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Joint Propagation and Exploitation of Probabilistic

and Possibilistic Information in Risk Assessment
Cédric Baudrit, Didier Dubois, Member, IEEE, Dominique Guyonnet

Abstract— Random variability and imprecision are two distinct
facets of the uncertainty affecting parameters that influence the
assessment of risk. While random variability can be represented
by probability distribution functions, imprecision (or partial
ignorance) is better accounted for by possibility distributions (or
families of probability distributions). Because practical situations
of risk computation often involve both types of uncertainty,
methods are needed to combine these two modes of uncertainty
representation in the propagation step. A hybrid method is
presented here, which jointly propagates probabilistic and possi-
bilistic uncertainty. It produces results in the form of a random
fuzzy interval. This paper focuses on how to properly summarize
this kind of information; and how to address questions pertaining
to the potential violation of some tolerance threshold. While
exploitation procedures proposed previously entertain a confu-
sion between variability and imprecision, thus yielding overly
conservative results, a new approach is proposed, based on the
theory of evidence, and is illustrated using synthetic examples.

Index Terms— (Random) Fuzzy Intervals, Probability, Possi-
bility, Belief functions, Dependence.

I. I

Risk assessment methods have become popular support

tools in decision-making processes. In the field of contami-

nated soil management, for example, risk assessment is typi-

cally used to establish whether certain levels of soil contami-

nation might represent a threat for human health. The assess-

ment is carried out using predictive ”models” that involve a

certain number of parameters. Uncertainty is an unavoidable

component of such a procedure. In addition to the uncertainty

regarding the model itself, each model parameter is usually

fraught with some degree of uncertainty. This uncertainty

may have essentially two origins : randomness due to natural

variability resulting from heterogeneity or stochasticity, or

imprecision due to lack of information resulting, for example,

from systematic measurement error or expert opinion. As

suggested by Ferson and Ginzburg [27], distinct methods

are needed to adequately represent random variability (often

referred to as ”objective uncertainty”) and imprecision (often

referred to as ”subjective uncertainty”).

In risk assessment, no distinction is traditionally made

between these two types of uncertainty, both being represented

by means of a single probability distribution. In case of partial

ignorance, the use of a single probability measure introduces

information that is in fact not available. This may seriously

bias the outcome of a risk analysis in a non-conservative

manner (see [23]). Let T:Rn → R be a function (model) of n

parameters xi (x = (x1, ..., xn)). The main issue is thus to carry

the uncertainty attached to the variables over to T (x) with the

least possible loss of initial information. This is uncertainty

propagation. It may occur in practice, that some parameters

of empirical models can be represented by probability distri-

butions (due to observed variability, and sufficient statistics)

while others are better represented by possibility distributions

(due to imprecision), or by belief functions of Shafer (in the

case of partially observed variability and partial ignorance).

Many researchers have addressed uncertainty in risk as-

sessments using either one or the other of these modes

of representation. For example Labieniec et al. [37] used

probability distribution functions to address uncertainty in the

estimation of the risk of human exposure due to the presence

of contaminated land. Prado et al. [40] applied probability

theory in risk assessments related to the underground disposal

of nuclear waste. Dou et al. [13], Bardossy et al. [1], Freissinet

et al. [31] present applications of possibility theory to en-

vironmental problems. But fewer have considered combining

these different modes of representation (probability, possibility,

belief function) within the same computation of risk.

Kaufmann and Gupta [35] introduced hybrid numbers which

simultaneously express imprecision (fuzzy number) and ran-

domness (probability). In Guyonnet et al. [33] a method,

dubbed ”hybrid” method, was proposed for a joint handling of

probability and possibility distributions in the computation of

risk. This method is related to an earlier proposal by Ferson et

al. [9] [25] who extended the approach of Kaufmann and used

hybrid arithmetic to treat risk analysis [22]. The hybrid method

combines random sampling of the probability distributions

(Monte Carlo method [7]) with fuzzy interval analysis [14].

