from this, [25]

considered the sum SE maximization of a network where one

user is associated with one BS. We note that [24], [25] only

investigated user association problems for a given transmit

power at the BSs. Different from [24], [25], the total power

consumption minimization problems with optimal and sub-

optimal precoding schemes were investigated in [26].

In this paper we jointly optimize the power allocation

and BS-user association for multi-cell Massive MIMO DL

systems. Specifically, our main contributions are as follows:

• We derive a new ergodic SE expression for the scenario

when the users can be served by multiple BSs, using

non-coherent joint transmission and decoding the received

signals in a successive manner. Closed-form expressions

are derived for MRT and ZF precoding.

• We formulate a transmit power minimization problem

under ergodic SE requirements at the users and limited

power budget at the BSs. This problem is shown to be a

linear program when the new ergodic SE expression for

MRT or ZF is used, so the optimal solution is found in

polynomial time.

• The optimal BS-user association rule is obtained from

the transmit power minimization problem. This rule re-

veals how the optimal association depends on the large-

scale fading, estimation quality, signal-to-interference-

and-noise ratio (SINR), and pilot contamination. Inter-

estingly, only a subset of BSs serves each user at the

optimal solution.

• We consider the alternative option of optimizing the

SE targets utilizing max-min SE formulation with user-

specific weights. This problem is shown to be quasi-linear

and can be solved by an algorithm that combines the

transmit power minimization with the bisection method.

Fig. 1. A multiple-cell Massive MIMO DL system where users can be
associated with more than one BS (e.g., red users). The optimized BS subset
for each user is obtained from the proposed optimization problem.

• The effectiveness of our novel algorithms and analytical

results are demonstrated by extensive simulations. These

show that the power allocation, array gain, and BS-user

association are all effective means to decrease the power

consumption in the cellular networks. Moreover, we show

that the max-min algorithm can provide uniformly great

SE for all users, irrespective of user locations, and provide

a map that shows how the probability of being served by

a certain BS depends on the user location.

This paper is organized as follows: Section II presents the

multi-cell Massive MIMO system model and derives lower

bounds on the ergodic SE. In Section III the transmit power

minimization problem is formulated. The optimal solution

is obtained in Section IV where also the optimal BS-user

association rule is obtained, while an algorithm for max-min

SE optimization is derived in Section V. Finally, Section VI

gives numerical results and Section VII summarizes the main

conclusions.

Notations: We use upper-case bold face letters for matrices

and lower-case bold face ones for vectors. IM and IK are the

identity matrices of size M ×M and K × K , respectively. The

operator E{·} is the expectation of a random variable. The

notation ‖ · ‖ stands for the Euclidean norm and tr(·) is the

trace of a matrix. The regular and Hermitian transposes are

denoted by (·)T and (·)H , respectively. Finally, CN (., .) is the

circularly symmetric complex Gaussian distribution.

II. SYSTEM MODEL AND ACHIEVABLE PERFORMANCE

A schematic diagram of our system model is shown in

Fig. 1. We consider a Massive MIMO system with L cells.

Each cell comprises a BS with M antennas. The system serves

K single antenna users in the same time-frequency resource.

Note that each user is conventionally associated and served

by only one of the BSs. However, in this paper, we optimize

the BS-user association and investigate when it is preferable

to associate a user with multiple BSs. Therefore, the users are

numbered from 1 to K without having predefined cell indices.

We assume that the channels are constant and frequency-flat

in a coherence interval of length τc symbols and the system

operates in TDD mode. In detail, τp symbols are used for

channel estimation, so the remaining portion of a coherence
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block including τc − τp symbols are dedicated for the data

transmission. In the UL, the received baseband signal yl ∈ CM

at BS l, for l = 1, . . . , L, is modeled as

yl =

K∑

t=1

hl,t

√
pt xt + nl, (1)

where pt is the transmit power of user t assigned to the

normalized transmit symbol xt with E{|xt |2} = 1. At each

BS, the receiver hardware is contaminated by additive noise

nl ∼ CN (0, σ2
UL

IM ). The vector hl,t denotes the channel

between user t and BS l. In this paper, we consider uncor-

related Rayleigh fading channels, meaning that the channel

realizations are independent between users, BS antennas and

between coherence intervals. Mathematically, each channel

vector hl,t , for t = 1, . . . , K , is a realization of the circularly

symmetric complex Gaussian distribution

hl,t ∼ CN (0, βl,tIM ). (2)

The variance βl,t describes the large-scale fading which,

for example, symbolizes the attenuation of signals due to

diffraction around large objects such as high buildings and due

to propagation over a long distance between the BS and user.

Let us define the channel matrix Hl = [hl,1, . . . , hl,K ] ∈ CM×K ,

the diagonal power matrix P = diag(p1, . . . , pK ) ∈ CK×K , and

the useful signal vector xl = [xl,1, . . . , xl,M ]T ∈ CM . Thus, the

UL received signal at BS l in (1) can be written as

yl = HlP
1/2xl + nl . (3)

Each BS in a Massive MIMO system needs CSI in order to

make efficient use of its antennas; for example, to coherently

combine desired signals and reject interfering ones. BSs do

not have CSI a priori, which calls for CSI estimation from

UL pilot signals in every coherence interval.

A. Uplink Channel Estimation

The pilot signals are a part of the UL transmission. We

assume that user k transmit the pilot sequence φφφk of length

τp symbols described by the UL model in (3). We let Pk ⊂
{1, . . . , K } denote the set of user indices, including user k,

that use the same pilot sequence as user k. Thus, the pilot

sequences are assumed to be mutually orthogonal such that

φφφHt φφφk =


0, t < Pk,
τp, t ∈ Pk .

(4)

The received pilot signal Yl ∈ CM×τp at BS l can be expressed

as

Yl = HlP
1/2
ΦΦΦ

H
+ Nl, (5)

where the τp × K pilot matrix ΦΦΦ = [φφφ1, . . . , φφφK ] and Nl ∈
C
M×τp is Gaussian noise with independent entries having the

distribution CN (0, σ2
UL

). Based on the received pilot signal (5)

and assuming that the BS knows the channel statistics, it can

apply minimum mean square error (MMSE) estimation [27]

to obtain a channel estimate of hl,k as shown in the following

lemma.

Lemma 1. BS l can estimate the channel to user k using

MMSE estimation from the following equation,

Ylφφφk = HlP
1/2
ΦΦΦ

Hφφφk + Nlφφφk = τp

∑

t′∈Pk

√
pt′hl,t′ + ñl,k, (6)

where ñl,k = Nlφφφk ∼ CN (0, τpσ
2
UL

IM ). The MMSE estimate

ĥl,k of the channel hl,k between BS l and user k is

ĥl,k =

√
pk βl,k

τp
∑

t′∈Pk pt′ βl,t′ + σ
2
UL

Ylφφφk (7)

and the estimation error is defined as

el,k = ĥl,k − hl,k . (8)

Consequently, the channel estimate and the estimation error

are independent and distributed as

ĥl,k ∼ CN
(

0, θl,kIM
)

, (9)

el,k ∼ CN
(

0,
(

βl,k − θl,k
)

IM
)

, (10)

where

θl,k =
pkτp β

2
l,k

τp
∑

t′∈Pk pt′ βl,t′ + σ
2
UL

. (11)

Proof. The proof follows from the standard MMSE estimation

of Gaussian random variables [27]. �

In a compact form, each BS l produces a channel estimate

matrix Ĥl = [ĥl,1, . . . , ĥl,k] ∈ CM×K and the mismatch with

the true channel matrix Hl is expressed by the uncorrelated

error matrix El = [el,1, . . . , el,K ] ∈ CM×K . Lemma 1 provides

the statistical properties of the channel estimates that are

needed to analyze utility functions like the DL ergodic SE

in multi-cell Massive MIMO systems. At this point, we note

that the channel estimates of two users t and k in the set Pk
are correlated since they use the same pilot. Mathematically,

they are only different from each other by a scaling factor

ĥl,k =

√
pk βl,k√
pt βl,t

ĥl,t . (12)

From the distributions of channel estimates and estimation

errors, we further formulate the joint user association and QoS

optimization problems, which are the main goals of this paper.

