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Traditional joint power control and beamforming achieve the targeted signal-to-interference-noise ratio (SINR) at the receivers by
assuming the knowledge of the measurements of channel parameters and SINR. Blind beamforming is an effective technique for
beamforming and channel estimation without the need of training sequences, thus not consuming extra bandwidth. In this paper,
we propose a novel joint power control and blind beamforming algorithm that reformulates the power control problem in such
a way that it does not need any prior knowledge and additional measurements in the physical layer. In contrast to the traditional
schemes that optimize SINR and, as a result, minimize bit error rate (BER), our proposed algorithm achieves the desired BER by
adjusting a quantity available from blind beamforming. By sending this quantity to the transmitter through a feedback channel,
the transmit power is iteratively updated in a distributed manner in the wireless networks with cochannel interferences (CCIS).
Our proposed algorithm is more robust to estimation errors. We have shown in both analysis and simulation that our algorithm
converges to the desired solution. In addition, a Cramer-Rao lower bound (CRB) is derived to compare with the performance of
our proposed joint power control and blind beamforming system.
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1. INTRODUCTION

Over the past few decades, wireless communications and
networking have witnessed an unprecedented growth, and
have become pervasive much sooner than anyone could have
imagined. One of the major challenges for the system de-
sign is the limited available radio frequency spectrum. Chan-
nel reuse is a common method to increase the wireless sys-
tem capacity by reusing the same channel beyond some dis-
tance. However this introduces cochannel interference (CCI)
that degrades the link quality. Two promising approaches
to combat CCI are power control and antenna array pro-
cessing. Power control is one direct approach toward min-
imizing CCI. The transmit powers are constantly adjusted.
They are increased if the signal-to-interference-noise-ratios

(SINRs) at the receivers are low and are decreased if the
SINRs are high. Such a process improves the quality of weak
links and reduces the unnecessary transmit powers. Antenna
array processing techniques such as beamforming can be ap-
plied to receive and transmit multiple signals that are sepa-
rated in space. Hence, multiple cochannel users can be sup-
ported in each cell to increase the capacity by exploring the
space diversity.

Many works have been reported in the literature for em-
ploying power control and beamforming to reduce CCI. Tra-
ditional beamformers such as minimum mean square er-
ror (MMSE) and minimum variance distortion response
(MVDR) methods have been commonly employed [1]. In
[2, 3], general frameworks for power control are constructed.
Beamforming is a physical layer technique that can greatly
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increase receivers’ SINR by using the signal processing al-
gorithms, while power control is a media access control
layer technique that can effectively control users’ trans-
mit powers to share the channels. Many joint power con-
trol and beamforming algorithms are proposed in [4, 5,
6, 7, 8]. Most of the existing works assume the avail-
ability of prior channel information and measurement of
SINR.

As a majority of communication systems often struggle
with the limited bandwidth constraint, it is desirable for the
receiver with multiple antennas to steer to the desired direc-
tion and to estimate the transmit signals without consum-
ing much channel bandwidth. By eliminating the training
sequence overhead, used for estimation, and maximizing the
channel capacity for information transmission, blind estima-
tion and beamforming [9, 10, 11, 12, 13, 14, 15, 16] offer
a bandwidth efficient solution to signal separation and es-
timation. Its importance also lies in the practical need for
some communication receivers to equalize unknown chan-
nels without the assistance and the expense of training se-
quences.

Current methods of joint power control and beamform-
ing [4, 5, 6, 7, 8] assume perfect measurement of channel
parameters and SINR at the receivers, which is very difficult
to obtain in practice. Blind beamforming can estimate and
separate, without the use of training sequences, the transmit-
ted signals that suffer from the channel distortion and addi-
tive noise. The difficulties for joint power control and blind
beamforming are to formulate such a cross-layer problem
into a joint optimization problem, and develop an algorithm
that can be self-trained and adaptively adjust the system pa-
rameters. In this paper, we present a novel joint power con-
trol and blind beamforming algorithm for a multicell multi-
antenna system. Based on a reformulated joint problem, our
proposed algorithm optimizes the bit error rate (BER) us-
ing a quantity directly available from the blind beamform-
ing and estimation, which avoids additional measurements
mentioned above. Mobiles’ transmit powers are updated in a
distributed manner such that the CCI is effectively reduced.
Convergence properties of the proposed algorithm are dis-
cussed. A Cramer-Rao lower bound (CRB) is derived to show
the effect of power control on the symbol estimation perfor-
mance in the networks. Simulation results illustrate that our
algorithm converges to the desired solution and is more ro-
bust to channel estimation error compared with traditional
joint power control and training-based beamforming algo-
rithm.

The organization of this paper is as follows. In Section 2,
we present the system model and the traditional joint power
control and beamforming problem. In Section 3, first we
choose a blind beamforming algorithm. Then we give the
reformulated joint power control and blind beamforming
problem. An adaptive algorithm is developed and a system is
constructed. In Section 4, the convergence and uniqueness of
the solution are analyzed. The CRB is derived to compare the
performance. In Section 5, we evaluate our algorithm via nu-
merical studies. In Section 6, we give the summary and con-
clusion.

