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Abstract

The paired measurement of RNA and surface proteins in single cells with CITE-seq is a promising 

approach to connect transcriptional variation with cell phenotypes and functions. However, 

combining these paired views into a unified representation of cell state is made challenging by the 

unique technical characteristics of each measurement. Here we present Total Variational Inference 

(totalVI; https://scvi-tools.org), a framework for end-to-end joint analysis of CITE-seq data that 

probabilistically represents the data as a composite of biological and technical factors including 

protein background and batch effects. To evaluate totalVI’s performance, we profiled immune 

cells from murine spleen and lymph nodes with CITE-seq, measuring over 100 surface proteins. 

We demonstrate that totalVI provides a cohesive solution for common analysis tasks like 

dimensionality reduction, the integration of datasets with different measured proteins, estimation 

of correlations between molecules, and differential expression testing.
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Introduction

The advance of technologies for quantitative, high-throughput measurement of the molecular 

composition of single cells is continuously expanding our understanding of cell ontology, 

state, and function [1–3]. A growing body of single-cell multi-omic techniques now offers 

the ability to further refine our definitions of cellular identity by providing multiple views of 

molecular state [4, 5]. By extending single-cell RNA-sequencing (scRNA-seq) to 

simultaneously measure the abundance of proteins on the cell surface, CITE-seq [6,7] 

presents the opportunity to connect the information that can be gleaned from the 

transcriptome [8, 9] to the functional information contained in proteins [10, 11]. Such 

experimental tools necessitate computational tools to synthesize these high-dimensional 

views.

Recent studies have analyzed CITE-seq data using standard workflows for one modality 

(often RNA) to cluster cells while contextualizing these results using information from the 

other modality post-hoc [12–14]. This sequential approach biases the analysis to one 

modality and becomes increasingly inefficient as CITE-seq measurements expand to 

hundreds of proteins. A joint analysis that combines these two cellular views in an unbiased 

manner can harness the strengths of each modality and streamline data analysis. However, 

combining RNA and protein information to define a single representation of cell state poses 

several challenges. First, the RNA and protein data have unique sources of technical bias and 

noise. While the technical aspects of the RNA data have been addressed by a flourishing 

body of computational methods [15–18], the protein data present distinct technical bias such 

as background due to ambient or non-specifically bound antibodies. Second, as large-scale 

community efforts such as the Human Cell Atlas (HCA) [8] begin to include CITE-seq 

datasets, the need arises for scalable computational methods that can integrate datasets with 

different measured proteins.

Here, we present totalVI (Total Variational Inference), a deep generative model that enables 

multifaceted analysis of CITE-seq data and addresses these challenges. totalVI learns a joint 

probabilistic representation of the paired measurements that accounts for the distinct noise 

and technical biases of each modality, as well as batch effects. For RNA, totalVI uses a 

modeling strategy similar to our previous work (scVI; [15]). For proteins, totalVI introduces 

a new model that separates the protein signal into background and foreground components, 

which enables background correction. The probabilistic representations learned by totalVI 

are built on a joint low-dimensional representation of the RNA and protein data that is 

derived using neural networks. totalVI can be used for disparate analysis tasks including 

joint dimensionality reduction, dataset integration (with and without missing proteins), 

protein background correction, estimation of correlations between genes and/or proteins, and 

differential expression testing. To highlight this functionality, we performed CITE-seq on 

murine spleen and lymph nodes, measuring up to 208 proteins. We used these data, along 

with public datasets, to evaluate totalVI’s performance across these tasks.
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Results

The totalVI model

totalVI uses a probabilistic latent variable model [19] to represent the uncertainty in the 

observed RNA and protein counts from a CITE-seq experiment as a composite of biological 

and technical sources of variation. The input to totalVI consists of the matrices of RNA and 

protein unique molecular identifier (UMI) counts (Fig. 1a). Categorical covariates such as 

experimental batch or donor are optional inputs used for integrating datasets and referred to 

henceforth as “batch”. Input datasets can have different antibody panels, and a subset can be 

scRNA-seq datasets (i.e., without proteins).

The output of totalVI consists of two components that can be used for downstream analysis 

(Fig. 1b). The first component encodes each cell as a distribution in a low-dimensional latent 

space (20 dimensions throughout; Supplementary Note 1) that represents the information 

contained in both the RNA and protein data (Supplementary Note 2), while controlling for 

their respective noise properties and batch effects. The second component provides a way to 

estimate the parameters of the distributions that underlie the observed RNA and protein 

measurements (i.e., likelihoods) given a cell’s latent representation. These distributions 

explicitly account for nuisance factors in the observed data such as sequencing depth, 

protein background, and batch effects (Supplementary Note 3). Both components use neural 

networks to specify distributions.

totalVI optimizes the parameters of both of its components simultaneously using the 

variational autoencoder (VAE) framework [20]. Accordingly, totalVI uses highly efficient 

techniques for stochastic optimization that make it appropriate for the scale of CITE-seq 

data. Following optimization, totalVI’s components are used for downstream analysis. The 

latent cell representations can be used as input to methods that stratify cells like clustering, 

visualization, or pseudotime inference algorithms, thus allowing these methods to leverage 

both protein and RNA information. Other downstream tasks specific to genes and proteins, 

like differential expression, are linked to the likelihood parameters from the second 

component of totalVI. Finally, by constricting the latent space to the standard simplex, the 

dimensions of the latent space can be related to the expression of genes and proteins with 

archetypal analysis [21], adding an alternative way to investigate global and local patterns of 

variation in the data. A detailed specification of the model along with further description of 

the quantities used in downstream tasks is in Methods.

CITE-seq profiling of murine spleen and lymph nodes

We conducted a series of CITE-seq experiments that were designed to test the performance 

of totalVI on a variety of tasks. As a case study, we profiled murine spleen and lymph nodes, 

which contain heterogeneous immune cell populations that are well-characterized by surface 

protein markers. Cells were collected from two wild-type mice that were processed on 

separate days to serve as biological replicates (Methods). In each experimental run, cells 

from one mouse were stained with two different panels of barcoded antibodies containing 

either 111 or 208 antibodies, of which the 111 antibodies were a subset (Supplementary 

Data). Spleen and lymph node cells stained separately with the same antibody panel were 
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combined using hashtag antibodies [22]. We refer to the four resulting spleen/lymph node 

datasets by their panel and experimental day (experimental design in Supplementary Table 

1), After pre-processing and filtering, these datasets contained a total of 32,648 cells 

(Methods).

totalVI fits CITE-seq data well and is scalable

The usefulness of probabilistic models like totalVI depends on how well they fit the 

observed data. Furthermore, they should generalize to unobserved data (i.e., not overfit) and 

scale to a realistic range of input sizes. To verify that totalVI satisfies these prerequisites, we 

benchmarked it against factor analysis (FA), which can be viewed as a linear-Gaussian 

baseline, scHPF [16], which performs a Poisson matrix factorization via a hierarchical 

Bayesian model, and scVI [15], which was restricted to the RNA portion of the data. We 

expected the performance of totalVI and scVI to be comparable on the RNA data, as they 

share similar architectures. Our evaluation relied on fitting the models to several CITE-seq 

datasets spanning different species and tissues, including peripheral blood mononuclear cells 

(PBMC10k) [23] and mucosa-associated lymphoid tissue (MALT) [24] from humans, and 

our murine spleen and lymph node data (SLN111-D1).

We first estimated how well each model fit data that was available to it during training using 

posterior predictive checks (PPC) [16, 25]. To conduct PPCs, we generated replicated 

datasets (i.e., posterior predictive samples) by sampling from the fitted model (Methods). We 

then assessed how well these replicated datasets maintained the properties of the observed 

data with two metrics. First, we measured the similarity between the coefficient of variation 

(CV) per gene and protein of the replicated data to the observed CVs, thus evaluating how 

well the mean-variance relationship of the data is preserved. Second, we compared the 

replicated and raw data at the gene and protein level using the Mann-Whitney U statistic, 

which measures the extent to which the replicated and raw data come from the same 

distribution. totalVI had superior performance on both metrics (Extended Data Fig. 1a, b).

We then evaluated how well each model generalizes to cells that were not available during 

training by generating replicated datasets conditioned on the held-out cells and computing 

two opposing metrics of predictive performance. First, we assessed how well the average 

replicated data set matched the observed held-out data by mean absolute error. Second, we 

quantified how well the interval of values from replicated data sets covered the observed 

held-out data values (calibration error [26]). These two metrics were computed separately 

for genes and proteins. On the held-out protein data, totalVI outperformed FA in both the 

mean absolute error and calibration error metrics. Comparing totalVI to scHPF revealed a 

tradeoff between calibration and held-out error for both the RNA and protein data. On the 

held-out RNA data, totalVI and scVI were largely comparable and outperformed FA 

(Extended Data Fig. 2a, b). totalVI and scVI also had a comparable held-out predictive log-

likelihood for the RNA data (Extended Data Fig. 2c). Finally, totalVI’s performance was 

also stable across multiple initializations (Extended Data Fig. 2d, e).

To assess the scalability of totalVI, we concatenated all of our spleen and lymph node data 

(SLN-all) and recorded the training time for different sizes of subsets of this data. totalVI 

and scVI had similar dependence between run time and input size (Extended Data Fig. 2e). 
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Furthermore, we observed that totalVI can readily handle large data sets, for instance, 

processing the complete set of approximately 33,000 cells with over 4,100 features (genes 

and proteins) in under one hour.

totalVI identifies and corrects for protein background

To analyze protein data in an accurate and quantitative manner, it is necessary to distinguish 

between true biological signal and technical bias in the protein measurement. Background is 

a type of technical bias that is characteristic of antibody-based measurements [6, 7, 27]. In 

CITE-seq data, protein measurements include non-negligible background that arises 

experimentally from a combination of ambient antibodies, which can be detected in empty 

droplets, and non-specific antibody binding, which can be detected above ambient levels in 

cells with no expected expression of a protein, such as CD19 in T cells (Methods, Extended 

Data Fig. 3a–c, g). Recent methods have described background from ambient RNA [28–30], 

but the presence of background is more pronounced in protein measurements (Extended 

Data Fig. 3d–f, Supplementary Note 3).

Previous studies of CITE-seq data derived a single decision rule for every protein, specifying 

the minimum number of counts required to be considered foreground by using either spiked-

in negative control cells [6] or a Gaussian mixture model (GMM) to distinguish a 

background and foreground component for each protein [31]. Using the same boundary for 

all cells, however, relies on the assumption that all cells are subject to a similar background 

distribution of the protein in question and, in the case of a two-component GMM, that the 

foreground component is comparable across cell types.

totalVI instead models protein background as cell- and protein-specific. To do this, totalVI 

models each protein measurement as a mixture of foreground and background components 

that depends on the cell’s representation in the latent space, and therefore the full 

transcriptomic and proteomic profile of that cell. The mixture is weighted by the probability 

that the counts of a protein in a given cell came from the background component (Fig. 1b, 

Methods).

To evaluate totalVI’s ability to quantitatively identify protein background, we tested how 

well major cell types could be predicted by the foreground probability (one minus the 

background probability) of common marker proteins in the SLN111-D1 dataset (Methods). 

As a baseline for comparison, we used the assignment probabilities from a two-component 

GMM. For nine out of eleven known marker proteins, both totalVI and the GMM performed 

well at classifying cell types by marker foreground probability (ROC AUC > 0.97; 

Supplementary Table 2). For these proteins, such as the B cell marker CD19, the 

distributions of foreground and background expression were easily separated (Extended 

Data Fig. 3a and Supplementary Fig. 1a–d). However, for the B cell marker CD20 and the T 

cell marker CD28, distributions of foreground and background expression were highly 

overlapping (Extended Data Fig. 3b, c), and totalVI noticeably outperformed the GMM 

(Extended Data Fig. 3h). totalVI also performed better at distinguishing foreground and 

background for this set of proteins in the SLN208-D1 dataset, even after normalizing the raw 

data using isotype control antibodies [32] prior to fitting the GMM (Methods, 

Supplementary Table 3). Across all proteins, the totalVI foreground probability tended to 
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fall near zero or one, indicating the model’s certainty about most measurements 

(Supplementary Fig. 1e).