One can also analyze the UL performance, but we leave this

for future work due to space limitations.

B. Downlink Data Transmission Model

Let us denote γDL as the fraction of the τc−τp data symbols

per coherence interval that are used for DL payload transmis-

sion, hence 0 < γDL ≤ 1 and the number of DL symbols is

γDL(τc−τp). We assume that each BS is allowed to transmit to

each user but sends a different data symbol than the other BSs.

This is referred to as non-coherent joint transmission [28]–[30]

and it is less complicated to implement than coherent joint
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transmission which requires phase-synchronization between

the BSs.1 At BS l, the transmitted signal xl is selected as

xl =

K∑

t=1

√
ρl,twl,t sl,t . (13)

Here the scalar data symbol sl,t , which BS l intends to transmit

to user t, has unit power E{|sl,t |2} = 1 and ρl,t stands for the

transmit power allocated to this particular user. In addition, the

corresponding linear precoding vector wl,t ∈ CM determines

the spatial directivity of the signal sent to this user. We notice

that user t is associated with BS l if and only if ρl,t , 0, and

each user can be associated with multiple BSs. We will later

optimize the user association and prove that it is optimal to

only let a small subset of BSs serve each user. The received

signal at an arbitrary user k is modeled as

yk =

L∑

i=1

√
ρi,khH

i,kwi,k si,k +

L∑

i=1

K∑

t=1
t,k

√
ρi,th

H
i,kwi,t si,t + nk .

(14)

The first part in (14) is the superposition of desired signals

that user k would like to detect. The second part is multi-user

interference that degrades the quality of the detected signals.

The third part is the additive white noise nk ∼ CN (0, σ2
DL

).

To avoid spending precious DL resources on pilot signaling,

we suppose that user k does not have any information about

the current channel realizations but only knows the channel

statistics. This works well in Massive MIMO systems due

to the channel hardening [10]. User k would like to detect

all the desired signals coming from the BSs. To achieve low

computational complexity, we assume that each user detects

its different data signals sequentially and applies successive

interference cancellation [16], [31]. Although this heuristic

decoding method is suboptimal since we make practical as-

sumptions that the BSs have to do channel estimation and

have limited power budget, it is amenable to implement and

is known to be optimal for example under perfect channel

state information. Suppose that user k is currently detecting

the signal sent by an arbitrary BS l, say sl,k , and possesses

the detected signals of the l − 1 previous BSs but not their

instantaneous channel realizations. From these assumptions, a

lower bound on the ergodic capacity between BS l and user

k is given in Proposition 1.

Proposition 1. If user k knows the signals sent to it by the

first l − 1 BSs in the network, then a lower bound on the DL

ergodic capacity between BS l and user k is

Rl,k = γ
DL

(

1 −
τp

τc

)

log2

(

1 + SINRl,k

)

[bit/symbol], (15)

where the SINR, SINRl,k , is given as

ρl,k |E{hH
l,k

wl,k }|2

L∑

i=1

K∑

t=1
ρi,tE{|hH

i,k
wi,t |2} −

l∑

i=1
ρi,k |E{hH

i,k
wi,k }|2 + σ2

DL

. (16)

1This paper investigates whether or not joint transmission can bring sub-
stantial performance improvements to Massive MIMO under ideal backhaul
conditions. Note that non-coherent joint transmission requires no extensive
backhaul signaling, since the BSs send separate data streams and do not
require any instantaneous channel knowledge from other cells.

Proof. The proof is given in Appendix A. �

Each user would like to detect all desired signals coming

from the L BSs, or at least the ones that transmit with non-

zero powers. Proposition 1 gives hints to formulate a lower

bound on the DL ergodic sum capacity of user k. We compute

this bound by applying the successive decoding technique

described in [16], [31]. In detail, the user first detects the signal

from BS 1, while the remaining desired signals are treated

as interference. From the 2nd BS onwards, say BS l, user k

“knows" the transmit signals of the l − 1 previous BSs and

can partially subtract them from the received signal (using its

statistical channel knowledge). It then focuses on detecting the

signal sl,k and considers the desired signals from BS l + 1 to

BS L as interference. By utilizing this successive interference

cancellation technique, a lower bound on the DL sum SE at

user k is provided in Theorem 1.

Theorem 1. A lower bound on the DL ergodic sum capacity

of an arbitrary user k is

Rk = γ
DL

(

1 −
τp

τc

)

log2(1 + SINRk ) [bit/symbol], (17)

where the value of the effective SINR, SINRk , is given in (18).

Proof. The proof is also given in Appendix A. �

The sum SE expression provided by Theorem 1 has an

intuitive structure. The numerator in (18) is a summation of the

desired signal power sent to user k over the average precoded

channels from each BS. It confirms that all signal powers are

useful to the users and that BS cooperation in the form of

non-coherent joint transmission has the potential to increase

the sum SE at the users. The first term in the denominator

represents beamforming gain uncertainty, caused by the lack

of CSI at the terminal, while the second term is multi-user

interference and the third term represents the additive noise.

Even though we assume user k starts to decode the transmitted

signal from the BS 1, the BS numbering has no impact on

SINRk in (18). As a result, the SE is not affected by the

decoding orders. Besides, both the lower bounds in Proposition

1 and Theorem 1 are derived independently of channel distri-

bution and precoding schemes. Thus, our proposed method for

non-coherent joint transmission in Massive MIMO systems is

applicable for general scenarios with any channel distribution,

any selection of precoding schemes, and any pilot allocation.

Next, we show that the expressions can be computed in closed

form under Rayleigh fading channels, if the BSs utilize MRT

or ZF precoding techniques.

C. Achievable Spectral Efficiency under Rayleigh Fading

We now assume that the BSs use either MRT or ZF to

precode payload data before transmission. Similar to [32], the

precoding vectors are described as

wl,k =


ĥl,k√

E{ ‖ĥl,k ‖2 }
, for MRT,

Ĥlrl,k√
E{ ‖Ĥlrl,k ‖2 }

, for ZF,
(19)
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SINRk =

L∑

i=1
ρi,k |E{hH

i,k
wi,k }|2

L∑

i=1
ρi,k (E{|hH

i,k
wi,k |2} − |E{hH

i,k
wi,k }|2) +

L∑

i=1

K∑

t=1
t,k

ρi,tE{|hH
i,k

wi,t |2} + σ2
DL

. (18)

where rl,k is the kth column of matrix (ĤH
l

Ĥl)
−1. From the

above definition, with the condition M > K , ZF precoding

could cancel out interference towards users that BS l is not

associated with; this precoding was called full-pilot ZF in [32].
2. Mathematically, ZF precoding yields the following property

ĥH
l,tŵl,k =


0, t < Pk,√

ptβl, t

βl,k

√

pkE{ ‖Ĥlrl,k ‖2 }
, t ∈ Pk . (20)

The lower bound on the ergodic SE in Theorem 1 is obtained

in closed forms for MRT and ZF precoding as shown in

Corollaries 1 and 2.

Corollary 1. For Rayleigh fading channels, if the BSs utilize

MRT precoding, then the lower bound on the DL ergodic sum

rate in Theorem 1 is simplified to

RMRT
k = γDL

(

1 −
τp

τc

)

log2

(

1 + SINRMRT
k

)

[bit/symbol],

(21)

where the SINR, SINRMRT
k

, is

M
L∑

i=1
ρi,kθi,k

M
L∑

i=1

∑

t∈Pk \{k }
ρi,tθi,k +

L∑

i=1

K∑

t=1
ρi,t βi,k + σ

2
DL

. (22)

Proof. The proof is given in Appendix B. �

This corollary reveals the merits of MRT precoding for

multi-cell Massive MIMO DL systems: The signal power

increases proportionally to M thanks to the array gain. The first

term in the denominator is pilot contamination that increases

proportionally to M and makes the achievable rate saturated

when M → ∞ [33]. We also stress that a properly selected

pilot reuse index set Pk , for example the so-called pilot

scheduling in [34], [35], can significantly increase θi,k and

thereby increase the SINR. In contrast, the regular interference

is unaffected by the number of BS antennas. Finally, the non-

coherent combination of received signals at user k adds up the

powers from multiple BSs and can give stronger signal gain

than if only one BS serves the user.