2. SYSTEM MODEL, BEAMFORMING
AND POWER CONTROL

Consider K distinct cells in wireless networks where cochan-
nel links exist. Each cell consists of one base station and its as-
signed D mobiles. Antenna arrays with M elements are used
only at the base station and M ≥ D. We assume that coherent
detection is possible so that it is sufficient to model this mul-
tiuser system by an equivalent baseband model. Each link is
affected by the slow Rayleigh fading. The propagation delay
is far less than one symbol period. For uplink case, the ith
base station antenna array’s output vector is given by

xi(t)

=
K∑
k=1

D∑
d=1

√
Gd
kiP

d
k α

d
kia

d
ki

(
θdki

) · gdk (t − τki
)
sdk
(
t − τki

)
+ ni(t),

(1)

where Gd
ki is path loss, αdki is fading coefficient, Pd

k is transmit
power, adki(θ

d
ki) is the ith base station array response vector

to the signal from the dth mobile in the kth cell at direction
θdki, g

d
k (t) is shaping function, sdk(t) is message symbol, τki is

the delay, and ni(t) is thermal noise vector. We assume the
synchronous transmission for all the users within the same
cell, that is, τii = 0, for all i. The synchronous assumption is
reasonable because the symbol timing can be effectively con-
trolled within each cell. We assume that the CCI from other
cells is asynchronous for the desired signals within the cell
and τki, k �= i, is uniformly distributed within the symbol
duration. We assume that the channels are flat fading and
stable within a frame of hundreds of symbols. Define the im-
pulse response from the dth mobile in the kth cell to the pth

element of the ith base station as h
dp
ki = αdkia

dp
ki (θdki)r

dp
ki , where

r
dp
ki includes the effect of the transmitter, receiver filter, and

shaping function gdk (t− τki). In the vector form, it is given by
hd
ki = [h1d

ki , . . . ,hMd
ki ]T . The sampled received vector for this

DK users and MK antenna outputs multicell system at time
n is given by
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where X(n) = [xT
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sampled thermal noise vector, and
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Let wd
i be the beamforming weight vector for the dth mo-

bile in the ith cell. Without loss of generality, we normalize
the beamformer weight vector ‖(wd

i )Hhd
ii‖2 = 1, which will

not change the receivers’ SINRs. We assume that the trans-
mitted signals from different sources are uncorrelated and
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zero mean, and the additive noise is spatially and temporally
white with variance Ni = σ2IM×M , where σ2 is the thermal
noise variance. The dth user’s SINR at its associated ith base
station’s beamformer output is

Γdi =
Pd
i G

d
ii∑∑

(k, j) �=(i,d) P
j
kG

j
ki

∥∥(wd
i

)H
h
j
ki

∥∥2
+
(

wd
i

)H
Niwd

i

. (4)

The issue in question here is how to find the users’ beam-
forming vectors and transmit powers such that each user has
the desired link quality and does not introduce unnecessary
CCI to other users. In the rest of this section, we will briefly
illustrate the traditional joint power control and beamform-
ing.

An adaptive antenna array is designed to receive the sig-
nals from the desired directions and attenuate signals’ radi-
ations from other directions of no interest. The outputs of
the array elements are weighted by a beamformer. In order
to suppress the interferences, the beamformer places its nulls
in the directions of interference sources and steers to the di-
rection of the target signal. Some most popular beamform-
ers are MMSE and MVDR beamformers [1]. In this paper,
we will compare joint power control and MVDR beamform-
ing method with our proposed blind scheme because MVDR
beamformer is commonly used in the literature [4].

If the channel responses hd
ii can be estimated, the beam-

forming vector can be calculated by the MVDR method,
which minimizes the total interferences at the output of a
beamformer, while the gain for the desired dth user in the ith
cell is kept as a constant. The MVDR problem can be defined
as

min
wd
i

∥∥∥(wd
i

)H
xi

∥∥∥2
, (5)

subject to
∥∥∥(wd

i

)H
hd
ii

∥∥∥2 = 1, i = 1, . . . ,M. (6)

Define correlation matrix as φi = E[xixH
i ]. The optimal

weight vector is given by

ŵd
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ii(
hd
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)H
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i hd
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. (7)

In traditional power control schemes, the overall trans-
mit powers of all links are minimized, while each link’s trans-
mit power is selected so that its SINR is equal to or larger than
a fixed and predefined targeted SINR threshold γdi required
to maintain the link quality. The power control problem can
be defined as

min
Pd
i

K∑
i=1

D∑
d=1

Pd
i , (8)
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where i=�k/D�, d=mod(k,D), i′ = � j/D�, d′ =mod( j,D),
and k, j = 1 · · ·KD.

If the spectral radius ρ(BF) [17], that is, the maximum
eigenvalue of BF, is inside the unit circle, the system has
feasible solutions and there exists a positive power alloca-
tion vector to achieve the desired targeted SINRs. By Perron-
Frobenius theorem [17, 18], the optimum power vector for
this problem is P̂ = (I − BF)−1u. Many adaptive algorithms
[3, 4, 19] have been developed to reduce the system complex-
ity by the following distributed iteration:

Pd
i (n + 1) = γi

Gd
ii

Idi , (11)

where Idi = (wd
i )HNiwd

i +
∑K ,D

(k, j) �=(i,d) ‖(wd
i )Hh

j
ki‖2P

j
kG

j
ki and Idi

can be easily estimated at the receivers. The power allocation
is balanced at the equilibrium when the power update in (11)
has converged.