Using CD20 and CD28 as examples, we see how totalVI’s identification of protein 

foreground and background is more accurate than a single decision boundary. In the case of 

CD20 (encoded by Ms4a1 RNA), a GMM-based cutoff resulted in numerous false negatives 

(blue cells in Fig. 2a–c, Methods). These cells, identified by totalVI as having high 

foreground probability despite low CD20 expression, clustered with B cells and expressed 

Ms4a1 RNA, confirming their identity as B cells. In contrast, cells with similarly low CD20 

expression but with low totalVI foreground probability (green cells) clustered with T cells 

and did not express Ms4a1 (Fig. 2a–c). In the case of CD28, a GMM-based cutoff resulted 

in numerous false positives (red cells in Fig. 2d–f), while totalVI correctly identified that 

these cells with high CD28 had low foreground probability, and were in fact B cells rather 

than T cells. totalVI is not limited to distinguishing globally bimodal distributions (e.g., CD4 

in peripheral blood mononuclear cells globally follows a trimodal distribution (Methods, 

Extended Data Fig. 4a, b)).

For downstream analysis, totalVI uses foreground probabilities in a quantitative manner to 

remove protein background. Specifically, totalVI can denoise the protein data by setting the 

background component to zero, while also accounting for the measurement uncertainty of 

the foreground component (Methods, Fig. 2g–j, Extended Data Fig. 4f, g). We use the 

expectation of denoised values for visualization (Extended Data Fig. 4c–e).

For statistical analyses like differential expression testing, totalVI uses distributions over the 

denoised values as opposed to testing directly on a denoised data matrix, which could 

introduce bias [33]. For analyses focused on the relationships between features, we 

developed a novel sampling method that controls for nuisance variation while avoiding 

denoising-induced artifacts (Methods). We applied this method to construct denoised 

feature-feature correlation matrices and found that totalVI preserved the independence of 

negative control genes (Extended Data Fig. 5a, b, d, e), lending confidence that downstream 

analysis with totalVI is not subject to spurious feature relationships arising from data 

denoising. Observing the correlations between proteins and their encoding RNA, we found 

that totalVI correlations were generally higher in magnitude than raw correlations (Extended 

Data Fig. 5c, f).

totalVI integrates CITE-seq datasets

We next evaluated totalVI’s ability to integrate data from CITE-seq experiments that 

measured different sets of proteins. Integration is built into totalVI via an assumption of 

independence between the latent space and the batch. Consequently, totalVI produces both 

an integrated latent space, as well as corrected expression values. In the case of unmatched 

protein panels, totalVI can impute missing proteins for a particular dataset by using the 

information learned from those proteins in the datasets in which they were observed 

(Methods). We applied totalVI to the SLN111-D1 and SLN208-D2 datasets, which had a 

clear batch effect that was revealed by principal component analysis (Fig. 3a). We 

benchmarked totalVI against three state-of-the-art integration methods: Seurat v3 [34], 

Scanorama [35], and Harmony [36]. We assessed totalVI in the case of matched panels 
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(using only the 111 overlapping proteins between the two panels; denoted as totalVI-

intersect) and unmatched panels (using the union of the two protein panels, which results in 

missing data for some proteins; denoted as totalVI-union). Despite being designed for 

scRNA-seq, the other methods could be extended to handle CITE-seq data, though only in 

the case of matched panels (Methods).

We used four metrics to quantify how well each method mixed datasets along with how well 

they maintained the original structure of each dataset (Methods). The first two metrics (the 

latent mixing metric and the measurement mixing metric) quantify how well cells mix 

across datasets in the low-dimensional latent space and the observed expression space (per 

feature), respectively. The second two metrics (the feature retention metric and clustering 

metric) summarize how well each method preserves each dataset’s original structure, either 

at the feature-level through autocorrelation (feature retention metric), or at the cell-level 

through clusters (clustering metric). Finally, we benchmarked totalVI’s accuracy of 

predicting protein expression in cases where measurements are available in only one of the 

datasets.

We found that after integration, cells of similar types were co-located in the latent space, as 

evidenced by the shared expression of key marker proteins like CD4, CD8a, and CD19 (Fig. 

3b, c; Supplementary Fig. 2). Moreover, totalVI outperformed the other methods in the 

feature retention and clustering metrics, while comparing favorably in the remaining metrics 

(Fig. 3d, e). totalVI-union and totalVI-intersect performed similarly, indicating that the 

presence of missing data did not diminish totalVI’s integration capabilities. We repeated this 

analysis on two public datasets of PBMCs (PBMC10k [23], PBMC5k [37]), which also had 

very different sequencing depths, and observed similarly favorable performance for totalVI 

(Supplementary Fig. 3a–f).

Since totalVI-union can integrate CITE-seq datasets with different protein panels, we 

reasoned it could also integrate a CITE-seq dataset with a standard scRNA-seq dataset that 

has not measured proteins and impute the missing protein measurements. We assessed this 

by integrating SLN111-D1 and SLN111-D2, where we held out the proteins of SLN111-D2. 

We first observed that totalVI can learn a biologically meaningful integrated latent 

representation despite the large amount of missing data (Fig. 3f). Indeed, the location of 

observed protein expression in the latent space revealed the same broad immune cell types. 

Next, we imputed the protein expression for the cells in SLN111-D2 (Methods). For key cell 

type marker proteins, totalVI-imputed proteins shared similar patterns of expression as the 

held-out observed proteins (Fig. 3g).

To further quantify imputation accuracy, we ran totalVI 30 times with resampled training 

sets and, for each run, computed the root mean squared log error between imputed and 

observed protein values. We compared totalVI to Seurat v3, which imputes protein values 

based on smoothing of protein values from mutual nearest RNA neighbors. The accuracy of 

80 proteins was significantly different between totalVI and Seurat v3 (Student’s T-test, 

Benjamini–Hochberg (BH)-adjusted p-value <0.05). The mean error of totalVI was better 

than the Seurat v3 error for approximately 68% of the 80 proteins (Fig. 3h). We also 

performed this task on PBMCs (Supplementary Fig. 3h, i), in which we also compared to 
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another protein imputation method, cTP-net [38]. We found that totalVI and Seurat v3 

performed more similarly, while outperforming cTP-net. For further discussion on the merits 

and limitations of imputing missing proteins, see Supplementary Note 4.

totalVI identifies differentially expressed genes and proteins

totalVI can leverage its estimates of uncertainty from a single model fit to detect 

differentially expressed features between two sets of cells while controlling for noise and 

other modeled technical biases like sequencing depth (RNA), background (protein), and 

batch effects (both). To do so, totalVI estimates a distribution over the log fold change 

(LFC) of expression between the two sets of cells, which is then used to quantify how well 

the data support a hypothesis of differential expression (using Bayes factors [15, 39, 40]; 

Methods).

To evaluate totalVI as a framework for differential expression (DE) analysis in the common 

scenario of multiple experiments, we integrated all four spleen and lymph node datasets 

(SLN-all; totalVI-intersect). totalVI provided a descriptive representation of this data, as 

inspection of established cell type markers associated clusters of cells in the latent space 

with immune cell types or states (Fig. 4a, Extended Data Fig. 6, Methods).

Beyond markers used for annotation, we found that a totalVI one-vs-all DE test (in which 

one cell type is compared to all others) identified many additional features as differentially 

expressed (Methods, Fig. 4b, c; Supplementary Data). For example, totalVI identified the 

gene Klrc2 as differentially expressed in both natural killer (NK) cells and gamma/delta T 

cells, which has previously been shown to be upregulated in these populations relative to 

alpha/beta T cells [41]. For proteins, totalVI identified CD335 (NKp46) as among the top 

markers for NK cells, which is a canonical marker used for sorting [42], and CD43, which is 

associated with the development of NK cells [43].

Overall, the Bayes factors inferred by totalVI for the RNA data were highly correlated with 

those produced by scVI (Extended Data Fig. 7a), which has been independently evaluated 

[40]; therefore, we focused on evaluating the protein DE test. Throughout, we compared 

totalVI to two baseline methods: a Welch’s t-test and a Wilcoxon rank-sum test. We also 

compared to a version of totalVI in which the protein background was not corrected 

(totalVI-wBG).

We first evaluated the extent of false positives using isotype control antibodies. As isotype 

controls lack target specificity, differences in their abundance between cell types likely stem 

from background or other technical sources of variation. Applying each method to the 

SLN208-D1 dataset, which contained nine isotype controls, we found that totalVI called the 

fewest (and often zero) isotype controls as differentially expressed in one-vs-all tests 

(Extended Data Fig. 7b). We next tested the reproducibility of the methods across biological 

replicates, finding that totalVI outperformed the baseline methods (Extended Data Fig. 7c–

e). The totalVI DE test was also reproducible across experimental designs: one in which the 

two CITE-seq datasets had the same protein panel, and another in which proteins were 

measured in only one of the datasets (Extended Data Fig. 7f).
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To gain further insight into the extent of false positive and false negative DE calls, we 

compared ICOS-high regulatory T cells (ICOS-high Tregs) and conventional CD4 T cells 

from SLN-all. This test is challenging because these two cell types share many of the same 

upregulated and downregulated features when compared with other immune cell types. Our 

analysis was based on a list of putative positive and negative surface proteins curated from 

previous studies that used flow cytometry (Methods).

We found that totalVI and the baseline methods identified these putative positives as 

significantly upregulated; however, the two baseline methods also incorrectly called all 

putative negatives as upregulated (Fig. 4d). Globally, the two baseline methods both called 

78 out of 110 proteins as differentially expressed, many of which are likely the result of 

differences in background. While filtering proteins by the observed LFC in the baseline 

methods may reduce these false positives, the improvement would be limited (e.g., CD5 and 

IgD had similar LFCs and therefore could not be distinguished; Fig. 4d). The totalVI test, in 

contrast, correctly classified all putative negatives and positives (Fig. 4e), calling 28 proteins 

differentially expressed in total. To further support the utility of correcting for protein 

background, we performed this test using totalVI-wBG, which improved upon the baseline 

methods, but also falsely called some putative negatives as positives (Supplementary Fig. 

4a).

Finally, totalVI’s LFC estimates (defined as the median of the LFC distribution) better 

captured the underlying biological signal. For example, in a test of CD4 T cells vs all from 

SLN-all, the canonical marker CD4 had a higher LFC than in the raw data (Fig. 4f). 

Additional markers like CD28 (T cell marker) and CD20 (B cell marker), which we 

previously highlighted as having highly overlapping foreground and background 

components, had respectively higher and lower LFCs compared to LFCs derived from the 

raw data.

totalVI provides an interpretable latent space

Deep-learning-based methods for dimensionality reduction tend to rely on “black-box” 

models, making it difficult to interpret the coordinates of their inferred low-dimensional 

latent spaces. Despite the non-linear relationship between the totalVI latent space and the 

expression space, totalVI provides a way to relate each latent dimension to the expression of 

individual features via archetypal analysis [21, 44, 45] (Methods). Archetypes, which 

correspond to dimensions of the latent space, represent a summary of expression programs, 

the combination of which characterizes a cell. To demonstrate archetypal analysis, we 

ranked the features most associated with each archetype in the SLN-all dataset (Extended 

Data Fig. 8a, b), finding that some archetypes corresponded to specific cell types, and others 

captured more global variation (Extended Data Fig. 9a). For example, archetype 16 was 

associated with high protein expression of CD93 and CD24, which mark the transitional B 

cell subset (Extended Data Fig. 9b). In contrast, archetype 7 was associated with interferon-

response genes such as Ifit3 and Isg20 and reflected within-cell-type variability in several 

subsets, including CD4 and CD8 T cells, B cells, Ly6-high monocytes, and neutrophils 

(Extended Data Fig. 9c and Supplementary Fig. 5). We also used archetypal analysis to 

evaluate the influence of proteins on the latent space, and found that all but one archetype 
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had proteins overrepresented in its top features (Extended Data Fig. 8c). This suggests that 

the inclusion of proteins significantly influences representations in the totalVI latent space.

Characterization of B cell heterogeneity in the spleen and lymph nodes with RNA and 

proteins

We next demonstrate how a joint representation of RNA and protein can be used to 

characterize cell identities within a specific immune compartment and in the context of 

multiple samples. Here, we used the totalVI-intersect model fit on the SLN-all dataset and 

focused on the B cell population (Methods, Fig. 4a).