Corollary 2. For Rayleigh fading channels, if the BSs utilize

ZF precoding, then the lower bound on the DL ergodic sum

capacity in Theorem 1 is simplified to

RZF
k = γ

DL

(

1 −
τp

τc

)

log2

(

1 + SINRZF
k

)

[bit/symbol], (23)

2The ZF precoding which we are using here is different from the classical
one [7]. More precisely, the classical ZF precoding dedicated to BS l can only
cancel out interference towards to the users that are associated with this BS.

where the SINR, SINRZF
k

, is

(M − K )
L∑

i=1
ρi,kθi,k

(M − K )
L∑

i=1

∑

t∈Pk \{k }
ρi,tθi,k +

L∑

i=1

K∑

t=1
ρi,t

(

βi,k − θi,k
)

+ σ2
DL

.

(24)

Proof. The proof is given in Appendix C. �

The benefits of the array gain, BS non-coherent joint

transmission, and pilot contamination effects shown by MRT

are also inherited by ZF. The main distinction is that MRT

precoding only aims to maximize the signal-to-noise (SNR)

ratio but does not pay attention to the multi-user interference.

Meanwhile, ZF sacrifices some of the array gain to mitigate

multi-user interference. The DL SE is limited by pilot con-

tamination and the advantages of using mutually orthogonal

pilot sequences are shown in Remark 1.

Remark 1. When the number of BS antennas M → ∞ and

the number of users K is fixed, the SINR values in (22) for

MRT and (24) for ZF converge to
∑L

i=1
ρi,k θi,k

∑L
i=1

∑

t∈Pk \{k } ρi, t θi,k
meaning

that the gain of adding more antennas diminishes. In contrast,

if the users utilize mutually orthogonal pilot sequences, i.e.,

τp ≥ K , then adding up more BS antennas is always beneficial

since the SINR value of user k is given for MRT and ZF as

SINRMRT
k =

M
L∑

i=1

ρi,k pkτpβ
2
i,k

pkτpβi,k+σ
2
UL

L∑

i=1

K∑

t=1
ρi,t βi,k + σ

2
DL

, (25)

SINRZF
k =

(M − K )
L∑

i=1

ρi,k pkτpβ
2
i,k

pkτpβi,k+σ
2
UL

L∑

i=1

K∑

t=1

ρi, tβi,kσ
2
UL

pkτpβi,k+σ
2
UL

+ σ2
DL

. (26)

Note that for both MRT and ZF precoding, the DL ergodic

SE not only depends on the channel estimation quality which

can be improved by optimizing the pilot powers but also

heavily depends on the power allocation at the BSs; that

is, how the transmit powers ρi,t are selected. In this paper,

we only focus on the DL transmission, so Sections III to V

investigate different ways to jointly optimize the DL power

allocation and user association with the predetermined pilot

power.

III. DOWNLINK TRANSMIT POWER OPTIMIZATION FOR

MASSIVE MIMO SYSTEMS

The transmit power at BS i depends on the traffic load over

the coverage area and is limited by the peak radio frequency
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output power Pmax,i , which defines the maximum power that

can be utilized at each BS [26]. The transmit power Ptrans,i is

computed as

Ptrans,i = E{‖xi ‖2} =
K∑

t=1

ρi,tE{‖wi,t ‖2} =
K∑

t=1

ρi,t . (27)

The transmit power consumption at BS i that takes the power

amplifier efficiency ∆i into account is modeled as

Pi = ∆iPtrans,i, 0 ≤ Ptrans,i ≤ Pmax,i . (28)

Here, ∆i depends on the BS technology [36] and affects the

power allocation and user association problems. Specifically,

the values ∆i may not be the same, for example, the BSs are

equipped with the different hardware quality.

The main goal of a Massive MIMO network is to deliver

a promised QoS to the users, while consuming as little

power as possible. In this paper, we formulate it as a power

minimization problem under user-specific SE constraints as

minimize
{ρi, t ≥0}

L∑

i=1

Pi

subject to Rk ≥ ξk, ∀k

Ptrans,i ≤ Pmax,i, ∀i,

(29)

where ξk is the target QoS at user k. Plugging (17), (27), and

(28) into (29), the optimization problem is converted to

minimize
{ρi, t ≥0}

L∑

i=1

∆i

K∑

t=1

ρi,t

subject to SINRk ≥ ξ̂k ,∀k

Ptrans,i ≤ Pmax,i ,∀i,

(30)

where ξ̂k = 2
ξk τc

γDL(τc−τp ) − 1 implies that the QoS targets are

transformed into SINR targets. Owing to the universality of

{SINRk }, (30) is a general formulation for any selection of

precoding scheme. We focus on MRT and ZF precoding since

we have derived closed-form expressions for the corresponding

SINRs. In these cases, the exact problem formulations are

provided in Lemmas 2 and 3.

Lemma 2. If the system utilizes MRT precoding, then the

power minimization problem in (30) is expressed as

minimize
{ρi, t ≥0}

L∑

i=1

∆i

K∑

t=1

ρi,t

subject to
M

∑L
i=1 ρi,kθi,k

M
L∑

i=1

∑

t∈Pk \{k }
ρi,tθi,k +

L∑

i=1

K∑

t=1
ρi,t βi,k + σ

2
DL

≥ ξ̂k, ∀k

K∑

t=1

ρi,t ≤ Pmax,i, ∀i.

(31)

Lemma 3. If the system utilizes ZF precoding, then the power

minimization problem in (30) is expressed as

minimize
{ρi, t ≥0}

L∑

i=1

∆i

K∑

t=1

ρi,t

subject to

G
L∑

i=1
ρi,kθi,k

G
L∑

i=1

∑

t∈
Pk \{k }

ρi,tθi,k +
L∑

i=1

K∑

t=1
ρi,t

(

βi,k − θi,k
)

+ σ2
DL

≥ ξ̂k,∀k

K∑

t=1

ρi,t ≤ Pmax,i,∀i,

(32)

where G = M − K .

The optimal power allocation and user association are

obtained by solving these problems. At the optimal solution,

each user t in the network is associated with the subset of

BSs that is determined by the non-zero values ρi,t,∀i, t. The

BS-user association problem is thus solved implicitly. There

are fundamental differences between our problem formulation

and the previous ones that appeared in [12], [13], [16] for

conventional MIMO systems with a few antennas at the BSs.

The main distinction is that these previous works consider

short-term QoS constraints that depend on the current fading

realizations, while we consider long-term QoS constraints that

do not depend on instantaneous fading realizations thanks

to channel hardening and favorable properties in Massive

MIMO. In addition, our proposed approach is more practically

appealing since the power allocation and BS-user association

can be solved over a longer time and frequency horizons and

since we do not try to combat small-scale and frequency-

selective fading by the power control.

IV. OPTIMAL POWER ALLOCATION AND USER

ASSOCIATION BY LINEAR PROGRAMMING

This section provides a unified mechanism to obtain the

optimal solution to the total power minimization problem

for both MRT and ZF precoding. The BS-user association

principle is also discussed by utilizing Lagrange duality theory.

A. Optimal Solution with Linear Programming

We now show how to obtain optimal solutions for the

problems stated in Lemmas 2 and 3. Let us denote the power

control vector of an arbitrary user t by ρρρt = [ρ1,t, . . . , ρL,t ]
T ∈

C
L , where its entries satisfy ρi,t ≥ 0 meaning that ρρρt � 0. We

also denote ∆∆∆ = [∆1 . . .∆L]T ∈ CL and ǫǫǫ i ∈ CL has all zero

entries but the ith one is 1. The optimal power allocation is

obtained by the following theorem.