The level of CCI depends on both channel gain and trans-
mit power. The optimal beamforming vector may vary for
different powers. Hence the beamforming and power control
should be considered jointly. In [4], a joint power control and
beamforming scheme has been proposed. An iterative algo-
rithm is developed to jointly update the transmit powers and
beamformer weight vectors. The algorithm converges to the
jointly optimal transmit power and beamforming solution.
The joint iterative algorithm can be summarized by the fol-
lowing two steps:

(i) beamforming in physical layer: MVDR algorithm,
(ii) power update in MAC layer: Pn+1 = BFPn + u,

where power update step can be implemented by using only
local interference measurement. But the algorithm assumes
the knowledge of SINR and directions of the desired signals
or the perfect measurements of channel responses, which are
very difficult to get in practice.

3. JOINT POWER CONTROL AND BLIND
BEAMFORMING

In this section, first we consider how to choose a blind beam-
forming algorithm that can be used for joint optimization
with power control. Then we reformulate the joint power
control and blind beamforming problem as a cross layer ap-
proach. Finally, an adaptive iterative algorithm is developed.

3.1. Choosing a blind beamforming algorithm

The traditional beamforming needs the measurement of spa-
tial responses of the array. A common practice is the use of
training sequences [1]. However, it costs bandwidth which
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is very precious and limited in wireless networks. Moreover,
the measurement errors can greatly reduce the performance
of beamforming. This gives us the motivation to use blind
beamforming method to separate and estimate the multiple
signals arriving at the antenna array. Since beamforming and
power control are two different layer techniques, we need to
find the blind beamforming algorithms that allow us to have
joint optimization across the layers. In [13, 14], a maximum
likelihood approach named iterative least squares projection
(ILSP) algorithm is proposed. The algorithm explores the
finite alphabet property of digital signals. The channel es-
timation and symbol detection can be implemented at the
same time. In addition, a quantity is available for BER perfor-
mance and can be used for power control optimization [20].
In this subsection, we will briefly review the ILSP algorithm.

Consider the same channel module in (2). The dth mo-
bile inside the ith cell generates binary data sdi (n) with power
Pd
i transmitted over a low delay spread Rayleigh fading chan-

nel. The channel and antenna array response is hd
ii. The sam-

pled antenna output at the ith base station is given by

xi(n) =
D∑
d=1

hd
ii

√
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i G

d
iis

d
i (n) + vi(n), (12)

where vi(n) includes the ith base station antenna thermal
noise and all the CCIs from the other cells, that is,

vi(n) = ni(n) +
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√
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d
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where ni(n) is the M × 1 sampled thermal noise vector.
The ILSP algorithm works with a shifting window on

data blocks of size N . Assume that the channel is constant
over the N symbol periods. In the ith cell, we obtain the fol-
lowing formulation of the lth data block:

Xi(l) = AiSi(l) + Vi(l), (14)

where l is block number,

Xi(l) =
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(15)

We assume that the number of users is known or has been
estimated.

The ILSP algorithm uses the finite alphabet property of
the input to implement a least squares algorithm that has
good convergence properties for the channel with low delay
spread. The algorithm is carried out in two steps to alterna-
tively estimate Ai and Si as follows:

min
Ai ,Si

f
(

Ai, Si; Xi
) = ∥∥Xi(l)− AiSi(l)

∥∥2
. (16)

The first step is a least square minimization problem, where
Si is unstructured and its amplitude is continuous without
considering the discrete nature of modulations, while Ai is
fixed and equal to the estimated Âi. In the second step, each
element of the solution Si is projected to its closest discrete
values Ŝi. Then a better estimate of Âi is obtained by mini-
mizing f (Ai, Ŝi; Xi) with respect to Ai, keeping Ŝi fixed. We
continue this process until estimates of Âi and Ŝi are con-
verge. The ILSP algorithm is given in Algorithm 1.

3.2. Reformulation of joint power control
and beamforming

In traditional joint power control and beamforming, the
user’s received SINR is larger than or equal to a targeted value
to maintain the link quality such as the desired BER. In this
paper, we proposed another quantity available from the ILSP
algorithm to directly ensure each user’s BER. For simplic-
ity, we use BPSK modulation for the analysis and simulation.
The other PAM or MQAM modulation methods can be eas-
ily extended in a similar way. It has been shown in [14] that
the error probability of ILSP algorithm is approximated by

Pr
(
sdi
) = Q

(√
2

Var
[
ŝdi (n)

]
)

, (17)

where each estimated signal ŝdi (n) has E[ŝdi (n)] = sdi (n), that
is, ILSP is an unbiased estimator with variance

Var
[
ŝdi (n)

] = 2σ2
i

(
AH
i Ai

)−1
dd , (18)

where, in our case, σ2
i = E[vi(n)Hvi(n)] and can be estimated

by

σ2
i ≈

1
N

∥∥Xi − ÂiŜi

∥∥2 = 1
N

∥∥Vi

∥∥2
. (19)

In [14], (18) is developed for single cell environment with ad-
ditive white Gaussian noise. In our case, we need to perform
optimization in multicell scenario with CCI. Because there
are a large number of CCI sources with similar received pow-
ers, by the central limit theorem, we can assume that vi(n)
approaches a zero-mean Gaussian vector. So (18) still holds
in our case. From the simulation results in Section 5, we can
show that this assumption is valid.