We started with characterizing cell identities using prior biological knowledge by visualizing 

the expression of six surface proteins commonly used for isolating B cell subsets (Fig. 5b, 

Supplementary Table 4). These subsets included transitional (marked by CD93 and CD24), 

mature (marked by IgD and CD23), B1 (marked by CD43) and marginal zone (MZ, marked 

by CD21) B cells. These markers stratified the B cells into groups that were largely 

consistent with unsupervised clustering (Methods). RNA expression of these markers 

followed similar patterns to the proteins they encode (Fig. 5c).

The difference in subset composition between the spleen and lymph nodes (Fig. 5d) was 

consistent with previous studies (Fig. 5e, [46, 47]). In particular, clusters spanned the 

developmental range from recent bone-marrow emigrants in the splenic transitional B cell 

subset to mature cells present in both tissues. As expected, the B1 and MZ B cell subsets 

were found primarily in the spleen.

In a more unbiased approach, we quantified the differences between the B cell clusters with 

the totalVI one-vs-all DE test (Fig. 5f, g, Methods). As expected, the six known surface 

markers were among the top differentially expressed protein markers (Fig. 5f). Most RNA 

molecules encoding the marker proteins were also differentially expressed along with 

informative genes whose products are not present on the cell surface, such as the 

transcription factor Bhlhe41 that marks B1 B cells (Fig. 5g, [48]).

Globally, protein data combined with a transcriptome-wide view enabled a more refined 

characterization of variation within the four major sub-populations identified above by 

surface markers. For example, a sub-population of mature B cells labeled here as Ifit3-high 

B cells expressed all of the protein and RNA markers of mature B cells and could not be 

clearly distinguished from the remaining mature B cells based on protein data alone 

(maximum LFC across all proteins was less than 0.19). Nevertheless, with transcriptome-

wide DE analysis, this cluster could be distinguished as a sub-type of mature cells by the 

elevated expression of interferon response genes (Fig. 5g). This observation was supported 

by a gene signature analysis with Vision [49], which identified two interferon response 

signatures enriched in the Ifit3-high B cell cluster (Methods, Supplementary Fig. 5a, b). The 

expression of interferon response genes was not expected since no inflammation was 

induced, however we found the Ifit3-high B cell cluster as well as Ifit3-high T cell clusters to 

be represented in both biological replicates, and therefore took it to capture part of the 

biology in the SLN-all dataset (Supplementary Fig. 5c, d).
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Next, we explored the variability within transitional B cells and its relationship with B cell 

development. Interestingly, latent dimension 16 (Z16) captured a gradual transition within 

this cluster: from a small population of Rag1 expressing cells (indicating early development 

[46]) to cells that were closer to the mature cluster (Fig. 5i, Extended Data Fig. 10a, b). To 

explore how development from transitional to mature B cells may be associated with 

coordinated changes in gene and protein expression, we calculated the totalVI Spearman 

correlations separately within transitional and mature B cells for a set of features that 

distinguished the two subsets (Methods). Hierarchical clustering of the correlation matrix 

within the transitional B cells clearly stratified these features into two anti-correlated 

modules: one associated with transitional B cells and the other with mature B cells (Fig. 5h). 

These modules, however, were not present in mature B cells, indicating that the apparent 

coordination may be a characteristic of the transitional state (Extended Data Fig. 10c). 

Within transitional B cells, we found that the features in the two modules significantly 

correlated with the axis of maturation captured by Z16 (Extended Data Fig. 10d). Along this 

axis, features in the transitional module decreased while those in the mature module 

increased (Fig. 5j, Methods). These results point to a program of transitional B cell 

maturation that consists of coordinated activation and repression of multiple genes and 

proteins, leading to a gradual transition in cell state that is captured by a specific dimension 

of the totalVI latent space.

Discussion

totalVI is a scalable, probabilistic framework for end-to-end analysis of paired transcriptome 

and protein measurements in single cells. Like other multi-omics analysis methods [31, 50, 

51], totalVI assumes that RNA and protein measurements are generated from the same latent 

space of cells that captures their state. A distinction of totalVI is that it explicitly models 

modality-specific technical factors like protein background, which we demonstrated can 

enable a denoised view of the data and more accurate differential expression results. totalVI 

is also unique in its ability to handle missing protein data, which enables integration with 

growing public data resources like the Human Cell Atlas [8].

Beyond the characterization of cell types, totalVI can also uncover relationships between 

RNA and protein molecules within a cell. For example, totalVI could be used to investigate 

the relationship between the level of an RNA transcript and the level of its encoded protein 

in different biological settings, which remains an open question [52]. We found that the 

totalVI correlations were higher in magnitude than raw correlations across the majority of 

RNA-protein pairs, suggesting that the low correlations observed previously [6, 7] could 

have been due to technical noise. Future work quantifying correlations and regulatory 

relationships between RNA and protein features could inform our understanding of signal 

transduction pathways or transcription and translation dynamics [53].

While the totalVI model was designed to reflect our understanding of the CITE-seq 

experimental data-generating process (Supplementary Note 3), totalVI can also be used to 

inform experimental design. For instance, totalVI could help identify antibody titrations or 

experimental methods that improve signal-to-noise. totalVI could also identify sequencing 
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depths for RNA and protein libraries that balance the information gained per measurement 

in various analysis tasks with the cost of additional sequencing [54, 55].

Through a single pipeline that jointly analyzes paired RNA and protein measurements, 

totalVI simplifies data analysis and interpretation that would otherwise be conducted in 

separate pipelines whose disparate results must be reconciled post hoc. totalVI is available 

through the scvi-tools software package, which connects it with the popular Scanpy [56] and 

Seurat [34] pipelines, and enables analysis on free cloud computing environments like 

Google Colab. The flexibility and scalability of totalVI make it easily applicable to future 

datasets with larger protein panels, and enable extensions that incorporate additional paired 

measurements. For example, we expect totalVI to naturally handle intracellular proteins 

measured with barcoded antibodies. Further additions of modalities like chromatin 

accessibility [57] or clonotype features [58] can also be implemented within the totalVI 

codebase with consideration of the modality-specific likelihood. By combining multiple 

views of cellular processes, totalVI can reveal a more complete picture that redefines cell 

states and elucidates mechanistic relationships between molecular components of the cell.

Methods

The totalVI model

totalVI estimates a conditional distribution for cell n, pv(xn, yn |sn), in which xn is the G-

dimensional vector of observed RNA counts (G genes), yn is the T -dimensional vector of 

observed protein counts (T  proteins) and sn is the B-dimensional one-hot vector describing 

the batch index (experiment identifier). In total, there are N cells. We use v to refer to the set 

of all generative parameters, which are described throughout this section. This distribution is 

estimated using the framework of variational autoencoders (VAE; [20]).

We begin by describing the generative process, for which a graphical summary is in 

Supplementary Fig. 6 and an algorithmic summary is in Algorithm 1. We then describe the 

inference procedure, as well as how downstream analysis tasks are directly linked to 

posterior queries of the model.

Priors—The latent cell representation zn LogisticNormal(0, I), where the logistic normal 

distribution is a distribution over the probability simplex. This specification, which has also 

been applied in the context of linear VAEs for scRNA-seq [59], enables cells to be 

interpreted with archetypal analysis. Typically in VAEs, zn follows an isotropic normal 

distribution, which is chosen for computational convenience [20]. In this setting, a logistic 

normal distribution arises as transforming a sample from a normal distribution with a 

softmax function. For all experiments, we set zn to 20 dimensions. We discuss the choice of 

number of latent dimensions in Supplementary Note 1.

The latent RNA size factor ℓn |sn LogNormal(ℓμ
⊤

sn, ℓσ2
⊤

sn), where ℓμ ∈ ℝB and ℓσ
2 ∈ ℝ+

B are 

set to the empirical mean and variance of the log RNA library size (defined as total RNA 

counts of a cell) per batch. We use a protein-specific prior for the protein background 
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intensity, where βnt sn ∼ LogNormal(ct
⊤sn, dt

⊤
sn). The parameters for the background intensity, 

ct ∈ ℝB and dt ∈ ℝ+
B, are protein specific and are treated as model parameters learned during 

inference. This prior is motivated by the observation that some component of the 

background is due to ambient antibodies. By being batch specific, these priors on ℓn and βn

account for differences in sequencing depth between datasets. A prior can also be thought of 

as regularizing the posterior distribution, thus reducing the influence of outliers [60]. The 

selection of prior distribution was guided by the computational tractability and by properties 

that are of interest (e.g., non-negativity).

RNA likelihood—Given zn, ℓn, and sn, an observed expression level xng follows a negative 

binomial distribution, which we present here as a Gamma-Poisson mixture:

ρn = fρ(zn, sn) (1)

wng zn, ℓn, sn Gamma(θg, ℓnρng) (2)

xng wng Poisson(wng) (3)

The gamma distribution is parameterized by its shape and mean. The mean is equal to ℓnρng, 

where ℓn, a scaling factor, is multiplied by ρng, interpreted as a normalized gene frequency 

(because ρn is nonnegative and sums to one). ρn is the output of a neural network fρ, which 

takes zn and sn as input (Algorithm 1).

Integrating out wng results in the following conditional distribution:

xng zn, ℓn, sn NegativeBinomial(ℓnρng, θg) (4)

The parameter θg, which is the shape of the gamma distribution, is also the inverse 

dispersion of the negative binomial (Supplementary Note 5). We perform inference on the 

model with wng integrated out. We also treat θg as a model parameter learned during 

inference. Overall, this likelihood is equivalent to that presented in scVI [15], without zero-

inflation. The negative binomial distribution has been shown to adequately handle the 

limited sensitivity and over-dispersion that are characteristic of this data [61].

Protein likelihood—To capture observed protein counts arising from the background or 

foreground, we model ynt with a negative binomial mixture, given zn, βn and sn. This 

conditional distribution is described by the following process:

πn = ℎπ(zn, sn) (5)

αn = gα(zn, sn) (6)
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vnt zn, sn Bernoulli(πnt) (7)

rnt vnt, βnt, zn, sn Gamma(ϕt, vntβnt

+ (1 − vnt)βntαnt)
(8)

ynt rnt Poisson(rnt) (9)

Here vnt controls which mixture component generates the counts. Its parameter, πnt, is the 

output of the neural network ℎπ(zn, sn). Notably, αnt, which is the output of the neural 

network gα(zn, sn), is greater than one. This ensures that one of the mixture components is 

always larger than the other, allowing us to interpret one component as background and one 

component as foreground. Furthermore, πnt is interpreted as the probability that any cell-

protein pair has observed counts due to background alone. For one mixture component, 

ynt |zn, βnt, sn, vnt follows a negative binomial distribution, as can be seen by integrating out 

rnt. Finally, integrating out vnt too shows that ynt given zn and sn follows a negative binomial 

mixture distribution, where ϕt is a protein-specific inverse dispersion parameter.
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Algorithm 1:The totalVI generative model. The gamma distriution is parameterized by

its shape and mean. Let ν be the set of model parameters described here. A dataset hasG

genes and T measured proteins .