Theorem 2. The optimal solution to the total transmit power

minimization problem in (30) for MRT or ZF precoding is
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obtained by solving the linear program

minimize
{ρρρt �0}

K∑

t=1

∆∆∆
T ρρρt

subject to
∑

t∈Pk \{k }
θθθTk ρρρt +

K∑

t=1

cTk ρρρt − bT
k ρρρk + σ

2
DL ≤ 0, ∀k

K∑

t=1

ǫǫǫTi ρρρt ≤ Pmax,i, ∀i.

(33)

Here, the vectors θθθk, ck, and bk depend on the precoding

scheme. MRT precoding gives

θθθk =
[

Mθ1,k, . . . ,MθL,k
]T

ck =
[

β1,k, . . . , βL,k
]T
,

bk =

[
Mθ1,k/ξ̂k, . . . ,MθL,k/ξ̂k

]T
,

while ZF precoding obtains

θθθk =
[

(M − K )θ1,k, . . . , (M − K )θL,k
]T

ck =
[

β1,k − θ1,k, . . . , βL,k − θL,k
]T
,

bk =

[
(M − K )θ1,k/ξ̂k, . . . , (M − K )θL,k/ξ̂k

]T
.

Proof. The problem in (33) is obtained from Lemmas 2 and

3 after some algebra. We note that the objective function is

a linear combination of ρρρt , for t = 1, . . . , K . Moreover, the

constraint functions are affine functions of power variables.

Thus the optimization problem (33) is a linear program. �

The merits of Theorem 2 are twofold: It indicates that the

total transmit power minimization problem for a multi-cell

Massive MIMO system with non-coherent joint transmission

is linear and thus can be solved to global optimality in

polynomial time, for example, using general-purpose imple-

mentations of interior-point methods such as CVX [37]. 3 In

addition, the solution provides the optimal BS-user association

in the system. We further study it via Lagrange duality theory

in the next subsection.

B. BS-User Association Principle

To shed light on the optimal BS-user association provided

by the solution in Theorem 2, we analyze the problem utilizing

Lagrange duality theory. The Lagrangian of (33) is

L(ρρρt, λk, µi) =

K∑

t=1

∆∆∆
T ρρρt

+

K∑

k=1

λk
*.,

∑

t∈Pk \{k }
θθθTk ρρρt +

K∑

t=1

cTk ρρρt − bT
k ρρρk + σ

2
DL

+/-
+

L∑

i=1

µi *,
K∑

t=1

ǫǫǫTi ρρρt − Pmax,i
+- ,

(34)

3The linear program in (33) is only obtained for non-coherent joint trans-
mission. For the corresponding system that deploys another CoMP technique
called coherent joint transmission, the total transmit power optimization with
Rayleigh fading channels and MRT or ZF precoding is a second-order cone
program (see Appendix F). This problem is considered in Section VI for
comparison reasons.

where the non-negative Lagrange multipliers λk and µi are

associated with the kth QoS constraint and the transmit power

constraint at BS i, respectively. The corresponding Lagrange

dual function of (34) is formulated as

G (λk, µi) = inf
{ρρρt }
L (ρρρt, λk, µi)

=

K∑

k=1

λkσ
2
DL −

L∑

i=1

µiPmax,i + inf
{ρρρt }

K∑

t=1

aTt ρρρt,
(35)

where aTt = ∆∆∆
T
+

∑K
k=1 λkθθθ

T
k
✶k (t) +

∑K
k=1 λkcT

k
− λtbT

t +
∑L

i=1 µiǫǫǫ
T
i

and the indicator function ✶k (t) is defined as

✶k (t) =


0, t < Pk \ {k},
1, t ∈ Pk \ {k}.

(36)

It is straightforward to show that G (λk, µi) is bounded from

below (i.e, G (λk, µi) , −∞) if and only if at � 0, for t =

1, . . . , K . Therefore, the Lagrange dual problem to (33) is

maximize
{λk,µi }

K∑

k=1

λkσ
2
DL −

L∑

i=1

µiPmax,i

subject to at � 0, ∀t .
(37)

From this dual problem, we obtain the following main result

that gives the set of BSs serving an arbitrary user t.

Theorem 3. Let {λ̌k, µ̌i } denote the optimal Lagrange multi-

pliers. User t is served only by the subset of BSs with indices

in the set St defined as

argmin
i

*,∆i +
K∑

k=1

λ̌kθi,k✶k (t) +

K∑

k=1

λ̌kci,k +

L∑

i=1

µ̌i+-
1

bi,t
,

(38)

where the parameters ci,k and bi,t are selected by the linear

precoding scheme:

Precoding scheme ci,k bi,t

MRT βi,k Mθi,t/ξ̂t

ZF βi,k − θi,k (M − K )θi,t/ξ̂t

The optimal BS association for user t is further specified as

one of the following two cases:

• It is served by one BS if the set St in (38) only contains

one index.

• It is served by multiple of BSs if the set St in (38) contains

several indices.

Proof. The proof is given in Appendix D. �

The expression in (38) explicitly shows that the optimal

BS-user association is affected by many factors such as

interference between BSs, noise intensity level, power allo-

cation, large-scale fading, channel estimation quality, pilot

contamination, and QoS constraints,. There is no simple user

association rule since the function depends on the Lagrange

multipliers, but we can be sure that max-SNR association is

not always optimal. We will later show numerically that for

Rayleigh fading channels and MRT or ZF, each user is usually

served by only one BS at the optimal point.
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V. MAX-MIN QOS OPTIMIZATION

This section is inspired by the fact that there is not always a

feasible solution to the power minimization problem with fixed

QoS constraints in (33). The reason is the trade-off between

the target QoS constraints and the propagation environments.

The path loss is one critical factor, while limited power for

pilot sequences leads to that channel estimation error always

exists. Thus, for a certain network, it is not easy to select the

target QoS values. In order to find appropriate QoS targets,

we consider a method to optimize the QoS constraints along

with the power allocation.

Fairness is an important consideration when designing wire-

less communication systems to provide uniformly great service

for everyone [38]. The vision is to provide a good target QoS

to all users by maximizing the lowest QoS value, possibly with

some user specific weighting. For this purpose, we consider

the optimization problem

maximize
{ρi, t ≥0}

min
k

Rk/wk

subject to Ptrans,i ≤ Pmax,i ,∀i,
(39)

where wk > 0 is the weight for user k. The weights can

be assigned based on for example information about the

propagation, interference situation or user priorities. If there

is no such explicit priorities, they may be set to 1. To solve

(39), it is converted to the epigraph form [39]

maximize
{ρi, t ≥0},ξ

ξ

subject to Rk/wk ≥ ξ ,∀k

Ptrans,i ≤ Pmax,i ,∀i,
(40)

where ξ is the minimum QoS parameter for the users that we

aim to maximize. Plugging (17) and (27) into (40), we obtain

maximize
{ρi, t ≥0},ξ

ξ

subject to SINRk ≥ 2ξwk/(γDL(1−τp/τc )) − 1 ,∀k

K∑

t=1

ρi,t ≤ Pmax,i, ∀i.

(41)

We can solve (41) for a fixed ξ as a linear program, using

Theorem 2 with ξk = ξwk . Since the QoS constraints are

increasing functions of ξ, the solution to the max-min QoS

optimization problem is obtained by doing a line search over

ξ to get the maximal feasible value. Hence, this is a quasi-

linear program. As a result, we further apply Lemma 2.9 and

Theorem 2.10 in [15] to obtain the solution as follows.

Theorem 4. The optimum to (41) is obtained by checking the

feasibility of (33) over an SE search range R = [0, ξ
upper

0
],

where ξ
upper

0
is selected to make (33) infeasible.