In our proposed joint power control and blind beam-
forming scheme, the key issue is the quantity Var[ŝdi (n)]
which is directly related to error performance. Var[ŝdi (n)] is
a function of σ2

i and Ai, so it is also a function of all Pd
i ,

for all i,d. We want the maximum variance for each user’s
Var[ŝdi (n)] to be less than or equal to a predefined value var0

so that each user’s BER is less than the desired value. How-
ever, if var0 is too small, each user’s transmit power will be
too large and cause too much CCI. Under this condition,
the system may not be feasible, that is, no matter how large
the transmit powers are, the receivers cannot achieve de-
sired BER. So we need a feasibility constraint for var0. The
reformulated joint power control and blind beamforming
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(1) Initial Âi,0, Step m = 0.
(2) m = m + 1

(a) S̄i,m = A+
i,m−1Xi,

where A+
i,m−1 = (ÂH

i,m−1Âi,m−1)−1ÂH
i,m−1,

(b) projection onto finite alphabet
Ŝi,m = proj[S̄i,m],

(c) Âi,m = XiŜ+
i,m,

where Ŝ+
i,m = ŜH

i,m(Ŝi,mŜH
i,m)−1.

(3) Repeat until (Âi,m, Ŝi,m) ≈ (Âi,m−1, Ŝi,m−1).

Algorithm 1

problem is given by

min
Pd
i

K∑
i=1

D∑
d=1

Pd
i , (20)

subject to

Var
(
ŝdi (n)

)
≤ var0, ∀i,d, (21)

where var0 is feasible. In order to solve this problem, we need
to develop a distributed algorithm such that each user can
adapt its transmit power by using only local information. We
need to evaluate the feasible range of var0 such that the sys-
tem is feasible, that is, there exists a possible power allocation
vector. The convergence and optimality of the adaptive algo-
rithm will be considered in Section 4.

3.3. Adaptive iterative algorithm

In this subsection, we assume that var0 is feasible for the sys-
tem. We will discuss the feasibility issue in Section 4.1. In
ILSP algorithm, the iteration stops when the estimated chan-
nel response matrix and symbol matrix have converged. In
the algorithm, we use the final channel response matrix Âi

to substitute Ai in (18). Then the estimation of Var(ŝdi (n)) is
calculated by

vardi = 2σ2
i

(
ÂH
i Âi

)−1

dd
. (22)

In the uplink, the value of vardi is obtained in the base sta-
tion and compared with the desired var0. If vardi is too large,
it means that the BER for the dth user is too large and conse-
quently, the dth user’s power needs to be increased. If vardi is
too small, it is unnecessary to have such a high power for the
dth user. Consequently, the power needs to be reduced. The
power update stops when transmit powers have converged in
the consecutive iterations, that is, vardi ≈ var0. Each user’s
power is updated by the simple feedback of λ = vardi / var0

from the base station. The power update scheme can be eas-
ily implemented in a distributed manner. In each iteration,
the power is updated by

Pd
i (m + 1) = λPd

i (m), (23)

where m is the iteration number.

With the above power update equation, we develop the
following joint adaptive power control and blind beamform-
ing algorithm. The algorithm is initialized by some feasible
power allocation vector P(0) and some approximate channel
estimation Âi,0 [13]. The user’s BER may be larger than the
desired value during the initialization. In each iteration, first,
ILSP blind estimate algorithm is applied to estimate the an-
tenna array responses and the transmitted signals. Then vardi
is calculated. The new transmit power is updated by (23).
The iteration is stopped by comparing the power vector of
the two consecutive iterations. When the algorithm stops,
each user’s desired BER will be satisfied. The adaptive algo-
rithm is summarized in Algorithm 2.

With the adaptive algorithm, we can construct a joint
power control and blind beamforming system as shown in
Figure 1. The variance calculator module calculates the esti-
mation vardi from the ILSP module. The updating informa-
tion of transmit powers is computed by the power update
module. Then the simple power update information is sent
back to mobiles via the feedback channels. When the algo-
rithm converges, the output data from the ILSP module will
have the desired BER.

4. ANALYSIS AND CONVERGENCE
OF THE ALGORITHM

4.1. Convergence analysis

In this subsection, we analyze the condition for our proposed
algorithm to converge, that is, we find the feasible range for
var0. Then we prove that the power update converges to a
unique solution when the system is feasible, while the blind
beamforming may not converge to a unique solution. So our
proposed joint power control and blind beamforming algo-
rithm may have local minima because of the inherited char-
acteristics of the blind estimation. We will propose a method
to avoid the local minima. From the simulation results in
Section 5, we can show that even with the possible local min-
ima, the proposed algorithm performs comparably well with
the traditional joint power control and beamforming algo-
rithm.