Define: Neural networks

fρ zn, sn :Δ
K − 1 × 0, 1 B

Δ
G − 1, (Softmax output activation)

gα zn, sn :Δ
K − 1 × 0, 1 B [1, ∞)T , (ReLU + 1output activation)

ℎπ zn, sn :Δ
K − 1 × 0, 1 B (0, 1)T (Sigmoid output activation)

Require: Inverse dispersion parameters θ ∈ ℝ+
G, ϕ ∈ ℝ+

T . Neural network parameters .

for eacℎcelln do

zn ∼ LogisticNormal 0, I K − dim.cellular state variable

ρn = fρ zn, sn G − dim. RNA frequency

αn = gα zn, sn T − dim. foreground increment protein scaling

πn = ℎπ zn, sn T − dim. mixture parameter

ℓn ∼ Lognormal ℓμ
⊤

sn, ℓ
σ2
⊤

sn Cell scaling factor for RNA

for eacℎ gene g do

wng ∼ Gamma θg, ℓnρng

xng ∼ Poisson wng

  for eacℎ protein t do

βnt ∼ Lognormal ct
⊤sn, dt

⊤
sn Scalar background mean

vnt ∼ Bernoulli πnt Scalar mixture assignment

if vnt = 1   then

rnt ∼ Gamma ϕt, βnt

ynt ∼ Poisson rnt

else

rnt ∼ Gamma ϕt, βntαnt

ynt ∼ Poisson rnt

Inference for totalVI

Inference in the case of fully observed proteins—The model evidence, 

pv(x1:N, y1:N |s1N), cannot be computed as the integrals are analytically intractable, so 

Bayes rule cannot be directly applied to find the posterior distribution. Therefore, we use 

variational inference [62] to approximate the posterior distribution with a distribution having 

the following factorization:

qη(βn, zn, ℓn xn, yn, sn): = qη(βn zn, sn)qη(zn xn, yn, sn)qη(ℓn xn, yn, sn) . (10)

Here η is the set of parameters of an inference network, commonly called the encoder – a 

neural network that takes a cell’s combined expression as input and outputs the parameters 

of the approximate posterior (e.g., mean and variance). Factors of the posterior 

approximation share the same family as their respective priors (e.g., q(βn |zn, sn) is 

lognormal). The approximate posterior qη(zn |xn, yn, sn), whose expectation we use as the 

latent cell representation, is integral to many cell-level and feature-level analyses.
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For the likelihoods, as described previously, we integrate out the latent variables vnt, rnt and 

wng (Algorithm 1), yielding pv(ynt |zn, βnt, sn), which is a mixture of negative binomials and 

pv(xng |zn, sn, ℓn), which is a negative binomial distribution.

The evidence lower bound (ELBO) [62] of logpv(x1:N, y1:N |s1:N) is optimized with respect 

to the variational parameters η and model parameters ν using stochastic gradients [20]. In 

other words, the model parameters and approximate posterior parameters are learned 

simultaneously. In the VAE framework, the generative neural network is referred to as the 

decoder. Each iteration of training consists of randomly choosing a mini-batch of data (256 

cells), estimating the ELBO based on this mini-batch, and updating the parameters via 

automatic differentiation operators. The terms corresponding to Kullback-Leibler 

divergences of the ELBO (Supplementary Note 6) follow a deterministic warm-up scheme 

[63], which helps to avoid shallow local maxima. We use the Adam optimizer [64] with 

weight decay to update the model parameters. Learning rate reductions and early stopping 

are performed based on the ELBO of a validation set. As a result of mini-batching, totalVI’s 

memory usage is constant in the number of features in the dataset and number of neural 

network parameters. For example, in the runtime experiment presented in Extended Data 

Fig. 2f, totalVI used a constant 753 megabytes of memory on an NVIDIA Titan XP GPU. 

totalVI’s runtime is linear in the number of cells and linear in the number of features; 

however, as we use early stopping, convergence may vary with the dataset size.

All neural networks are feedforward and use standard activations (e.g., exponential, softmax, 

sigmoid) to encode the variational and generative distributions. We use the same 

hyperparameters for all of our experiments. Supplementary Note 6 gives further 

implementation details.

Inference in the case of missing proteins—Here we adapted the training procedure 

from [65] to handle missing protein data. As any single batch may correspond to an 

experiment that used a different protein panel (or no proteins in the case of a scRNA-seq 

experiment), the missingness of protein features depends on the batch index sn. Further, 

suppose all batches share the same set of genes. Across all batches, there are T  proteins. For 

cell n, we denote the observed protein expressions yn
obs and the unobserved protein 

expressions yn
mis. The log likelihood of the observed data decomposes as

logpv(x1:N, y1:N
obs , s1:N) = ∑n = 1

N
logpv(xn, yn

obs sn) (11)

The generative process for the observed data is the same as in Algorithm 1, with appropriate 

modification to only generate the features present in a particular batch. Thus, ν is the same 

set of model parameters described previously. Again, we use variational inference to 

approximate the posterior distribution with the distribution in Equation 10. In fact, all 

approximate posteriors share the same encoder parameters η. We optimize the ELBO of 

Equation 11 similarly to the procedure used when there is no missing data (i.e., we optimize 

the ELBO with respect to the model parameters ν and variational parameters η). To handle 
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mismatched dimensions in the encoder, we substitute zeros for missing proteins, and for the 

decoder, we only calculate the ELBO terms corresponding to observed data [66]. Therefore, 

this procedure naturally extends to the case when there is no observed protein data for a cell 

n, which would be the case when the cell is obtained from a scRNA-seq experiment. Since 

the quality of missing protein imputation depends on (i) the goodness of fit of totalVI to the 

protein for the data in which it was observed and (ii) the statistical distance of the aggregated 

posterior distributions of zn for each of the batches [65, 67], we add a domain adaptation 

regularization term to the ELBO when training [68]. A scaling factor on this regularization 

term decays from one to zero early in training.

Posterior predictive distributions linked to downstream tasks

For tasks like differential expression, denoising, and finding correlations, totalVI estimates 

functionals of posterior predictive distributions [19]. Define Cn = xn, yn, sn  as the set of 

observed data for cell n. First, consider the connection between the posterior predictive 

distribution of RNA data to totalVI denoised RNA expression. The posterior predictive RNA 

expression xng*  for gene g given Cn is distributed following:

p xng* Cn ≈ ∫ pν xng* zn, ln, sn qη zn, ln Cn dzndln, (12)

To produce denoised RNA expression, we compute the posterior predictive mean of xng* . To 

further control for variation due to ℓn, we condition on ℓn = 1. By the law of total 

expectation,

Ep(xng* xn, ℓn = 1)[xng* ] = Eqη(zn Cn) Epν(xng* znsn, ℓn = 1)[xng* ] (13)

= Eqη(zn Cn)[ρng], (14)

where ρng is the expectation of the RNA likelihood with the additional condition that ℓn = 1.

For each cell n, we can compute the denoised RNA expression by averaging samples of ρn

generated by the following process:

1. Sample zn from qη(zn |Cn)

2. Set ρn = fρ(zn, sn)

There are two important considerations for these posterior predictive distributions. First, we 

use the approximate posterior as a surrogate for the posterior. Second, these posterior 

predictive distributions are not tractable to compute in closed form, so we can only sample 

from them with ancestral sampling. Functionals of the posterior are computed using Monte 

Carlo integration.
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Denoised protein expression—After training the model, we can generate “denoised” 

protein expression – protein expression effectively absent of background and controlled for 

sampling noise. Consider the perturbed protein generative process in which we set the 

background intensity to zero:

vnt |zn, sn Bernoulli(πnt) (15)

rnt vnt, βnt, zn, sn

Gamma(ϕt, βntαnt) if vnt = 0

δ0 if vnt = 1
(16)

Here δ0 is a point mass distribution at 0. After marginalizing out vnt, rnt |zn, sn, βnt follows a 

zero-inflated Gamma distribution with mean (1 − πnt)βntαnt.

For denoising, we return the posterior predictive mean of rnt. Indeed, the posterior predictive 

mean is equal to (1 − πnt)βntαnt averaged over many posterior samples of q(βnt, zn |Cn). In 

other words, we return the foreground mean, weighted by the probability that the 

observation was derived from the foreground. This can also be stated as subtracting the 

expected background from the expected total signal.

Missing protein imputation—To impute protein expression ynt*  for cell n and protein t

missing in batch sn, but that is observed in a batch s′ ≠ sn, do the following:

1. Sample zn from qη(zn |Cn)

2. Sample βnt from qη(βnt |zn, s = s′)

3. Sample ynt*  from pv(ynt* | , zn, βn, s = s′)

This process returns samples of pv(ynt* |Cn, s = s′). Intuitively, we encode the cell into the 

latent space, which is designed to mix the batches (i.e., be an integrated low-dimensional 

representation of the data), and obtain the parameters for the protein likelihood (decode) 

conditioned on the cell being in batch s = s′. Thus, the quality of imputation relies on how 

well batches mix in the totalVI latent space. Ultimately, we report the expected value of the 

imputed distribution

Ep(ynt* Cn, S = 1)[ynt*] = Eqη(zn Cn) Ep(yn, t* zn, s = 1, βnt)[ynt*] (17)

We may also impute the denoised expression, by exchanging pv(ynt* |zn, βn, s) with 

pv(rnt |zn, βn, s). This change would additionally remove the protein background contribution 

to the prediction.

Differential expression—With a single model fit, totalVI can detect differentially 

expressed features between sets of cells, i.e., the model does not need to be retrained for 
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every test. Here we use the Bayesian framework of [40] to detect differential expression 

(DE) of genes and proteins. Let

λa, b: = Λ(za, zb, sa, sb): = log2ρa − log2ρb (18)

be the log fold change (LFC) of RNA expression between cells a and b. Then the probability 

that gene g is differentially expressed (DE) is

p( |λa, b
a | ≥ δ |Ca, Cb) ≈ ∫ 1 |λa, b

a | ≥ δ q(za |Ca)q(zb |Cb)dzadzb, (19)

where δ is a threshold for the effect size. Intuitively, we are measuring the fraction of 

posterior samples that the absolute LFC greater than or equal to δ. For all experiments we set 

δ = 0.2. We compare the DE probability to the probability that the LFC is in the null region 

|λa, b
g | < δ using a Bayes factor:

BFa, b
g =

p( λa, b
g

≥ δ Ca, Cb)

p( λa, b
g < δ Ca, Cb)

. (20)

This can also be extended to groups of cells. Let A = a1, a2, … , am be the indices of one 

subpopulation of interest, and B = b1, b2, … , bn be the other subpopulation of interest. We 

then exchange the posterior distributions in Equation 19 with the aggregated posterior:

qη(za |CA)qη(zb |CB) =
1
A

∑
a ∈ A

qη(za Ca)
1
B

∑
b ∈ B

qη(zb Cb) . (21)

In this sampling procedure, a cell representation za (resp.zb) is sampled given one randomly 

chosen cell in subpopulation A (resp. subpopulation B). Then, it is determined if |λa, b
g | ≥ δ

via an indicator function. The DE probability is estimated based on many samples.

Furthermore, by integrating over the batch variable sn, we effectively compare cells as if 

they were in the same batch [15]. For genes, this is equivalent to computing

p( |λa, b
g | ≥ δ |Ca, Cb) ≈ ∑

s′
∫ 1 | [Λ(za, zb, s′, s′)]g ≥ δ p(s′)q(za |Ca)q(zb |Cb

)dzadzb .

(22)

Here p(s′) is a uniform prior over batches. Every time we sample from the posterior, we 

decode the samples using the same batch indicator, averaging the DE probability over every 

possible batch indicator.

For proteins, we use the same framework, but define
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γa, b
t = log2(E[rat |βat, vat, za] + ϵ) − log2(E[rbt |βbt, vbt, zb] + ϵ), (23)

where the conditional expectation is equal to

E[rat |βat, vat, za] = βatαat(1 − vat) . (24)

This is interpreted as the foreground mean if the cell was generated from the foreground, and 

zero otherwise. The added constant ϵ is a “prior count” that helps define the log fold change 

when E[rnt |βnt, vnt, zn] = 0. For all analysis, we set ϵ = 0.5. As with genes, we are interested 

in calculating p( |γa, b
t | ≥ δ |Ca, Cb), where in this case we integrate with respect to the 

distribution

∏
i ∈ a, b

p(vit zi)q(βit zi, si)q(zi Ci) .
(25)

We consider features with a log(BF) > 0.7 as differentially expressed. This is roughly 

equivalent to calling features significant if the odds ratio (here equivalent to a Bayes factor) 

is greater than 2. Finally, we use the posterior samples of λa, b (resp. γa, b for proteins) as the 

estimate of effect size for each gene (resp. protein). Specifically, we use the median of the 

samples, which is robust to outliers and is also the Bayes estimator under L1 loss.

Denoised correlation matrix construction—We seek a feature-feature correlation 

matrix (e.g., gene-gene correlations, gene-protein cross-correlations) that summarizes 

biological variation, instead of technical variation. As totalVI explicitly models nuisance 

factors (for genes as well as proteins), we can query the model while controlling for this 

nuisance variation. Furthermore, because naive computations of correlations on denoised 

values (parameters of conditional distributions) were shown to induce spurious gene-gene 

correlations [33], we develop a novel sampling scheme that helps remove technical variation 

while avoiding such artifacts.