Corollary 3. If the system deploys MRT or ZF precoding, then

ξ
upper

0
can be selected as

ξ
upper

0
= γDL

(

1 −
τp

τc

)

θ. (42)

The parameter θ depends on the precoding scheme:

θ

MRT min
k

1
wk

log2(1 + M)

ZF min
k

1
wk

log2

(

1 + (M − K )
pkτp

σ2
UL

L∑

i=1
βi,k

)

Proof. The proof is given in Appendix E. �

Algorithm 1 Max-min QoS based on the bisection method

Result: Solve optimization in (39).

Input: Initial upper bound ξ
upper

0
, and line-search accuracy δ;

Set ξ lower
= 0; ξupper

= ξ
upper

0
;

while ξupper − ξ lower > δ do

Set ξcandidate
= (ξupper

+ ξ lower)/2;

if (33) is infeasible for ξk = wkξ
candidate,∀k, then

Set ξupper
= ξcandidate;

else

Set {ρρρlower
k
} as the solution to (33);

Set ξ lower
= ξcandidate ;

end if

end while

Set ξ lower
final
= ξ lower and ξ

upper

final
= ξupper;

Output: Final interval [ξ lower
final
, ξ

upper

final
] and {ρ̃ρρk } = {ρρρlower

k
};

From Theorem 4, the problem (41) is solved in an iterative

manner. By iteratively reducing the search range and solv-

ing the problem (33), the maximum QoS level and optimal

BS-user association can be obtained. One such line search

procedure is the well-known bisection method [15], [39]. At

each iteration, the feasibility of (33) is verified for a value

ξcandidate ∈ R, that is defined as the middle point of the current

search range. If (33) is feasible, then its solution {ρρρlower
k
} is

assigned to as the current power allocation. Otherwise, if the

problem is infeasible, then a new upper bound is set up. The

search range reduces by half after each iteration, since either

its lower or upper bound is assigned to ξcandidate. The algorithm

is terminated when the gap between these bounds is smaller

than a line-search accuracy value δ. The proposed max-min

QoS optimization is summarized in Algorithm 1.

We stress that the bisection method can efficiently find

the solution to quasi-linear programs such as (41). The main

cost for each iteration is to solve the linear program (33)

that includes K L variables and 2K constraints and as such

it has the complexity O(K3L3) [39]. It is important to note

that the computational complexity does not depend on the

number of BS antennas. Moreover, the number of iterations

needed for the bisection method is ⌈log2(ξ
upper

0
/δ)⌉ that is

directly proportional to the logarithm of the initial value ξ
upper

0
,

where ⌈·⌉ is the ceiling function. Thus a proper selection

for ξ
upper

0
such as in Corollary 3 will reduce the total cost.

In summary, the polynomial complexity of Algorithm 1 is

O
(⌈

log2

(
ξ

upper

0

δ

)⌉
K3L3

)

.

VI. NUMERICAL RESULTS

In this section, the analytical contributions from the previous

sections are evaluated by simulation results for a multi-cell
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Fig. 2. The multi-cell massive MIMO system considered in the simulations:
The BS locations are fixed at the corners of a square, while K users are
randomly distributed over the joint coverage of the BSs.

Massive MIMO system. Our system comprises 4 BSs and K

users, as shown in Fig. 2, where (x, y) represent location in a

Cartesian coordinate system. The symmetric BS deployment

makes it easy to visualize the optimal user association rule.

The users are uniformly and randomly distributed over the

joint coverage of the BSs but no user is closer to the BSs than

100 m to avoid overly large SNRs at cell-center users [4].

For the max-min QoS algorithm, the user specific weights are

set to wk = 1, ∀k, to make it easy to interpret the results.

Since the joint power allocation and user association obtains

the optimal subset of BSs that serves each user, we denote

it by “Optimal" in the figures. For comparison, we consider

a suboptimal method, in which each user is associated with

only one BS by selecting the strongest signal on the average

(i.e., the max-SNR value). 4 The performance is averaged over

different random user locations. The peak radio frequency DL

output power is 40 W. The system bandwidth is 20 MHz

and the coherence interval is of 200 symbols. We set the

power amplifier efficiency to 1 since it does not affect the

optimization when all BSs have the same value. The users send

orthogonal pilot sequences whose length equals the number of

users and each user has a pilot symbol power of 200 mW. 5

Because we focus on the DL transmission, the DL fraction

is γDL
= 1. The large scale fading coefficients are modeled

similarly to the 3GPP LTE standard [26], [40]. Specifically, the

shadow fading zl,k is generated from a log-normal Gaussian

distribution with standard deviation 7 dB. The path loss at

distance d km is 148.1 + 37.6 log10 d. Thus, the large-scale

fading βl,k is computed by βl,k = −148.1− 37.6 log10 d + zl,k
dB. With the noise figure of 5 dB, the noise variance for both

4For comparison purposes, the best benchmark is the method that also
performs the optimal association but with service from only one BS. However,
it is a combinatorial problem followed by the excessive computational
complexity. Furthermore, the numerical results verify that the max-SNR
association is a good benchmark for comparison since the performance is
very close to the optimal association.

5In most cases in practice, appropriate non-universal pilot reuse renders
pilot contamination negligible. Hence, we only consider the case of orthogonal
pilot sequences in this section. We also assume τp = K .

50 100 150 200 250 300
5

10

15

20

25

30

35

40

45

50

Number of antennas per BS

T
o
ta

l 
tr

a
n
s
m

it
 p

o
w

e
r 

[W
]

 

 

MRT, Optimal

MRT, max−SNR

ZF, Optimal

ZF, max−SNR

Fig. 3. The total transmit power (
∑L

i=1
Pi ) versus the number of BS antennas

with QoS of 1 bit/symbol and K = 20.

the UL and DL is −96 dBm. We show the total transmit power

(
∑L

i=1 Pi) as a function of the number of antennas per BS

in Fig. 3 for a Massive MIMO system with 20 users. For

fair comparison, the results are averaged over the solutions

that make both the association schemes feasible. Experimental

results reveal a superior reduction of the total transmit power

compared to the peak value, say 160 W, in current wireless

networks. Therefore, Massive MIMO can bring great transmit

power reduction by itself. A system equipped with few BS

antennas consumes much more transmit power to provide the

same target QoS level compared to the corresponding one

with a large BS antenna number. The 40 − 45 W that are

required with 50 BS antennas reduces dramatically to 5 W

with 300 BS antennas. This is due to the array gain from

coherent precoding. In addition, the gap between MRT and ZF

is shortened by the number of BS antennas, since interference

is mitigated more efficiently [10], [17]. From the experimental

results, we notice that the simple max-SNR association is close

to optimal in these cases.

Fig. 4 plots the total transmit power to obtain various target

QoS levels at the 20 users. As discussed in Section II-C,

MRT precoding works well in the low QoS regime where

noise dominates the system performance, while ZF precoding

consumes less power when higher QoS is required. In the

low QoS regime, ZF and MRT precoding demand roughly the

same transmit power. For instance, with the optimal BS-user

association and QoS = 1 bit/symbol, the system requires the

total transmit power of 8.88 W and 9.60 W for MRT and ZF

precoding, respectively. In contrast, at a high target QoS level

such as 2.5 bit/symbol, by deloying ZF rather than MRT, the

system saves transmit power up to 2.39 W. Similar trends are

observed for the max-SNR association. Because the numerical

results manifest superior power reduction in comparison to the

small-scale MIMO systems, Massive MIMO systems are well-

suited for reducing transmit power in 5G networks.