Consider the transmission from the dth mobile to its as-
sociated ith base station with hd

ii and Gd
ii being the channel

response and link gain, respectively, and Ai being the channel
response matrix. We want to find the expression Var[ŝdi (n)]
in (18). Then we will analyze the conditions for the conver-
gence of our algorithm. We have

[
AH
i Ai

]
jk =

√
P
j
i P

k
i G

j
iiG

k
ii

(
h
j
ii

)H
hk
ii. (24)

The det(AH
i Ai) can be expanded by the following alternating

sum form:

det
(

AH
i Ai

) = P1
i G

1
ii · · ·PD

i G
D
ii f1

(
hii

)
, (25)

where hii = [h1
ii, . . . , hD

ii ] and f1(hii) is a real function of chan-
nel responses hd

ii, for all d. Then it follows from the cofactor
method of matrix inverse [17] that
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(1) Given P(0), var0, m = 0, and Âi = Âi,0.
(2) Received data block at base station i,

(i) ILSP blind estimation to get Âi;
(ii) For each mobile d inside ith cell,

vardi = 2σ̂2
i (ÂH

i Âi)−1
dd

λ = vardi
var0

Pd
i (m + 1) = λPd

i (m);
(iii) Âi,0 = Âi.

(3) m = m + 1. Go to step 2;
Repeat until Pi(m) ≈ Pi(m− 1), for all i.

Algorithm 2: Joint power control and blind beamforming algo-
rithm.

(
AH
i Ai

)−1
dd =

f d2
(

hii
)∏ j=D

j=1, j �=d P
j
i G

j
ii

f1
(

hii
)∏ j=D

j=1 P
j
i G

j
ii

= f3
(

hii
)

Pd
i G

d
ii

, (26)

where f d2 (hii) is a real function of channel responses h
j
ii, j �=

d, and f3(hii) = f d2 (hii)/ f1(hii).
Because the channels are not reused in the adjacent cells

in most of the communication system, we assume that the
CCI plus thermal noise in (13) is Gaussian noise with the
variance:

σ2
i =

K∑
j �=i

D∑
d=1

∥∥hd
ji

∥∥2
Gd

jiP
d
j + Mσ2. (27)

Now we can calculate Var[ŝdi (n)] as

Var
[
ŝdi (n)

] = 2σ2
i(

AH
i Ai

)
dd

= 2σ2
i

Pd
i G

d
ii

f3
(

hii
)
. (28)

An interesting result is that Var(ŝdk(n)) is independent of the
transmit powers of the other mobiles in the same cell. So the
main concern for power control is intercell CCI. Substitute
into (23), the power update equation can be expressed as

Pd
i (n + 1) =

∑K
j �=i

∑D
d=1

∥∥hd
ji

∥∥2
Gd

jiP
d
j + Mσ2

Gd
ii var0

f3
(

hii
)
. (29)

In matrix form, we define a matrix Q as

[Q]k j =

G

d′
i′i f

k j
4 /Gd

ii if i′ �= i,

0 otherwise,
(30)

where i = �k/D�, d = mod(k,D), i′ = � j/D�, d′ = mod( j,

D), and f
k j

4 = ‖hd
ji‖2 f3(hii). The matrix expression of (29)

for the whole network can be written as

P(n + 1) = 1
var0

QP(n) + u, (31)

where P = [P1
1 · · ·PD

1 , . . . ,P1
K · · ·PD

K ]T , u = [u1, . . . ,uDK ]T ,
and

uj = f3
(

hii
)
Mσ2

Gd
ii var0

. (32)
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Figure 1: Joint power control and blind beamforming system.

By Perron-Frobenius theorem [17], the power update in (31)
has the equilibrium

P =
(

I− 1
var0

Q
)−1

u. (33)

If (I − (1/var0)Q) is positive definite, that is, the spectrum
radius |ρ(Q)| < var0, the positive power vector exists and the
power update converges. Under this condition, the system is
converged when Var[ŝdi (n)] = var0. From the simulation re-
sults in Section 5, we will see that our algorithm converges
rapidly to the desired var0 if |ρ(Q)| < var0.

When var0 is too small and less than ρ(Q), the system
is not feasible and the adaptive algorithm diverges. In order
to prevent the algorithm from diverging, the system will de-
tect the severity of CCI. If the system detect ρ(Q) approaches
var0 or the transmit powers increase very fast, var0 will be in-
creased so that users will reduce their transmit powers and
CCI will be alleviated.

Following the same proof in [19], we can prove that the
power update in (29) converges to a unique solution. Sup-
pose that P̂ and P∗ are two different converge power allo-
cation vectors. Without loss of generality, we assume that
β = maxl(P̂d

l /P
d∗
l ) > 1 such that βP∗ ≥ P̂. We can find an

index i such that βPd∗
i = P̂d

i . We have

P̂d
i =

∑K
j �=i

∑D
d=1

∥∥hd
ji

∥∥2
Gd

jiP̂
d
j + Mσ2

Gd
ii var0

f3
(

hii
)

≤
∑K

j �=i
∑D

d=1

∥∥hd
ji

∥∥2
Gd

jiβP
d∗
j + Mσ2

Gd
ii var0

f3
(

hii
)

< β

∑K
j �=i

∑D
d=1

∥∥hd
ji

∥∥2
Gd

jiP
d∗
j + Mσ2

Gd
ii var0

f3
(

hii
)

= βPd∗
i .