In order to ensure our correlation matrix does not include variation from the modeled 

technical factors, we perturb the data generating process to fix the library size (ℓ = 10000) as 

well as incorporate the denoised protein expression conditional distribution. In particular, we 

compute a correlation matrix using samples from the distribution

p(logwn, logrn C1:N, ℓ1:N) . (26)

This is also a posterior predictive density whose samples are generated with ancestral 

sampling. As rn is zero-inflated, we add the same “prior count” before taking the logarithm. 

For this distribution, we sample ancestrally using the aggregated posterior
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qη(zn, βn |C1:N) =
1
N

∑
n = 1

N

qη(zn Cn)qη(βn zn, sn), (27)

One could in principle replace the aggregated posterior with the prior in case of analyzing 

dataset-wide correlations. However, this approach is more flexible as it can be applied to 

calculate the correlation matrix for a subpopulation A = a1, a2, … , am , where A is the set of 

indices for the subpopulation, by conditioning the distribution on xA and yA.

The distinction between this procedure and those that induced spurious correlations is that 

the latter effectively estimates a correlation matrix using the expected value of the posterior 

predictive distribution, rather than estimating the correlation matrix of the posterior 

predictive distribution.

Out-of-batch generalization—totalVI learns a transformation from zn and sn to the 

parameters of the conditional distributions for each feature (decoder). In an out-of-batch 

prediction, we predict the expression of a cell (e.g., the mean of conditional distribution) 

given any of the other B observed batches s such that s ≠ sn. Here we describe a general way 

to sample posterior quantities for a cell while also “transforming” it into a different batch 

that was also observed for other cells [69]. Special cases of this have already been described 

in the protein imputation and differential expression sections. Consider, for instance, the 

RNA counts in cell n and gene g. We can calculate posterior predictive samples of xn, g while 

conditioning on any arbitrary observed batch b. Then,

p(xng* |Cn, s = b) ≈ ∫ pv(xng* zn, s = b)qη(zn Cn)dzn . (28)

Furthermore, we can integrate over the choice of batch by sampling from

∑
b

p(xng* Cn, s = b)p(s = b),
(29)

where p(s) is a uniform prior over batches. We take the expected value of this particular 

distribution as batch-corrected, denoised gene expression data. This “transforming” can also 

be applied to other likelihood parameters like πn.

CITE-seq experiment on mouse spleen and lymph node

Supplementary Table 1 shows a summary of the experimental design that generated the 

mouse spleen and lymph node CITE-seq datasets. Below, we describe in further detail how 

these datasets were collected and processed.

Cell preparation—Mice were group housed with enrichment in standard cages on 

ventilated racks at an ambient temperature of 26C and 40% humidity. Mice were kept in a 

dark/light cycle of 12 hours on and 12 hours off. Two female C57BL/6 (B6) mice at 5 weeks 
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of age were euthanized using CO2. From each mouse, six lymph nodes were harvested, 

pooled in RPMI +10% FBS media on ice, mechanically dissociated with a syringe plunger, 

and passed through a 70 μm strainer to generate a single cell suspension. Likewise, the 

spleen was harvested, placed in RPMI +10% FBS media on ice, mechanically dissociated 

with a syringe plunger, and passed through a 70 μm strainer to generate a single cell 

suspension. For the spleen, red blood cells were lysed in Red Blood Cell Lysis Buffer 

(BioLegend # 420302) following the manufacturer’s protocol. All animal care and procedures 

were carried out in accordance with guidelines approved by the Institutional Animal Care 

and Use Committee at BioLegend, Inc.

Antibody panel preparation—We prepared panels containing either 111 antibodies 

(TotalSeq-A mouse antibody panel 1, BioLegend # 900003217) or 208 antibodies (TotalSeq-

A mouse antibody panel 2, BioLegend # 900003218), which are enumerated in 

Supplementary Data. We performed a buffer exchange on each panel using a 50kDa Amicon 

spin column (Millipore # UFC505096) following the manufacturer’s protocol to transfer 

antibodies into RPMI + 10% FBS. Spleen and lymph node cell suspensions were stained 

with different hashtag antibodies [22].

CITE-seq protocol and library preparation—The CITE-seq experiment was 

performed following the TotalSeq protocol with two slight modifications. First, the 10 

minute centrifugation at 14,000g to remove antibody aggregates was conducted prior to 

buffer exchange. Second, cells were stained, washed, and resuspended in RPMI + 10% FBS 

to maintain viability. After staining, washing, and counting, 12,000 spleen cells and 12,000 

lymph node cells were mixed and loaded into a single 10x lane. We followed the 10x 

Genomics Chromium Single Cell 3’ v3 protocol to prepare RNA, antibody-derived-tag 

(ADT) and hashtag-oligo (HTO) libraries [70].

Sequencing and data processing—RNA, ADT, and HTO libraries were sequenced 

with an Illumina NovaSeq S1. Reads were processed with Cell Ranger v3.1.0 with feature 

barcoding, where RNA reads were mapped to the mouse mm10–2.1.0 reference (10x 

Genomics, STAR aligner [71]) and antibody reads were mapped to known barcodes 

(Supplementary Table 5). Hashtags were demultiplexed separately for each 10x lane with 

HTODemux in Seurat v3 using the kmeans function [34]. No read depth normalization was 

applied when aggregating datasets.

Additional datasets

We also used publicly available CITE-seq datasets from 10x Genomics. These included “10k 

PBMCs from a Healthy Donor - Gene Expression and Cell Surface Protein” (PBMC10k, 

[23]), “5k Peripheral blood mononuclear cells (PBMCs) from a healthy donor with cell 

surface proteins (v3 chemistry)” (PBMC5k, [37]), and “10k Cells from a MALT Tumor - 

Gene Expression and Cell Surface Protein” (MALT, [24]). PBMC10k had 14,010 mean 

reads per cell for antibodies (5,816 median UMI counts per cell), while PBMC5k had 7,451 

mean reads per cell for antibodies (2,752 median UMI counts per cell).

Gayoso et al. Page 22

Nat Methods. Author manuscript; available in PMC 2021 August 15.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



CITE-seq data pre-processing

For each dataset, after initial cell and gene filtering, we retained at least the top 4,000 highly 

variable genes (HVGs) as defined by the Seurat v3 method, merging HVGs from different 

batches when appropriate [34]. Dataset specific filtering is described below.

Spleen and lymph node—An initial cell filter removed cells expressing fewer than 200 

genes. Cells labeled as either doublets or negative for hashtag antibodies by HTODemux 

were also removed. A protein library size filter retained cells with between 400 and 10,000 

total protein UMI counts. We also filtered on the number of proteins detected. For cells 

stained with the 111 antibody panel, we removed cells with fewer than 90 proteins detected, 

while the cutoff was set to 170 for cells stained with the 208 antibody panel. Cells with a 

high percentage of UMIs from mitochondrial genes (15% or more of the cell’s total UMI 

count) were removed. An initial gene filter removed genes expressed in 3 or fewer cells in 

any given batch. In addition to the top 4,000 HVGs selected by the Seurat v3 method, we 

retained genes that encode the proteins targeted by the 111 antibody panel. This resulted in 

4,005 total genes. After all filters, the distribution of cells per dataset was: (SLN111-D1, 

9,264 cells), (SLN111-D2, 7,564 cells), (SLN208-D1, 8,715 cells), (SLN208-D2, 7,105 

cells). This is a total of 32,648 cells. Unless otherwise stated, we filtered out isotype control 

antibodies (9 total in the 208 panel) and hashtag antibodies. The protein CD49f was also 

removed due to having very low total UMI counts.

PBMC10k, PBMC5k, & MALT—For each of these datasets, we first removed doublets 

using DoubletDetection [72]. Cells with high mitochondrial content (percentage of UMIs 

from mitochondrial genes), high number of genes detected, high UMI counts, and with 

fewer than 200 genes expressed were removed. Next, cells with outlier protein library size 

(on either end) were removed. Genes with expression in three or fewer cells were removed. 

Finally, the top 4,000 HVGs were retained. Dataset specific parameters are in 

Supplementary Table 6. In the case where the PBMC datasets are integrated, the 4,000 

HVGs are selected by merging HVGs computed on each dataset separately as in the Seurat 

v3 method.

Posterior predictive checks and held-out metrics

Posterior predictive checks are useful to check the fit of Bayesian models. They work by 

comparing the observed data to posterior predictive samples from the model [25]. Much of 

the benchmarking done here was inspired by previous work done to benchmark the scHPF 

model [16]. We compared totalVI to factor analysis, which is a linear-Gaussian alternative to 

totalVI, and is easily extendable to multiple modalities as features are treated conditionally 

independent of the latent representation. Furthermore, we compared to scHPF, which 

received the concatenated RNA and protein count matrices as input. As a control, we also 

compared performance on RNA only to scVI [15]. Posterior predictive samples for totalVI 

and scVI were obtained by calling the generate function in the scVI package, which samples 

from the variational posterior distributions, and subsequently from the likelihood 

distributions given the posterior samples. We ran scVI with 20 latent dimensions and 

negative binomial conditional distribution in order to be consistent with totalVI. Factor 

analysis (FA) models were fit using the sklearn package [73] on the combined RNA and 
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protein measurements using one of two normalization procedures. The first procedure 

consisted of transforming each value by log count+1 . The second procedure consisted of log 

library size normalizing the RNA features and protein features separately. For example, 

considering only the RNA measurements for a cell, we normalized each cell to sum to 1 by 

dividing by the library size of RNA, multiplied by 10,000, added 1 to each value, and took a 

log transformation:

xng = log L
xng

∑gxng
+ 1 , (30)

where L = 10000. This process was then applied to the protein measurements. We refer to 

this type of normalization as log library size normalization, and for short, log rate. These 

normalization procedures are necessary as FA assumes a Gaussian distribution, so training 

on the raw data would lead to poor model fit. Posterior predictive samples for FA models 

were computed using the fitted parameters and posterior distribution derived in [74]. We 

note that normalization procedures were inverted so that FA posterior predictive samples 

were on the same scale as the raw data.

For each dataset, each model was trained on a train set comprising of 85% of the cells. An 

additional 5% of cells were held-out as a validation set for totalVI early stopping. The 

remaining 10% of cells were also held-out as a test set. For each model’s posterior predictive 

samples (25 for each model) based on the train set, we calculated the coefficient of variation 

(CV) for each feature, and calculated the mean absolute error between the average CV and 

the observed raw data CV. Furthermore, we computed the Mann-Whitney U statistic 

(implementation in scipy.stats.mannwhitneyu) for each feature between the posterior 

predictive sample and the raw data. We averaged the statistic across all posterior predictive 

samples for each feature. We also used posterior predictive samples to assess generalization 

to unseen data. In this setup, we generated posterior predictive samples (150 for each model) 

conditioned on the test set. We considered the mean absolute error between the observed 

held-out data and the posterior predictive mean.

Moreover, we computed a held-out calibration error [26] for each model based on the test 

set. For each cell n and gene g, let Ing be the indicator that the observed value is contained in 

the interval of all posterior predictive samples. The calibration error for genes is then 

calculated as

CalRNA = 1 −
1

NG
∑

n

∑
g

Ing

2

. (31)

The calibration error for proteins is computed separately following the same procedure.

Finally, for totalVI and scVI only, and for only the RNA data, we computed the held-out 

predictive log likelihood. In this metric, zn and ℓn were sampled from the variational 

posterior for each cell n and the average negative conditional log likelihood, 

−logp(xn |zn, ℓn, sn) was computed. This is also called the reconstruction loss in the VAE 
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literature. This is also an approximation of −logp(xn |xn, yn, sn), the negative predictive log 

likelihood. We note that we cannot compare the log likelihood of totalVI and scVI, which 

use discrete conditional distributions to factor analysis models, which use continuous 

conditional distributions.

We further evaluated model misfit through posterior dispersion indices [75]. This metric 

highlights cells that are not well explained by the model. This analysis is described in 

Supplementary Note 7.