While optimal user association and max-SNR association

give similar results in the previous figures, we stress that these

only considered scenarios when both schemes gave feasible

results. The main difference is that sometimes only the former

can satisfy the QoS constraints. Fig. 5 and Fig. 6 demonstrate

the “bad service probability" defined as the fraction of random

user locations and shadow fading realizations in which the
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Fig. 4. The total transmit power (
∑L

i=1
Pi ) versus the target QoS for M =

200, K = 20.
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Fig. 5. The bad service probability versus the number of BS antennas with
QoS of 1 bit/symbol and K = 20.

power minimization problem is infeasible. Note that these

figures just display some ranges of the BS antennas or the QoS

constraints where the differences between the user associations

are particularly large. Intuitively, the optimal user association

is more robust to environment variations than the max-SNR

association, since the non-coherent joint transmission can help

to resolve the infeasibility. In addition, the two figures also

verify the difficulties in providing the high QoS. Specifically,

a very high infeasibility up to about 80% is observed when the

BSs have a small number of antennas or the users demand high

QoS levels. This is a key motivation to consider the max-min

QoS optimization problem instead, because it provides feasible

solutions for any user locations and channel realizations.

Fig. 7 shows the cumulative distribution function (CDF) of

the max-min optimized QoS level, where the randomness is

due to shadow fading and different user locations. We consider

150 BS antennas for ZF precoding or 300 BS antennas for

MRT precoding to avoid overlapping curves. The optimal user

association gives consistently better QoS than the max-SNR

association. The system model equipped with 300 antennas

per BS can provide SE greater than 2 bit/symbol for every

user terminal in its coverage area with high probability. The

QoS can even reach up to 4 bit/symbol. Moreover, the optimal

association gains up to 22% compared with the max-SNR

association at 95%-likely max-min QoS.

The average max-min QoS levels that the system can

provide to the all users is illustrated in Fig. 8 for 20 users.
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Fig. 6. The bad service probability versus the QoS constraint per user with
M = 200, K = 20.
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Fig. 7. The cumulative distribution function (CDF) of the max-min QoS
optimization with K = 20.

The optimal BS-user association provides up to 11% higher

QoS than the max-SNR association. For completeness, we

also provide the average max-min QoS levels when the sys-

tem deploys the DL coherent joint transmission denoted as

“Optimal (Coherent)" in the figure. The procedures to obtain

closed-form expressions as well as the optimization problems

for the DL coherent joint transmission are briefly presented

in Appendix F. On average, this technique can bring a gain

up to 5% compared to “Optimal" but it is more complicated

to implement as discussed in Section II-B. By deploying

massive antennas at the BSs, the numerical results manifest

the competitiveness of the max-SNR association versus the

“Optimal" ones. The reason is that the multiple BS cooperation

increases not only the array gain (in the numerator) but

unfortunately also mutual interference (in the denominator)

of the SINR expressions as shown in Corollaries 1 and 2 for

non-coherent joint transmission or in (74) for coherent joint

transmission. It is only a few users that gain from non-coherent

joint transmission and the added benefit from coherent joint

transmission is also small.

Fig. 9 considers the same setup as Fig. 8 but with 40 users.

Here, the max-min QoS reduces due to more interference,

while the gain from joint transmission is still small. When

the number of antennas per BS is not significantly larger than

the number users, MRT outperforms ZF because ZF sacrifices

some of the array gain to reduce interference. Fig. 8 and

Fig. 9 also show that, for example, a system with 200 BS
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Fig. 8. The average max-min QoS level versus the number of BS antennas
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Fig. 9. The average max-min QoS level versus the number of BS antennas
with K = 40.

antennas and using non-coherent joint transmission can serve

up to 20 users and 40 users for the QoS requirement of 2.28

(bit/symbol) and 1.87 (bit/symbol) respectively.

The probability that a user is served by more than one BS

is shown in Fig. 10. For pair comparison, we consider 20

users for both fixed QoS and max-min QoS. Although the

system model lets BSs cooperate with each other to serve the

users, experimental results verify that single-BS association is

enough in 90% or more of the cases. This result for multi-

cell Massive MIMO systems is similar to those obtained by

multi-tier heterogeneous network with multiple-antenna [16]

or single-antenna macrocell BSs [21]. In the remaining cases

corresponding to Case 2 in Theorem 3, multiple BSs are

required to deal with severe shadow fading realizations or high

user loads.

Fig. 11 and Fig. 12 show the probabilities of users being

associated with BS 1 located at the coordinate (0.5, 0.5) as

a function of user locations. Intuitively, users near the BS

in the sense of physical distance tend to associate with high

probability. For example, most user locations that have their

coordinates (X > 0.1,Y > 0.1) are served by this BS with a

probability larger than 0.5. In contrast, the users that lie around

the origin are only served by BS 1 with probability less than

0.4 and they are likely to associate with multiple BSs. We also

observe that BS 1 associates with some very distant users (i.e.,

they are not located in Quadrant 1 as shown in Fig. 2). These

situations occur due to severe shadow fading realizations or

due to high user loads which make the closest BS not be the
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Fig. 10. The joint transmission probability versus the number of antennas
per BS with K = 20.
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Fig. 11. The probability that a user is served by BS 1 for the max-min QoS
algorithm with MRT precoding and M = 200, K = 40.

X−distance [km]

Y
−

d
is

ta
n

c
e

 [
k
m

]

 

 

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.0

0.9

0.6
0.7

0.8

0.5
0.4

0.3

0.2

0.1

0.0

Fig. 12. The probability that a user is served by BS 1 for the max-min QoS
algorithm with ZF precoding and M = 200, K = 40.

best selection.

VII. CONCLUSION

This paper proposed a new method to jointly optimize the

power allocation and user association in multi-cell Massive

MIMO systems. The DL non-coherent joint transmission was

designed to minimize the total transmit power consumption

while satisfying QoS constraints. For Rayleigh fading chan-

nels, we proved that the total transmit power minimization

problem with MRT or ZF precoding is a linear program, so it

is always solvable to global optimality in polynomial time.
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Additionally, we provided the optimal BS-user association

rule to serve the users. In order to ensure that all users are

fairly treated, we also solved the weighted max-min fairness

optimization problem which maximizes the worst QoS value

among the users with user specific weighting. Experimental

results manifested the effectiveness of our proposed methods,

and that the max-SNR association works well in many Massive

MIMO scenarios but is not optimal.

APPENDIX

A. Proof of Proposition 1 and Theorem 1

When user k detects the signal from BS 1, it will not know

any of the transmitted signals. Therefore, the received signal

in (14) is expressed as

y1,k = yk =
√
ρ1,kE{hH

1,kw1,k }s1,k

+

√
ρ1,k

(

hH
1,kw1,k − E{hH

1,kw1,k }
)

s1,k

+

L∑

i=2

√
ρi,khH

i,kwi,k si,k +

L∑

i=1

K∑

t=1
t,k

√
ρi,th

H
i,kwi,t si,t + nk .

(43)

At the point when user k detects the signal coming from BS

l, for l = 2, . . . , L, it possesses the set of all detected signals

coming from the first (l − 1) BSs. The received signal in (14)

is processed by subtracting the known signals over the known

average channels as

yl,k = yk −
l−1∑

i=1

√
ρi,kE{hH

i,kwi,k }si,k =
√
ρl,kE{hH

l,kwl,k }sl,k

+

√
ρl,k

(

hH
l,kwl,k − E{hH

l,kwl,k }
)

sl,k

+

L∑

i=l+1

√
ρi,khH

i,kwi,k si,k

+

l−1∑

i=1

√
ρi,k (hH

i,kwi,k − E{hH
i,kwi,k })si,k

+

L∑

i=1

K∑

t=1
t,k

√
ρi,th

H
i,kwi,t si,t + nk .