(34)

The above contradiction implies that the power update equa-
tion (23) will converge to a unique solution. However, be-
cause the solution of blind beamforming may not be unique
[14], our proposed joint scheme may fall into local minima.
In order to prevent such local minima, we propose the fol-
lowing scheme to avoid the local minima.

When the two users are not well separated in the an-
gle, that is, the array response Ai is ill-conditioned. The
ILSP algorithm can converge to some fixed points that are
not the global minima. In this case, instead of projecting
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unstructured continuous estimated symbols to the closest
discrete values in ILSP algorithm, we enumerate over all ΩD

possible vectors S
j
i ∈ ΩD and choose the one that minimizes

Ŝi(n) = arg min
S
j
i∈ΩD

∥∥Xi(n)− AiS
j
i

∥∥2
, ∀ j, (35)

where Ω is the modulation constellation alphabet. This enu-
merating method has a better performance but a higher com-
plexity. If the global minimum is still not achieved, it has
been shown in [13] that usually one or two reinitializations
with random guess are sufficient to yield the global mini-
mum. So we can have two or three parallel structures with
different initial values to calculate ILSP algorithm. Then we
select the minimal one. The probability of staying in a local
minimum will be greatly reduced.

4.2. Cramer-Rao lower bound

In our proposed joint power control and blind beamforming
system, the performance of each user’s BER is determined
by the noise variance, channel conditions, and power alloca-
tion. When the additive noise is a zero-mean Gaussian ran-
dom process, the estimation performance of the unbiased es-
timator is bounded by the CRB. In this subsection, we derive
the covariance matrix for the parameters of the thermal noise
variance, the input symbols, and the power allocation vector
for the CRB. The results will help us analyze the effects of
power control on the users’ symbol estimation performances
in this multicell system.

For simplicity, we assume that the data are modulated
as BPSK, that is, S(n) ∈ ΩKD, where Ω = {±1}. Similar
to the performance analysis of ILSP in [14], we assume that
the channel responses are known (the algorithm itself doesn’t
need such information). The parameters for Fisher informa-
tion matrix are ϑ = [σ2, S(1), . . . , S(N), P]. The likelihood
function L of the received data X(n) is given by

L
[

X(1) · · ·X(N)
]

= 1(
πσ2

)MKN

× exp

{
− 1

σ2

N∑
n=1

[
X(n)− AS(n)

]H[
X(n)− AS(n)

]}
.

(36)

The Fisher information matrix is calculated by

I(θ)i j = −E
[
∂2 ln(L)
∂θi∂θj

]

=




MKN

σ4
0 · · · 0 0

0 Q · · · 0 R(1)
...

...
. . .

...
...

0 0 · · · Q R(N)
0 R(1) · · · R(N) RP




,

(37)

where Q, R(n), and RP are derived in the appendix.

In order to see the effect of the proposed power control
on the symbol estimation errors, we define the average mean
square error (AMSE) as a performance measure of the sym-
bol estimation:

AMSE = 1
N

N∑
n=1

∥∥Ŝ(n)− S(n)
∥∥2

∥∥S(n)
∥∥2 . (38)

Because we use BPSK modulation, ‖S(n)‖2 = DK , for all n,
and AMSE is the variance bounded by CRB. The CRB for the
symbol estimation can be obtained directly from the inverse
of Fisher information matrix, that is,

AMSE ≥ 1
NDK

N∑
n=1

DK∑
j=1

(
I−1(θ)

)
S j (n)S j (n), (39)

where S j(n) is the jth element of S(n). How close AMSE is
to the CRB will show the relative efficiency of our proposed
algorithm.

5. SIMULATION RESULTS

A network with 50 cells is simulated as shown in Figure 2.
Each hexagonal cell’s radius is 1000 m. Two adjacent cells do
not share the same channel. In each cell, one base station is
placed at the center. Two mobiles are placed randomly with
uniform distribution. Each mobile transmits BPSK data over
Rayleigh fading channels. Each base station employs four-
elements antenna array. The noise level is σ = 1. The trans-
mit frame has N = 1000 data symbols. Our shaping function
is raised cosine function.

Path loss is due to the decay of the intensity of a propa-
gating radio wave. In our simulations, we use the two slope
path loss model [21] to obtain the average received power as
a function of distance. According to this model, the average
path loss is given by

G = C

ra
(
1 + rλc/

(
4hbhm

))b , (40)

where C is a constant, r is the distance between the mobile
and the base station, a is the basic path loss exponent (ap-
proximately two), b is the additional path loss component
(ranging from two to six), hb is the base station antenna
height, hm is the mobile antenna height, and λc is the wave-
length of the carrier frequency. We assume the mobile an-
tenna height is 2 m and the base station antenna height is
50 m. The carrier frequency is 900 MHz.