Background decoupling benchmarking

We reported the totalVI background probability as the posterior predictive mean of πnt, thus

p cell n, protein t is background = Ep πnt|xn, yn, sn
πnt , (32)

where the expectation is approximated using Monte Carlo integration. The totalVI 

foreground probability is one minus the background probability.

Observing protein background in empty droplets and non-expressing cell 

types—To observe different sources of protein background, we considered both empty 

droplets and cell types with known expression of surface markers. We defined empty 

droplets as non-cell barcodes from the SLN111-D1 dataset with between 20 and 100 RNA 

UMI counts (approximately 75,358 barcodes). We chose these criteria so that empty droplets 

were likely to represent ambient molecules rather than sequencing errors (with very low 

UMI counts) or cell debris (with higher UMI counts) [76]. To observe non-specific binding 

of antibodies, we considered B cells (which are known to express CD19 and CD20, but not 

CD28) and T cells (which are known to express CD28, but not CD19 or CD20). Using cell 

type annotations as described below, we grouped all high-quality, non-doublet B cell clusters 

(excluding plasma B cells), and alpha/beta T cell clusters (including all CD4, Treg, and CD8 

T cell clusters). We observed that for these three proteins, both empty droplets and the non-

expressing cell type contained protein background (non-zero protein counts) with varying 

degrees of overlap with the foreground signal of the expressing cell type. In this text, we 

describe the protein counts of the non-expressing cell type above the counts in empty 

droplets as non-specific antibody binding, although we acknowledge there could be multiple 

sources of this cell-specific background (Supplementary Note 3).

Classification of cell type by marker proteins—We sought to evaluate totalVI against 

a Gaussian mixture model (GMM) at predicting major cell types by the foreground 

probability of commonly used surface markers. For these markers, protein counts were 

expected to come from the foreground component in some cell types and from the 

background component in others. For example, a high foreground probability for CD4 could 

be used as a positive predictor of CD4 T cells. We applied scikit-learn’s GaussianMixture 

with default parameters to fit a GMM with two components to the log(protein counts+ 1) for 

each protein for all cells in the SLN111-D1 dataset. We interpreted the posterior probability 

of the component with the higher mean as the foreground probability and that of the lower 

mean as the background probability. Restricting all cells to just those that fell into the 
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categories of B cells or T cells as described above, we tested how well totalVI or a GMM 

could classify cell types based on commonly used protein surface markers. For each marker 

protein, we computed a receiver operating characteristic curve (ROC) (sklearn.metrics) 

by thresholding the totalVI or GMM foreground probability estimates, using manual cell 

type annotations as true labels (stratification and annotation described below). We reported 

the area under the ROC (ROC AUC). The cell type considered as the positive population was 

either B cells, T cells, CD4 T cells, or CD8 T cells depending on the marker. In tests 

considering each of these positive populations, all remaining cells among the B and T cells 

were considered the negative population. Marker proteins tested included, for B cells: CD19, 

CD45R-B220, CD20, I-A-I-E (MHC II); for T cells: CD5, TCRb, CD28, CD90.2; for CD4 

T cells: CD4; for CD8T cells: CD8a, CD8b [77–80]. Although we are aware of documented 

exceptions to these markers appearing strictly on a single cell type (e.g., CD5 is expressed 

on a portion of B1 B cells), these exceptions are rare. In these cases where marker 

expression is not mutually exclusive, cell types can still be distinguished by the gradation in 

levels of the marker between cell populations. Thus, these exceptions do not negate the 

utility of these markers in broad cell type classification (which is apparent in both totalVI 

and GMM performance at this classification task).

GMM-based cutoff for protein foreground/background—As a baseline 

determination of a cutoff to distinguish cells with foreground or background protein 

expression, we used a GMM fit on all cells of the SLN111-D1 dataset for each protein as 

described above. The GMM-based cutoff between foreground and background was 

determined to be the protein expression level at which the GMM foreground probability 

(described above) was closest to 0.5.

Protein normalization using isotype controls—Although totalVI does not make use 

of isotype controls in its model of protein background, some CITE-seq studies include 

isotype control antibodies as negative controls to adjust for protein background. To compare 

totalVI to a method that uses isotype controls to normalize protein data, we applied two 

different normalization strategies prior to fitting a GMM and performing the classification 

task described above. First, we applied the normalization strategy used by Cumulus [32]:

norm1:ynt max log
ynt + 1

kn
t + 1

, 0 , (33)

where ynt is the observed UMI counts for protein t in cell n, and kn
t  is the observed UMI 

counts of the corresponding isotype control for protein t in cell n. In the case where the 

corresponding isotype control for a given antibody is not present in the data, normalized 

expression is calculated as

norm1:ynt log ynt + 1 . (34)

Because this normalization method restricts normalized values to be non-negative, the 

resulting distribution might not be fit well by a GMM. We therefore applied a second 

normalization strategy as a modification to the Cumulus method that adjusts for the relative 
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isotype control level but does not restrict the distribution of normalized values to be non-

negative:

norm2:ynt log
ynt + 1

kn
t + 1

. (35)

If an isotype control is not present, norm2 values are calculated as in Equation 34.

For the SLN208-D1 dataset, which contained a limited number of isotype control antibodies, 

we fit a GMM as described above to the log(protein counts + 1) (GMM), to the Cumulus 

normalized values (GMM norm1), and to the values normalized with the modified Cumulus 

method (GMM norm2). We performed the same classification of cell types by marker 

proteins as described for the SLN111-D1 dataset, noting that the isotype control for CD28 

(Syrian Hamster IgG) was not contained in the dataset.

Visualization and raw data normalization

For the SLN111-D1 dataset, we visualized the totalVI latent space in two dimensions using 

Scanpy’s [56] implementation of the UMAP algorithm [81]. We applied log library-size 

normalization to the raw RNA counts as in Equation 30. All cells of the SLN111-D1 dataset 

are plotted (i.e., doublets were not removed).

Distribution of foreground probabilities—We observed the totalVI foreground 

probability for all proteins across all cells in the SLN111-D1 dataset (Supplementary Fig. 

1e). The totalVI foreground probability tended to fall near zero or one. Measurements for 

which totalVI estimates a foreground probability near 0.5 are instances where the model is 

uncertain about whether the measurement is likely to be derived from foreground or 

background.

Distinguishing foreground and background in trimodal protein distributions—

Despite using a two-component mixture, totalVI can decouple the background and 

foreground of proteins that have more than two modes globally. totalVI is capable of 

distinguishing foreground and background in this setting because the mixture is 

conditionally dependent on zn, which allows the foreground and background expression 

modes to be defined locally in the latent space. For example, as has been reported using flow 

cytometry [82], CITE-seq data of peripheral blood mononuclear cells contains three modes 

of CD4 expression corresponding to CD4 T cells, monocytes, and background. totalVI 

detected that both CD4 T cells and monocytes had foreground expression of CD4, while the 

CD4 expression of the remaining cells was attributable to background expression.

Denoised protein expression—Denoised protein expression was calculated as 

previously described. B cells and T cells were defined by annotations, as described above.

RNA-protein correlation analysis

Evaluation of correlation calculation with permuted features—Using totalVI, we 

aimed to calculate a correlation matrix between all RNA and protein features free from 
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nuisance variation such as sequencing depth and protein background. We took care to avoid 

the naive calculation of correlations directly between denoised features, noting that a recent 

study reported false positive correlations in smoothed scRNA-seq data [33]. Instead, we 

developed a novel sampling method for the calculation of denoised feature correlations that 

removes nuisance variation while avoiding imputation-induced artifacts (described above).

To evaluate whether totalVI could calculate a denoised feature correlation matrix without 

introducing spurious relationships in the data, we permuted the expression of a set of genes 

to serve as a negative control. To create this set of negative control genes from the SLN111-

D1 dataset, we selected the 100 genes with highest mean expression that were not already 

among the top highly variable genes used in the model. We randomly permuted the counts of 

these genes within each cell, rendering these genes independent of all other gene and protein 

features. After concatenating the SLN111-D1 dataset with the permuted gene expression for 

all cells, we ran the totalVI model.

We then calculated Pearson and Spearman correlations between features using three 

methods, referred to here as raw, naive totalVI, and totalVI correlations. Raw correlations 

were calculated between log library-size normalized RNA (Equation 30) and log(protein 

counts + 1). Naive totalVI correlations were calculated between totalVI denoised RNA and 

totalVI denoised proteins. totalVI correlations were calculated by sampling denoised RNA 

and denoised protein values from the posterior (as described above).

We observed the correlations between all RNA and protein features as well as the 100 

additional genes whose expression was randomly permuted. By comparing the raw 

correlations with denoised correlations, we observed whether the method of denoising could 

maintain the relationship between these permuted genes and other features, which, in 

expectation, are independent from each other. Here, we highlighted the correlations between 

all proteins and the randomly permuted genes, whose correlations are expected to be near 

zero.

Correlations of RNA-protein pairs—We calculated a feature correlation matrix for the 

SLN111-D1 dataset using either the totalVI sampling method or by calculating raw 

correlations as described above. The resulting feature correlation matrices for both Pearson 

and Spearman correlations were subset to each protein and its encoding RNA for all proteins 

with a unique encoding RNA in the dataset (i.e., excluding RNA with multiple isoforms 

such as Ptprc). It is worth noting that the totalVI model has no explicit information about the 

relationship between RNA-protein pairs, such that any correlation learned by the model is 

not predetermined by known RNA-protein relationships.

Integration of multiple datasets

We compared totalVI’s integration performance to that of Scanorama[35], Seurat v3 [34], 

and Harmony [36]. The two former methods, like totalVI, produce both integrated 

expression values and integrated low-dimensional cell representations. The input to both 

Scanorama (scanorama.correct), Seurat v3 (FindIntegrationAnchors, 

IntegrateData) methods was a normalized matrix of concatenated genes and proteins. 

Genes were subset to the same subset used as input to totalVI. The RNA counts of this 

Gayoso et al. Page 28

Nat Methods. Author manuscript; available in PMC 2021 August 15.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



matrix were normalized following standard log library size normalization (Equation 30). For 

proteins, we used a y log y + 1  transformation. Finally, we standard scaled each feature. 

Harmony (harmonypy) received latent spaces for each dataset computed with PCA on the 

concatenated, normalized, and scaled datasets. All methods were run with default 

parameters. We compared the performance of the methods using the following metrics:

Latent mixing metric—The latent mixing metric measures how well the latent cell 

representations are mixed between batches relative to the global frequency of batches. First, 

a cell-cell similarity matrix is computed from a latent representation of cells. Next, select 

100 cells uniformly at random, and calculate the frequency of batches represented in each 

cell’s 100 nearest neighbors. Let pi
n  be the frequency of batch i in the 100 nearest neighbors 

of cell n. Let qi be the global frequency of batch i. Compute the negative relative entropy 

between the frequency of observed batches in the neighborhood, and the global frequency of 

batches:

KL p n ∥ q = ∑
i = 1

B

pi
n log

pi
n

qi
(36)

Repeat this 50 times and return the average negative relative entropy. This is conceptually 

similar to the entropy of mixing that has been used in other studies [83].

Measurement mixing metric—The measurement mixing metric describes how well the 

high-dimensional measurements are batch corrected, and for each feature, is related to the 

Mann-Whitney U statistic. Consider one feature in the batch-corrected data matrix placed in 

rank order. Let R1 be the sum of the ranks of the cells in batch 1 and N1 be the number of 

cells in batch 1. Define U1 = R1 −
N1 N1 + 1

2 . Similarly, compute U2 for batch 2 and return 

min U1, U2 . Higher values of this metric indicate better mixing within that feature. This 

metric could not be applied for Harmony, which only produces an integrated latent 

representation.

Feature retention metric—The feature retention metric describes how spatial 

autocorrelation of both RNA and protein change when comparing cells from an integrated 

latent representation to a latent representation derived from each batch separately. Lower 

values of this metric indicate that the integration procedure reduced the localization of 

feature expression, indicating some degree of random mixing. We calculate it as follows. For 

two batches and a particular integration method, we calculate Z1 and Z2, the latent 

representations of the cells of batch 1 and batch 2, respectively. The latent space computation 

of the individual batches was chosen to closely match the integration method (see below). 