(44)

In (43) and (44), we respectively add-and-subtract the terms√
ρ1,kE{hH

1,k
w1,k }s1,k and

√
ρl,kE{hH

l,k
wl,k }sl,k . As a result, the

first term after their second equality contains the desired signal

from BS l that is now transmitted over a deterministic channel

while other terms are treated as uncorrelated noise. A lower

bound on the ergodic capacity Cl,k of the transmission from

BS l is obtained by considering Gaussian noise as the worst

case distribution of the uncorrelated noise [41],

Cl,k ≥ γDL

(

1 −
τp

τc

)

log2

(

1 +
E{|DSl,k |2}
E{|UNl,k |2}

)

, (45)

where the desired signal power E{|DSl,k |2} is computed as

E{|DSl,k |2} = ρl,k |E{hH
l,kwl,k }|2 (46)

and the uncorrelated noise power E{|UNl,k |2} is computed as

E{|UNl,k |2} = ρl,kE{|hH
l,kwl,k − E{hH

l,kwl,k }|2}

+

L∑

i=l+1

ρi,kE{|hH
i,kwi,k |2}

+

l−1∑

i=1

ρi,kE{|hH
i,kwi,k − E{hH

i,kwi,k }|2}

+

L∑

i=1

K∑

t=1
t,k

ρi,tE{|hH
i,kwi,t |2} + σ2

DL

=

L∑

i=1

K∑

t=1

ρi,tE{|hH
i,kwi,t |2} −

l∑

i=1

ρi,k |E{hH
i,kwi,k }|2 + σ2

DL.

(47)

By letting SINRl,k =
E{ |DSl,k |2 }
E{ |UNl,k |2 }

, and then subtracting (46)

and (47) into the SINR value we obtain the DL ergodic rate

between each BS and user k as stated in Proposition 1.

We have proved Proposition 1 and will detect the L signals

in a successive manner to prove Theorem 1. Consequently, a

lower bound on the sum SE of user k is obtained by

Rk =

L∑

l=1

Rl,k = γ
DL

(

1 −
τp

τc

)

log2

*...,
L∏

l=1

(1 + SINRl,k )
︸           ︷︷           ︸

=Al,k

+///-
, (48)

where Al,k is given as

L∑

i=1

K∑

t=1
ρi,tE{|hH

i,k
wi,t |2} −

l−1∑

i=1
ρi,k |E{hH

i,k
wi,k }|2 + σ2

DL

L∑

i=1

K∑

t=1
ρi,tE{|hH

i,k
wi,t |2} −

l∑

i=1
ρi,k |E{hH

i,k
wi,k }|2 + σ2

DL

. (49)

It is observed that the denominator of Al,k coincides with

the numerator of Al+1,k, for l = 1, . . . , L − 1. Thus, after

some manipulation which cancels out these coincided terms,

we obtain
L∏

l=1

Al,k =
ANum

ADen

, (50)

where the values ANum and ADen are defined as

ANum =

L∑

i=1

K∑

t=1

ρi,tE{|hH
i,kwi,t |2} + σ2

DL,

ADen =

L∑

i=1

K∑

t=1

ρi,tE{|hH
i,kwi,t |2} −

L∑

i=1

ρi,k |E{hH
i,kwi,k }|2+σ2

DL.

By simplifying the ratio ANum/ADeno, Rk is given as (17) in

the theorem.

B. Proof of Corollary 1

Because the channels are Rayleigh fading, the expected

squared norm of the channel between BS i and user t is

E{‖ĥi,t ‖2} = Mθi,t . (51)

Combining (51) and (19), the MRT precoding vector wi,t is

wi,t =
1

√

Mθi,t
ĥi,t . (52)
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Since the estimation error is independent of the corresponding

estimate, the numerator in (18) is

L∑

i=1

ρi,k |E{hH
i,kwi,k }|2 = M

L∑

i=1

ρi,kθi,k . (53)

In addition, we reformulate the denominator in (18) as

L∑

i=1

K∑

t=1

ρi,tE{|hH
i,kwi,t |2} −

L∑

i=1

ρi,k |E{hH
i,kwi,k }|2 + σ2

DL. (54)

The first summation of the denominator in (54) is decomposed

into two parts based on the pilot reuse set Pk as follows

L∑

i=1

K∑

t=1

ρi,tE{|hH
i,kwi,t |2}

=

L∑

i=1

∑

t∈Pk
ρi,tE{|hH

i,kwi,t |2} +
L∑

i=1

∑

t<Pk
ρi,tE{|hH

i,kwi,t |2}

=

L∑

i=1

∑

t∈Pk
ρi,tE{|ĥH

i,kwi,t |2} +
L∑

i=1

∑

t∈Pk
ρi,tE{|eHi,kwi,t |2}

+

L∑

i=1

∑

t<Pk
ρi,t βi,k

(a)
=

L∑

i=1

∑

t∈Pk
ρi,t

pk β
2
i,k

pt β
2
i,t

E{|ĥH
i,twi,t |2}

+

L∑

i=1

∑

t∈Pk
ρi,t

(

βi,k − θi,k
)

+

L∑

i=1

∑

t<Pk
ρi,t βi,k

(b)
= M

L∑

i=1

∑

t∈Pk
ρi,tθi,k +

L∑

i=1

K∑

t=1

ρi,t βi,k .

(55)

In (55), the relationship between the channel estimates of two

users utilizing the same pilot sequences as stated in (12) is used

to compute (a). For (b), we use Lemma 2.9 in [42] to compute

the fourth-order moment E{| |ĥi,t | |4}. The denominator in (18)

is obtained by plugging (53) and (55) into (54). Combining

this denominator and the numerator in (53), the SINR value

is shown in the corollary.

C. Proof of Corollary 2
By utilizing Lemma 2.10 in [42] for a K×K central complex

Wishart matrix with M degrees of freedom which satisfies

M ≥ K + 1, we obtain

E{‖Ĥiri,t ‖2} = E{[ĤH
i Ĥi]

−1
t,t } =

1

(M − K )θi,t
. (56)

Hence, the ZF precoding vector wi,t becomes

wi,t =

√

(M − K )θi,tĤiri,t . (57)

Combining the result in (57), the ZF properties in (20), and

the independence between channel estimates and estimation

errors, the numerator of (18) becomes

L∑

i=1

ρi,k
���E {

hH
i,kwi,k

}���2 = (M − K )

L∑

i=1

ρi,kθi,k . (58)

Similarly, the first part of the denominator in (54) is

L∑

i=1

K∑

t=1

ρi,tE{|hH
i,kwi,t |2}

=

L∑

i=1

∑

t∈Pk
ρi,tE{|ĥH

i,kwi,t |2} +
L∑

i=1

K∑

t=1

ρi,tE{|eHi,kwi,t |2}

=

L∑

i=1

∑

t∈Pk
ρi,t

pk β
2
i,k

pt β
2
i,t

E{|ĥH
i,twi,t |2} +

L∑

i=1

K∑

t=1

ρi,t
(

βi,k − θi,k
)

= (M − K )

L∑

i=1

∑

t∈Pk
ρi,tθi,k +

L∑

i=1

K∑

t=1

ρi,t
(

βi,k − θi,k
)

.

(59)

Combining (58) and (59), the denominator of (18) is

(M − K )

L∑

i=1

∑

t∈Pk \{k }
ρi,tθi,k +

L∑

i=1

K∑

t=1

ρi,t
(

βi,k − θi,k
)

+ σ2
DL.

(60)

Plugging (58) and (60) to (18), we get the SINR value as

shown in the corollary.

D. Proof of Theorem 3

To prove this result, we first make a change of variable to

ut = [
√
ρ1,t, . . . ,

√
ρL,t ]

T ∈ CL and define the diagonal matrix

At = diag(a1,t, . . . , aL,t ) ∈ CL×L , where ai,t , for i = 1, . . . , L

are elements of at . The Lagrangian in (34) is then converted

to a quadratic function

L (ut, λk, µi) =

K∑

k=1

λk −
L∑

i=1

µiPmax,i +

K∑

t=1

uT
t Atut . (61)

The Lagrange dual function of (61) is further formulated as

G (λk, µi) = inf
{ρρρt }
L (ut, λk, µi)

=

K∑

k=1

λkσ
2
DL −

L∑

i=1

µiPmax,i + inf
{ut }

K∑

t=1

uT
t Atut .