In Figure 3, we show the analytical and numerical per-
formance of ILSP, compared with MVDR with perfect chan-
nel estimation. The numerical results with CCI match the
analytical results well especially at high SINR range, which
proves our assumption that Vi(n) can be treated as Gaus-
sian noise when the number of CCIs is large. Our pro-
posed joint power control and blind beamforming has only
about 1–2 dB performance loss over traditional power con-
trol and MVDR beamforming with perfect channel esti-
mation. However, MVDR beamforming needs additional
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Figure 2: Simulation setup.
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Figure 3: ILSP performance.

training sequence to estimate the channel and SINR with
prior information that may not be available in practice.

In reality, perfect channel estimation is hard to obtain. In
Figure 4, we show the effect of directions of arrivals (DOA)
estimation error on the traditional joint power control and
MVDR beamforming and our algorithm. In Figure 4a, we
compare the BER performance while the transmit power al-
location is the same for both algorithms. We can see from
the curves that when the channel estimation error for DOA
is greater than about 2 degrees, the blind beamforming algo-
rithm outperforms the traditional MVDR. In Figure 4b, we
compare the overall transmit power while BER performance
is the same for both algorithms. We can see that the blind
beamforming algorithm needs a little bit more transmit pow-
ers when the DOA estimation error is small. However, the
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Figure 4: Effects of DOA estimation error.

traditional power control with MVDR method will diverge
when the DOA estimation error is about 2 degrees. Our pro-
posed joint power control and beamforming algorithm will
always converge regardless the DOA variations. When the
mobiles are moving, DOA are changing and this will cause
the channel estimation errors. The traditional MVDR beam-
former may not be aware of the changing and still use the ob-
solete hd

ii in (7). This will greatly increase BER and transmit
powers of the joint power control and MVDR method. The
proposed blind scheme will automatically track and adapt to
the changes and so it is more robust to channel estimation
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errors. Consequently, our algorithm is more robust in appli-
cations where usually only the inaccurate channel and SINR
estimations are available. It is worthy to mention that the
proposed scheme is more sensitive to fast channel varying
and the complexity is much higher compared to the tra-
ditional training sequence-based algorithm. However, our
scheme saves the transmission bandwidth by eliminating the
training sequences and is more robust to channel estimation
errors.

In Figure 5, we show the numerical results of BER and
the overall transmit power versus var0 for the proposed joint
blind beamforming and power control algorithm. When var0

is decreasing from a large number, BER decreases and the
overall power increases slightly. Within a reasonable BER
range such as BER = 10−3 to BER = 10−5, we can cal-
culate the threshold of var0 for the desired BER. After var0

decreases to a specific value, the overall transmit power in-
creases and BER decreases quickly. This is because the CCI
is too large and var0 → ρ(Q). After var0 is smaller than
some value, the algorithm diverges. Consequently, there is
no feasible power control solution, that is, no matter how
large the transmit powers are, the receivers cannot ensure
the desired BER. This proves that our algorithm behaves ex-
actly the same as the traditional power control algorithm, ex-
cept that our algorithm directly ensures BER instead of each
user’s SINR. There is a trade-off between the overall trans-
mit power and BER, while var0 is the bridge between the two
quantities.

In Figure 6, we show the distribution of the number of
iterations required for the convergence of our proposed al-
gorithm with different values of var0. The convergence crite-
ria is that the maximum difference of users’ transmit pow-
ers between two consecutive iterations is less than 3%. When
var0 is within the range that the system is feasible, we can
see that our algorithm converges within a small number of
iterations, which demonstrates that our algorithm is robust
in the wireless communication systems if the channel gains
and topologies have been changed. When var0 is large, that
is, the desired BER is large, the algorithm converges slower.
This is because the transmit powers are small when var0 is
large. Consequently, the vardi estimation is poor and more it-
erations are needed for the convergence.

In Figure 7, we compare the AMSE and CRB versus var0.
When var0 is large and the transmit powers of users are
small, the CCI is small. The performance of ILSP is close to
CRB. The difference is because discrete alphabets are used
for transmitted symbols, while there is no such assumption
for CRB. When var0 is decreasing, the CCI and our algo-
rithm’s AMSE are decreasing because of the increasing trans-
mit powers. In this situation, the CRB is much lower than
our algorithm performance. This is because we assume that
all the channel conditions including Aij , i �= j, are known for
CRB, while our algorithm only estimates Aii and treats trans-
mitted signals from other cells as noise. If an algorithm can
take consideration of all Aij , for all i, j, its performance will
be much better and closer to CRB; however, the complexity
will be unacceptably high. When var0 is smaller than some
value, our algorithm diverges. The transmit powers also di-
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Figure 5: BER and the overall power versus var0.
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Figure 6: Convergence of the algorithm.

verge to arbitrary large values. But the CRB goes extremely
low because SINR can be very high, if we know all the chan-
nel responses.

6. CONCLUSION

We have proposed a novel joint power control and blind
beamforming algorithm that reformulates the power con-
trol problem in terms of a quantity directly related to the er-
ror performance of the estimation. First, this approach opti-
mizes BER instead of a theoretically indirect SINR. Secondly,
the algorithm does not require additional measurements of
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channel or SINR, which saves valuable limited bandwidth.
Third, our scheme can be easily implemented in a distributed
manner. Fourth, our scheme is more robust to channel es-
timation error. The proof of convergence of the algorithm
is derived and supported by simulation results. Performance
results show that our algorithm performs well in the situa-
tions where the radio spectrum is limited or the good esti-
mations are hard to obtain.