We also calculate an integrated latent representation of both batches Z⊤ = Z1 Z2 . Let 

D1 = X1 Y 1  be the combined RNA and protein batch 1 in which RNA is library size log 

normalized and proteins are log-transformed. Let E H D1, Z1  be the expected feature 

autocorrelation score as calculated by Hotspot [84]. Furthermore, let E H D1, Z1  be the 
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analogous quantity calculated using the latent cell representations of batch 1 subsetted from 

the joint, integrated representation. The feature retention metric is calculated as 

1
2 ∑i

2
E H Di, Zi − E H Di, Zi . In the case of totalVI union, features were intersected to 

compute this metric.

For Scanorama, we define Z1 and Z2 to be a 100-dimensional matrix produced with 

principal components analysis (PCA), which is the same dimension reduction used in the 

integration method. For Seurat v3, we similarly use PCA to reduce D1 and D2 to 30 

dimensions, the same number of dimensions used for integration. The input to PCA was the 

same as the input for the respective method, except for Scanorama, where we additionally L2

normalized each cell, because this step is done automatically by Scanorama’s correct 

method.

Clustering metric—The clustering metric quantifies the extent to which clusters defined 

on the unintegrated latent spaces are preserved in the integrated latent space. Using the same 

notation as before, we compute for each method, clusters based on Z1 and Z2, individually. 

Clusters were inferred using the standard Scanpy workflow: computing a neighbors graph, 

and running the Leiden [85] algorithm, with default parameters. Next, the silhouette 

coefficient S was computed for every cell with respect to its latent representation and cluster 

label:S Z1 , S Z2 , S Z1 ,S Z2 . Finally, a score for each dataset was defined as 

E S Zi − S Zi . The final score was averaged across each dataset. Thus, lower scores 

suggest clusters are not preserved as well in the integrated latent space. We emphasize that 

this metric can only be taken as a proxy for cell type preservation, which requires “ground 

truth” cell type labels, or well-established datasets -- none of which exist for CITE-seq.

Missing protein imputation—For Seurat v3, we imputed proteins based on mutual 

nearest neighbors in the RNA data using the FindTransferAnchors and TransferData 

functions. Again, RNA data were log library size normalized. Proteins were not normalized 

as input to Seurat. For totalVI, after fitting the model, cells from the batch with held-out 

proteins were decoded conditioned on being in the batch with observed protein data. Note, 

we did not correct for background in this analysis since the comparison is to the observed 

data. We used the root mean squared error of values on the log scale to assess imputation 

accuracy. To produce error bars, we ran totalVI 30 times, resampling the dataset into the 

train/validation sets (validation used for early stopping), computing the mean and 95% 

confidence interval. For the PBMC datasets, we compared to cTP-net [38], which is a neural 

network that was pre-trained on specific CITE-seq datasets from human cells, with no option 

to train a new dataset. The inputs to cTP-net were the log-normalized RNA data. cTP-net did 

not provide predictions for CD127, CD15, CD25, PD-1, or TIGIT. To the best of our 

knowledge, neither of the PBMC datasets used in this study were used to train the pre-

trained cTP-net model. Thus, a direct comparison of the results to those of totalVI or Seurat 

v3 is not straightforward.
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Stratification of cells in SLN-all

We stratified cells of the mouse spleen and lymph node based on the SLN-all dataset 

(totalVI-intersect model fit as described above). We clustered cells in the totalVI latent space 

with Scanpy’s implementation of the Leiden algorithm at resolution 1, resulting in 32 

clusters [56, 85]. We repeated this approach to sub-cluster cells, finding a total of 43 

clusters. We used Vision [49] with default parameters for data exploration, including its 

implementation of the Wilcoxon rank sum test, to identify cluster markers. Clusters were 

manually annotated based on a curated list of cell type markers (Supplementary Table 4). 

Clusters annotated as doublets, low quality cells (e.g., high percentage of UMI counts from 

mitochondrial genes), or cells undergoing the cell cycle were removed from further analysis. 

Again, we visualized the totalVI latent space in two dimensions using Scanpy’s 

implementation of the UMAP algorithm. These annotations were also consistent with the 

latent space derived with totalVI-union (Supplementary Fig. 7).

Differential expression analysis

The Welch’s t-test and Wilcoxon rank-sum test for each differential expression scenario 

were run on protein features (log-transformed) using the Scanpy library, which produces 

adjusted p-values corrected for multiple testing by the Benjamini-Hochberg procedure [86]. 

Both tests are two-sided. A protein was considered to be differentially expressed if the 

adjusted p-value was less than 0.05. Each application of totalVI differential expression tests 

to a dataset requires a trained totalVI model. For each dataset used in DE analysis, all cells 

were included to train the model. Throughout, we used our manual annotations from the 

SLN-all totalVI-intersect model run. The cells in nuisance clusters (described in previous 

section) were removed before running totalVI differential expression functions.

In a given totalVI differential expression test, we identified cell type markers by first 

filtering features for significance (log Bayes factor > 0.7), and then sorting by the median log 

fold change. We only retained genes with non-zero UMI counts in at least 10% of the subset 

of cells.

In the comparison to scVI gene Bayes factors, each method was trained independently on 

the SLN111-D1 dataset. We ran scVI with 20 latent dimensions and negative binomial 

conditional distribution to be consistent with totalVI. Differential expression of genes in 

scVI was computed using the same LFC-based method, which is implemented in the scvi-

tools package. In reproducibility benchmarking, totalVI was trained independently on the 

replicates.

In the test between ICOS-high Tregs and CD4 conventional T cells, we used the same 

totalVI-intersect model fit that was used to manually annotate the cells. In this test, we 

expected CD73, CD357 (GITR), CD122, and CD5 to be upregulated (positives) in ICOS-

high Tregs relative to conventional CD4 T cells [87–90]. The list of putative negatives 

included I-A/I-E (MHC II), IgD, CD19, CD8b, and CD8a, which have no expected 

expression in either of these cell types.
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DE on imputed proteins—In one totalVI model fit, SLN111-D1 and SLN111-D2 were 

integrated with the proteins of SLN111-D2 held out. In the second totalVI model fit, these 

two datasets were integrated with all data. In testing differential expression of proteins, and 

for each model fit, we conditioned on SLN111-D1. This is an application of Equation 22, 

except that the prior p s′  is 1 if s′ = SLN111‐D1 and 0 otherwise.

Archetypal analysis

This analysis was performed on the SLN-all totalVI-intersect model run. As zn is distributed 

as logistic normal, the latent space is then constrained to the probability simplex (i.e., each 

zn is non-negative and sums to one). Archetypes correspond to vertices of the totalVI latent 

space, which means they can be represented by the identity matrix Id, where d is the number 

of latent dimensions (20 in all experiments). In this setting, the latent space is the 19-

dimensional standard simplex.

We first identified and removed four archetypes from further interpretation that suffered 

from inactivity (a known issue in training VAEs) [91]. For the remaining 16 latent 

dimensions, we decoded the archetypes to obtain denoised RNA and protein archetypal 

expression profiles, all conditioned on batch 0 (the SLN111-D1 experiment). We then 

computed denoised RNA and protein expression profiles for all cells in SLN-all, conditioned 

on SLN111-D1. To derive signatures for each archetype, we computed the mean and 

standard deviation of each feature in the denoised RNA and protein expression matrices 

(without the archetypes) and standard scaled the archetypal profiles with respect to this 

mean and standard deviation. We refer to this quantity as the archetype score. The top 

features for each archetype were those with an archetype score greater than 2. The distance 

to the archetype is computed as the Manhattan distance from each cell’s latent representation 

to the archetype. The distances per archeytpe were scaled into the range 0, 1 .

B cell analysis

For this analysis, we used the totalVI-intersect model fit on the SLN-all dataset as described 

above. The SLN-all dataset was filtered to include all high-quality, non-doublet clusters 

annotated as B cells (excluding plasma B cells), resulting in 15,560 cells.

Calculation of signature scores—Gene signature analysis was conducted using Vision 

[49] with default parameters. Gene signatures, including interferon response signatures, 

were downloaded from MSigDB gene sets [92]. Signature scores were calculated on all cells 

in the SLN-all dataset based on cell similarities defined by t latent space.

Identification of transitional and mature B cell feature modules—totalVI 

Spearman correlations between all features were calculated separately within the transitional 

B cell cluster and the mature B cell cluster. Features were subset by the following method. 

From a one-vs-one DE test between transitional and mature B cells, we selected the top ten 

marker genes and top three marker proteins for each cluster (as described above). We added 

to this list the four features most highly correlated with each differentially expressed feature 

within its respective cluster. This resulted in a list of both transitional and mature features 

which we used to subset the full feature correlation matrix. Features were hierarchically 
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clustered separately for transitional and mature B cells using Seaborn’s clustermap with 

default parameters.

When plotting totalVI expression of each feature as a function of 1 − Z16, each feature was 

standard scaled and smoothed with a loess curve. Spearman correlations were calculated 

between each feature and 1 − Z16. The p-values of these correlations were all significant 

(BH-adjusted p-value < 0.001).

Data availability

The data discussed in this manuscript (SLN-all) have been deposited in NCBI’s Gene 

Expression Omnibus [93] and are accessible through GEO Series accession number 

GSE150599 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE150599). Processed 

data are also available in the reproducibility GitHub repository (https://github.com/

YosefLab/totalVI_reproducibility). The SLN-all dataset processed with totalVI can be 

explored interactively with Vision at http://s133.cs.berkeley.edu:9000/Results.html. Public 

datasets were downloaded from 10x Genomics (PBMC5k: https://

support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.2/5k_pbmc_protein_v3; 

PBMC10k: https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/

pbmc_10k_protein_v3; MALT: https://support.10xgenomics.com/single-cell-gene-

expression/datasets/3.0.0/malt_10k_protein_v3). Mouse mm10 reference was downloaded 

from 10x Genomics

Code availability

The code to reproduce the results in this manuscript is available at https://github.com/

YosefLab/totalVI_reproducibility and has been deposited at https://doi.org/10.5281/

zenodo.4330368 [94]. The reference implementation of totalVI is available via the scvi-tools 

package at https://github.com/YosefLab/scvi-tools
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Extended Data

Extended Data Fig. 1. 

Evaluation of totalVI model.

a, Posterior predictive check of coefficient of variation (CV) of genes and proteins. For each 

of the PBMC10k, MALT, and SLN111-D1 datasets and for each model (totalVI, scVI, factor 

analysis with normalized input, scHPF) the average coefficient of variation from posterior 

predictive samples was computed for each feature. Violin plots summarize the distribution of 

CVs for genes and proteins. Mean absolute error (MAE) between raw data CVs and average 

posterior predictive CV are reported. b, For each gene and protein, the Mann-Whitney U 

statistic between posterior predictive samples and observed data averaged over samples. 

Shown are boxplots of this statistic for each set of features (genes and proteins), model, and 

dataset (n=4000 genes across datasets and n=14 proteins for PBMC10k and MALT, n=110 

proteins for SLN111-D1). Box plots indicate the median (center line), interquartile range 

(hinges), and whiskers at 1.5x interquartile range. Higher is better.
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Extended Data Fig. 2. 

Evaluation of totalVI model (continued).

a, Mean absolute error (MAE) between held out data and posterior predictive mean 

separated by genes and proteins for each model and dataset. b, Calibration error of held-out 

data reported separately for genes and proteins. c, Held-out reconstruction loss of RNA for 

scVI and totalVI. d, e, Stability of held-out results (n=5 initializations) for totalVI on 

SLN111-D1. Metrics displayed are the (d) Held out MAE, and (e) held out calibration error. 

Box plots indicate the median (center line), interquartile range (hinges), and whiskers at 1.5x 

interquartile range. f, Inference time for totalVI and scVI across cells randomly subsampled 

to different levels from SLN-all. scVI was run with only genes. totalVI was applied with 20 

latent dimensions and 100 latent dimensions.
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Extended Data Fig. 3. 