(62)

Therefore, G (λk, µi) is bounded from below if and only if

At � 0. Taking the first-order derivative of the Lagrangian in

(61) with respect to ut , we obtain

2Ǎt ǔt = 0, (63)

where Ǎt and ǔt are the optimal solutions of At and ut ,

respectively. Hence, (63) gives the following L necessary and

sufficient conditions

√
ρi,t *,∆i +

K∑

k=1

λkθi,k✶k (t) +

K∑

k=1

λkci,k − λtbi,t +
L∑

i=1

µi+-
= 0.

(64)

where ci,k and bi,t are the ith entry of the vectors ck and bt ,

respectively which are defined in Theorem 2. If BS i associates

with user t (i.e., ρi,t , 0), then from (63) we achieve

∆i +

K∑

k=1

λkθi,k✶k (t) +

K∑

k=1

λkci,k − λtbi,t +
L∑

i=1

µi = 0, (65)
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from which the optimal Lagrange multiplier λ̌t is

λ̌t = *,∆i +
K∑

k=1

λkθi,k✶k (t) +

K∑

k=1

λ̌kci,k +

L∑

i=1

µ̌i+-
1

bi,t
. (66)

According to the duality regularization, Ǎ � 0, we stress that

λt ≤ *,∆i +
K∑

k=1

λ̌kθi,k✶k (t) +

K∑

k=1

λ̌kci,k +

L∑

i=1

µ̌i+-
1

bi,t
. (67)

The above equation implies that the system only selects BSs

satisfying (66), otherwise transmit powers are set to zero due

to (64) and hence there is no communication between these

BSs and user t. Moreover, the QoS constraints ensure that user

t must be served by at least one BS. The BS association of

user t is hence defined as shown in the theorem.

E. Proof of Corollary 3

Because pilot reuse reduces the SE of the users, we only

need to estimate ξ
upper

0
for the optimistic special case all the

users use mutually orthogonal pilot sequences, and then this

upper bound also applies for the scenario where the system

suffers from pilot contamination effects. From Theorem 4,

ξ
upper

0
can be computed as

ξ
upper

0
, min

k

Rk

wk

= min
k
γDL

(

1 −
τp

τc

)

log2 (1 + SINRk ) .

(68)

To solve (68), we first compute the maximal SINR value. In

the case of MRT precoding, from (25) we observe

SINRMRT
k =

M
L∑

i=1

ρi,k pkτpβ
2
i,k

pkτpβi,k+σ
2
UL

L∑

i=1

K∑

t=1
ρi,t βi,k + σ

2
DL

(a)
≤

M
L∑

i=1
ρi,k βi,k

L∑

i=1

K∑

t=1
ρi,t βi,k + σ

2
DL

(b)
≤ M .

(69)

In (69), (a) is because
pkτpβi,k

pkτpβi,k+σ
2
UL

≤ 1 and (b) is obtained

since
∑L

i=1 ρi,k βi,k ≤ (
∑L

i=1

∑K
t=1 ρi,t βi,k + σ

2
DL

). Combining

(68) and (69), ξ
upper

0
is selected as in the corollary.

In the case of ZF precoding, we first obtain

L∑

i=1

*,
ρi,k βi,k

pkτp βi,k + σ
2
UL

+- βi,k ≤
L∑

i=1

ρi,k βi,k

pkτp βi,k + σ
2
UL

L∑

i=1

βi,k

(70)

by utilizing the Cauchy-Schwarz’s inequality and the facts

that
∑L

i=1(
ρi,kβi,k

pkτpβi,k+σ
2
UL

)2 ≤ (
∑L

i=1

ρi,kβi,k

pkτpβi,k+σ
2
UL

)2 along with

∑L
i=1 β

2
i,k
≤ (

∑L
i=1 βi,k )2. Consequently, the SINR value can

be upper bounded as

SINRZF
k =

(M − K )
L∑

i=1

ρi,k pkτpβ
2
i,k

pkτpβi,k+σ
2
UL

L∑

i=1

K∑

t=1

ρi, tβi,kσ
2
UL

pkτpβi,k+σ
2
UL

+ σ2
DL

≤
(M − K )

pkτp

σ2
UL

L∑

i=1
βi,k

L∑

i=1

ρi,kβi,kσ
2
UL

pkτpβi,k+σ
2
UL

L∑

i=1

K∑

t=1
ρi,t

βi,kσ
2
UL

pkτpβi,k+σ
2
UL

+ σ2
DL

≤
(M − K )pkτp

σ2
UL

L∑

i=1

βi,k .

(71)

In summary, combining (68) and (71), ξ
upper

0
can be selected

as stated in the corollary.

F. Joint Power Allocation and User Association for Massive

MIMO Systems with Coherent Joint Transmission

With coherent joint transmission all BSs in the network will

precode and send the same signal to a user. It means that the

received signal at user k is

yk =

L∑

i=1

√
ρi,khH

i,kwi,k sk +

L∑

i=1

K∑

t=1
t,k

√
ρi,th

H
i,kwi,t st + nk . (72)

Applying the added-and-subtract technique that is shown in

(43) and (44) and then considering Gaussian noise as the worst

case distribution of the uncorrelated noise [41], a lower bound

on the ergodic SE of user k is obtained as

Rk = γ
DL

(

1 −
τp

τc

)

log2(1 + SINRk ) [bit/symbol], (73)

where the SINR value, SINRk , is presented as

�����
L∑

i=1

√
ρi,kE{hH

i,k
wi,k }

�����
2

K∑

t=1
E


�����
L∑

i=1

√
ρi,th

H
i,k

wi,t

�����
2 −

�����
L∑

i=1

√
ρi,kE{hH

i,k
wi,k }

�����
2

+ σ2
DL

.

(74)

Utilizing the same techniques as in Appendix B and C, the

total transmit power minimization problem is expressed for

Rayleigh fading channels together with MRT or ZF precoding

minimize
{ρi, t ≥0}

L∑

i=1

∆i

K∑

t=1

ρi,t

subject to

(
L∑

i=1

√
ρi,kgi,k

)2

L∑

i=1

∑

t∈Pk \{k }
ρi,tgi,k +

L∑

i=1

K∑

t=1
ρi,t zi,k + σ

2
DL

≥ ξ̂k, ∀k

K∑

t=1

ρi,t ≤ Pmax,i, ∀i.

(75)

Here, the parameters gi,k and zi,k are specified by the pre-

coding scheme. MRT precoding gives gi,k = Mθi,k and
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zi,k = βi,k while ZF precoding obtains gi,k = (M −K )θi,k and

zi,k = βi,k − θi,k . Let U = [u1, . . . , uK ] ∈ CM×K have columns

ut = [
√
ρ1,t, . . . ,

√
ρL,t ]

T , for t = 1, . . . , K . Therefore, we can

denote u′
i

to as the ith row of U. Furthermore, we also let

zt = [
√

z1,t, . . . ,
√

zL,t ]
T and gt = [

√
g1,t, . . . ,

√
gL,t ]

T . Finally,

(75) is reformulated as

minimize
{ut �0}

K∑

t=1

∆∆∆
T (ut ◦ ut )

subject to | |sk | | ≤ gTk uk, ∀k

| |u′i | | ≤
√

Pmax,i, ∀i.

(76)

Here ◦ denotes the element-wise product of two vectors and

the vector sk ∈ CK+ |Pk | is[√
ξ̂k

(

gTk ut
′
1
, . . . , ut

′
|Pk \{k }|

, zTk u1, . . . , z
T
k uK

)

, σDL

]T
,

where | · | denotes the cardinality of a set and t
′
1
, . . . , t

′

|Pk \{k } |
are all the user indices that belong to Pk \ {k}. We stress that,

in (76), the object function is convex since it is a quadratic

function of variables ut,∀t. Additionally, the constraint func-

tions are second-order cones. Consequently, (76) is a convex

program, and therefore the optimal solutions to the power

allocation and user association problems can be obtained by

using interior-point toolbox CVX [37]. Besides, the max-min

QoS levels are obtained by solving (39) in an iterative manner

that considers (76) as the cost function in each iteration.
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