APPENDIX

From (36), the log likelihood function is

ln(L) = −MKN ln(π)−MKN ln
(
σ2)

− 1
σ2

N∑
n=1

[
XH(n)− ST(n)AH

][
X(n)− AS(n)

]
.

(A.1)

We take partial derivatives of (A.1) with respect to σ2,
S(n), and P:

∂ ln(L)
∂σ2

= −MKN

σ2
+

1
σ4

N∑
n=1

e(n)He(n),

∂ ln(L)
∂S(n)

= 2
σ2

Re
{

AHe(n)
}

,

∂ ln(L)

∂Pd
i

= 2
σ2

N∑
n=1

Re
{

ST(n)
dAH

dPd
i

e(n)
}

,

∂ ln(L)
∂P

= 1
σ2

N∑
n=1

Re
{

diag(ST(n)) diag
(

1
P

)
AHe(n)

}
,

(A.2)

where e(t) = X(t) − AS(t), and diag(1/P) = diag(1/P1
1 , . . . ,

1/PD
1 , . . . , 1/PD

K ). Using the several results that are proven in
[16, 22], we have

E

[(
∂ ln(L)
∂σ2

)2
]
= MKN

σ4
,

E

[(
∂ ln(L)
∂σ2

)(
∂ ln(L)
∂S(n)

)T
]
=E

[(
∂ ln(L)
∂σ2

)(
∂ ln(L)
∂P

)T
]
= 0,

Q = E

[(
∂ ln(L)
∂S(n)

)(
∂ ln(L)
∂S(r)

)T
]
= 2

σ2
Re

{
AHA

}
δn,r ,

RP = E

[(
∂ ln(L)
∂P

)2
]

= 1
2σ2

N∑
n=1

Re
{

diag
(

ST(n)
)

diag
(

1
P

)
AH

× A diag
(

1
P

)
diag

(
S(n)

)}
,

R(n) = E

[(
∂ ln(L)
∂S(n)

)(
∂ ln(L)
∂P

)T
]

= 1
σ2

Re
{

AHA diag
(

1
P

)
diag

(
S(n)

)}
.

(A.3)
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entropy analysis, and data mining techniques are examples
in this regard. However, the major challenges of the signal
processing-based approaches lie in the adaptive modeling of
normal network traffic and the high false alarm rate due to
the inaccuracy of the modeled normal traffic pattern. The
emergence of a variety of wireless networks and the mobil-
ity of nodes in such networks only add to the complexity of
the problems.

The goal of this special issue is to introduce state-of-the-
art techniques and encourage research regarding various as-
pects in the application of signal processing techniques to
network intrusion detection systems. In particular, the spe-
cial issue encourages novel solutions that improve the accu-
racy and adaptivity of intrusion detection and addresses the
automation of intrusion classification and correlation.
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• Data-mining-based IDS
• Multirate filtering and wavelets
• Monte Carlo methods integration

• Anomalous network traffic modeling
• Anomalous application-level behavior modeling
• Performance analysis and evaluation
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and anomalies
• Clustering-based IDS
• Sampling techniques in intrusion detection
• Data streaming algorithms for traffic analysis
• Adaptive detection techniques
• Data fusion in distributed intrusion detection
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Recent advances in genomic studies 
have stimulated synergetic research 
and development in many cross-

disciplinary areas. Genomic data, especially 
the recent large-scale microarray gene 
expression data, represents enormous 
challenges for signal processing and statistics 
in processing these vast data to reveal the complex 
biological functionality. This perspective naturally 
leads to a new field, genomic signal processing (GSP), which studies 
the processing of genomic signals by integrating the theory of signal 
processing and statistics. Written by an international, interdisciplinary 
team of authors, this invaluable edited volume is accessible to students 
just entering this emergent field, and to researchers, both in academia 
and industry, in the fields of molecular biology, engineering, statistics, 
and signal processing. The book provides tutorial-level overviews and 
addresses the specific needs of genomic signal processing students and 
researchers as a reference book.

The book aims to address current genomic challenges by exploiting 
potential synergies between genomics, signal processing, and statistics, 
with special emphasis on signal processing and statistical tools for 
structural and functional understanding of genomic data. The book is 
partitioned into three parts. In part I, a brief history of genomic research 

and a background introduction from both biological and signal processing/statistical perspectives are provided so that readers 
can easily follow the material presented in the rest of the book. In part II, overviews of state-of-the-art techniques are provided. 
We start with a chapter on sequence analysis, and follow with chapters on feature selection, clustering, and classification of 
microarray data. The next three chapters discuss the modeling, analysis, and simulation of biological regulatory networks, 
especially gene regulatory networks based on Boolean and Bayesian approaches. The next two chapters treat visualization 
and compression of gene data, and supercomputer implementation of genomic signal processing systems. Part II concludes 
with two chapters on systems biology and medical implications of genomic research. Finally, part III discusses the future 
trends in genomic signal processing and statistics research.
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