Protein background in cells and empty droplets

a–c, Histogram of log(protein counts + 1) in the SLN111-D1 dataset for B cells, T cells, and 

empty droplets (Methods) for CD19 (a), CD20 (b), and CD28 (c). d-f, Fraction of empty 

droplets, B cells, or T cells with > 0 UMIs detected for a given RNA (left, hatched) or 

protein (right, solid). RNA/proteins displayed are Cd19/CD19 (d), Ms4a1/CD20 (e), and 

Cd28/CD28 (f). g, Barcode rank plot for all barcodes detected in the SLN111-D1 dataset. 

Red lines at 20 and 100 RNA UMI counts indicate the lower and upper bounds, respectively, 

used to define empty droplets in (a–f). h, Performance of totalVI and a Gaussian mixture 

model (GMM) fit on all cells for each protein of the SLN111-D1 dataset to classify cell 

types by marker proteins (Methods). Receiver operating characteristic (ROC) curves shown 

for CD19 (B cells), CD20 (B cells), or CD28 (T cells). Area under the receiver operating 

characteristic curve (ROC AUC score) was calculated using as input either the totalVI 

foreground probability or GMM foreground probability where the indicated cell type was 

the positive population out of all B and T cells.
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Extended Data Fig. 4. 

totalVI decouples foreground and background for trimodal protein distributions and denoises 

protein data

a, b, CD4 protein expression in the PBMC10k dataset. (a) Trimodal distribution of 

log(protein counts + 1). (b) UMAP plot of the totalVI latent space colored by totalVI 

foreground probability. c-e, UMAP plots of the totalVI latent space for the SLN111-D1 

dataset. Plots are colored by log(protein counts+1) (top) and log(totalVI denoised protein+1) 

(bottom) for CD19 (c), CD20 (d), and CD28 (e). f, g, Distributions of log(protein counts + 

1) (f) and log(totalVI denoised protein + 1) (g) for CD19 protein in B and T cells. y-axis is 

truncated at 3.
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Extended Data Fig. 5. 

RNA-protein correlations

a, b, 2d density plots of Pearson correlations between all RNA and protein features in the 

SLN111-D1 dataset as well as 100 additional genes whose expression was randomly 

permuted. Correlations between all proteins and the randomly permuted genes are colored in 

red. Raw correlations were calculated between log library-size normalized RNA and 

log(protein counts + 1). (a), Naive totalVI correlations were calculated between totalVI 

denoised RNA and totalVI denoised proteins. (b), totalVI correlations were calculated 

between denoised RNA and proteins sampled from the posterior (Methods). c, Pearson 

correlations between each protein and its encoding RNA for all proteins with a unique 

encoding RNA, colored by the mean probability foreground of the protein across all cells. 

totalVI correlations were calculated as in (b) and raw correlation were calculated as in (a, b). 

d-f, Same as (a-c), but for Spearman correlations.
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Extended Data Fig. 6. 

Integration of SLN-all with totalVI-intersect

a, b, UMAP plot of SLN-all colored by (a) dataset, and (b) tissue. c, Heatmap of proteins 

used for annotation. Proteins (columns) are log(protein counts + 1) scaled by column for 

visualization. d, Dotplot of RNA markers used for annotation. RNA is log library size 

normalized.
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Extended Data Fig. 7. 

Differential expression analysis

a, 2d density plot of totalVI and scVI log Bayes factors for genes. Bayes factors were 

computed for each gene in one-vs-all tests on the SLN111-D1 dataset. b, Number of isotype 

controls called differentially expressed in one-vs-all tests (n=27) for totalVI, totalVI-wBG 

(totalVI test without background removal), Wilcoxon rank-sum, and t-test. Tests were 

applied to SLN208-D1, for which isotype controls were retained. Box plots indicate the 

median (center lines), interquartile range (hinges), whiskers at 1.5x interquartile range. Red 

dashed line indicates the maximum number of isotype controls. c-e, Significance level 

(Bayes factors for totalVI, adjusted p-value for frequentist tests) for proteins in one-vs-all 

tests computed on SLN111-D1 and SLN111-D2 for each of (c) totalVI, (d) t-test, (e) 

Wilcoxon. f, Bayes factors for proteins in one-vs-all tests computed on the SLN111 datasets 

integrated with and without the SLN111-D2 proteins held-out. Differential expression tests 

for both model fits were conditioned on SLN111-D1. Bayes factors are colored by the 

average protein expression from SLN111-D1.
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Extended Data Fig. 8. 

Interpreting totalVI latent dimensions with archetypal analysis.

a, b, Heatmap of top (a) gene and (b) protein features for each archetype. The archetype 

score corresponds to the standard scaled archetypal expression profiles (Methods). 

Heatmaps are individually column normalized for visualization. c, Fraction of proteins in top 

archetypal features for each archetype. Features in each archetype were selected in the “top” 

if they had an archetype score of greater than 2. For these features, we performed a one-

sided hypergeometric test to determine if proteins were over-represented in this feature set 

relative to the global distribution of feature types. Archetypes with over-representation of 

proteins (one-sided hypergeometric test, BH-adjusted p-value <0.05) are denoted.
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Extended Data Fig. 9. 

Visualization of archetypes in totalVI-intersect model of SLN-all

a, UMAP plots of SLN-all cells colored by latent dimension value. b, totalVI protein 

expression for CD24 and CD93 proteins as a function of distance to archetype 16. c, totalVI 

denoised expression for Isg20 and Ifit3 genes as a function of distance to archetype 7. 

Archetype is colored in blue, all other cells in grey.

Gayoso et al. Page 42

Nat Methods. Author manuscript; available in PMC 2021 August 15.

A
u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t
A

u
th

o
r M

a
n
u
s
c
rip

t



Extended Data Fig. 10. 

totalVI identifies correlated modules of RNA and proteins that are associated with the 

maturation of transitional B cells

a, totalVI Spearman correlations in mature B cells between the same RNA and proteins as in 

Figure 5h. Features were hierarchically clustered within mature B cells. b, UMAP of the 

totalVI latent space colored by totalVI RNA expression of Rag1. c, totalVI RNA expression 

of Rag1 as a function of 1  − Z16 (the totalVI latent dimension associated with transitional B 

cells). d, Histogram of Spearman correlations between each feature in (a) and 1  − Z16 (n = 

2,735 cells).
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Schematic of a CITE-seq data analysis pipeline with totalVI.

a, A CITE-seq experiment simultaneously measures RNA and surface proteins molecules in 

single cells, producing paired count matrices for RNA and proteins. These matrices, along 

with an optional matrix containing sample-level categorical covariates (batch), are the input 

to totalVI, which concomitantly normalizes the data and learns a joint representation of the 

data that is suitable for downstream analysis tasks. b, Schematic of totalVI model. The RNA 

counts, protein counts, and batch for each cell n are jointly transformed by an encoder neural 

network into the parameters of the posterior distributions for zn, a low-dimensional 

representation of cell state, βn, the protein background mean indexed by protein, and ℓn, an 

RNA size factor. The posterior mean of zn, which we refer to as the latent representation, is 

corrected for batch effects and can be used as input to clustering and visualization 

algorithms. Next, a decoder neural network maps samples from the posterior distribution of 

zn, along with the batch, sn, to parameters of a negative binomial distribution for each gene 

and a negative binomial mixture for each protein, which contains a foreground (FG) and 

background (BG) component (Methods). These parameters are used for feature-level 

analyses.
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Figure 2: totalVI identifies and corrects for protein background.

totalVI was applied to the SLN111-D1 dataset. a-c, CD20 protein (encoded by Ms4a1 

RNA). (a) totalVI foreground probability vs log(protein counts + 1). Vertical line denotes 

protein foreground/background cutoff determined by a GMM. Horizontal lines denote 

totalVI foreground probability of 0.2 and 0.8. Cells with foreground probability greater than 

0.8 or less than 0.2 are colored by quadrant, while the remaining cells are gray. (b) UMAP 

plots of the totalVI latent space. Each quadrant contains cells from the corresponding 

quadrant of (a) in color with the remaining cells in gray. (c) RNA expression (log library-

size normalized; Methods 4.8) for cells colored in (a). d-f, Same as (a-c), but for CD28 

protein (encoded by Cd28 RNA). g, h, Distributions of log(protein counts + 1) (g) and 

log(totalV I denoised protein + 1) (h) for CD20 protein in B cells (blue) and T cells (yellow). 

y-axis is truncated at 3. i, j, Same as (g, h), but for CD28 protein.
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Figure 3: Benchmarking of integration methods for CITE-seq data.

a-c, UMAP plots of SLN111-D1 and SLN208-D2 with no integration (PCA of paired data 

with intersection of protein panels), and after integration with totalVI-intersect, in which the 

protein panels were intersected, and totalVI-union, in which the unequal protein panels were 

preserved, colored by dataset. d, e, Performance of integration methods based on four 

metrics: (d) latent mixing metric, feature retention metric, clustering metric (displayed as 

point size), and (e) measurement mixing metric (computed for n = 4000 genes and n = 111

proteins; higher values are better for each; Methods). Box plots indicate the median (center 

lines), interquartile range (hinges), whiskers at 1.5x interquartile range. f, UMAP plot of 

SLN111-D1 integrated with SLN111-D2 (proteins held out) by totalVI. g, UMAP plots 

colored by totalVI imputed and observed protein expression (log scale) of key cell type 

markers (range 0–99th percentile of held-out values for each protein). h, Root mean squared 

error (RMSLE) of imputed versus observed protein expression (log scale) for totalVI-union 

and Seurat v3. totalVI performance per protein is presented as mean RMSLE with error bars 

representing 95% confidence intervals of the mean estimate (n = 30 model initializations). 

Proteins colored in black are not significantly different in performance, while those in red 

are significantly different (two-sided Student’s t-test, BH-adjusted p-value < 0.05). Inset 

displays ratio in performance across proteins for totalVI and Seurat v3.
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Figure 4: totalVI identifies differentially expressed genes and proteins.

totalVI intersect was applied to the SLN-all dataset. a, UMAP plot of SLN-all, after 

clustering and annotating the data (Methods 4.11). b, c, Heatmap of markers derived from 

one-vs-all tests for (b) RNA and (c) proteins. For each cell type, we display the top three 

protein markers and top two RNA markers in terms of LFC. d, Volcano plot of protein 

differential expression test between ICOS-high Tregs and CD4 T cells for a Welch’s t-test 

and Wilcoxon rank-sum test. Putative positives and negatives are denoted by green and 

orange arrows, respectively. Significant proteins (BH-adjusted p-value < 0.05) are colored in 

grey, all others are in black. e, totalVI protein expression for proteins (columns) upregulated 

in ICOS-high Tregs versus CD4 T cells. Cells (rows) are ordered by cluster, and subsampled 

to be equal in number per cluster. Columns are normalized in the range [0, 1]. The left 

section in the heatmap contains all the proteins called differentially expressed by totalVI 

with a positive log fold change. Proteins are sorted by Bayes factor (significance). The 

rightmost section contains the putative negatives, which are not called differentially 

expressed by totalVI. f, Comparison of log fold changes estimated by totalVI and observed 

in the raw data from a one-vs-all test of CD4 T cells.
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Figure 5: Characterization of B cell heterogeneity in the spleen and lymph nodes with RNA and 
protein.

totalVI-intersect was applied to the SLN-all dataset. Data were filtered to include B cells. a, 

UMAP plot of totalVI latent space labeled by cell type. b, c, UMAP plots of totalVI latent 

space colored by (b) totalVI protein expression of six marker proteins and (c) totalVI RNA 

expression of the six genes that encode the corresponding proteins in (b). d, UMAP plot of 

totalVI latent space labeled by tissue. e, Cell type composition per tissue. f, g, totalVI one-

vs-all differential expression test on B cell subsets filtered for significance (Methods) and 

sorted by the totalVI median LFC. (f) The top three differentially expressed proteins per 

subset and (g) the top ten differentially expressed genes per subset, arranged by the subset in 

which the LFC is highest. h, totalVI Spearman correlations in transitional B cells between 

RNA and proteins, which were selected as described in Methods. Features were 

hierarchically clustered and are labeled as either RNA or protein, and by the cell type with 

which the feature is associated. i, UMAP plot of totalVI latent space colored by Z16 (the 

totalVI latent dimension associated with transitional B cells). j, totalVI expression of 
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features in (h) as a function of (1 − Z16). Each feature was standard scaled and smoothed 

with a loess curve.
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