The result is a random fuzzy set [32]. In order to compare

the random fuzzy set to a tolerance criterion, Guyonnet et

al. [33] proposed to summarize the resulting random fuzzy

interval under the form of a single fuzzy interval, from which

two cumulative (optimistic and pessimistic) distributions can

be derived for the purpose of comparison with a tolerance

threshold.

We consider four important issues in risk assessment [27]:

the first one is how to represent the available information

faithfully [26], the second one is how to account for

dependencies, correlations between the parameters in the

propagation process (linear, non linear monotone dependency,

interaction ...). For example the assumption of stochastic

independence between parameters can generate too optimistic

results [24] [29]. The third issue is the choice of the

propagation technique [3] [23]. The last one is how to exploit

the results of propagating variability and imprecision jointly.

This paper focuses on the two last steps. We revisit the

joint propagation of possibility and probability distributions

through a numerical model, laying bare the underlying
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assumptions, and we propose a new post-processing method,

suggested in [4], in the framework of belief functions. We

also discuss indices quantifying the amount of variability and

incompleteness of a random fuzzy set, with a view to present

the results of risk analysis to a user in an understandable

format.

In Section 2, we recall basic concepts of numerical pos-

sibility theory [15] and belief functions [42] in connection

with imprecise probabilities [12]. In Section 3, we explain the

hybrid propagation method [25] [33] in detail and we study

the links with the random set approach using belief functions

to propagate uncertainties [3]. In Section 4, we discuss the

exploitation of the random fuzzy results and show that the

postprocessing step proposed by Guyonnet et al. [33] intro-

duces a confusion between variability and imprecision that

may yield overly-conservative results. Then, we propose an

alternative approach that explicitly accounts for the difference

between the two components of uncertainty. Ferson’s method

[9] [25] [22] is also recalled. The difference between the three

information summarization methods is laid bare and illustrated

with synthetic numerical examples.

II. U T

The aim of this section is to recall uncertainty theories use-

ful in the sequel, namely probability theory, possibility theory

and the theory of belief functions, albeit from the standpoint of

imprecise probabilities. Our purpose is to distinguish between

situations where uncertainty is due to the variability of the

observed phenomenon, from situations where it is due to a

mere lack of knowledge. While the former is handled by means

of probability theory, the latter is more naturally captured by

set-valued representations whereby all that is known is that a

certain value belongs to a certain set, which is possibly fuzzy.

This is the idea of possibility theory. More general theories

combine the two frameworks, thus yielding more general, and

also more costly representations.

A. Probability theory:the frequentist view

Probability theory is taylored to the representation of precise

observations tainted with variability. To consider a classical

setting of dice tossing, one can see the number obtained after

each toss but one does not always obtain the same outcome

for each toss. All probability measures P can be defined from

a sample space Ω equipped with probability mesure, defined

on an algebra A of measurable subsets. In the discrete case,

a distribution function p : Ω −→ [0, 1] exists such that∑
ω∈Ω p(ω) = 1. In the continuous case, let X be a real random

variable X −→ R. A probability measure PX on R is induced

from the sample space, with density pX such that
∫
R

p(x)dx = 1

Namely for any measurable subset A ⊆ R, called event, it

holds:

(discrete case) : PX(A) =
∑

ω:X(ω)∈A

p(ω), (1)

(continuous case) : PX(A) =

∫
A

pX(x)dx, (2)

The cumulative distribution function of X is F : R → [0, 1],

defined from pX as follows:

F(x) = PX((−∞, x]) = P(X ≤ x) =

∫ x

−∞

pX(t)dt, ∀ x ∈ R (3)

The number p(ω) represents the (limit) frequency of observing

ω after many trials in the discrete case, and the density of ω

in the continuous case. Probability measures P verify:

∀A, B ⊆ Ω P(A ∪ B) = P(A) + P(B) − P(A ∩ B) (4)

Probability measures are self-dual, that is P(A) = 1 − P(A).

B. Limitations of subjective probability

When faced with incomplete information regarding a given

model parameter, e.g. the knowledge that the parameter value

is located somewhere between a value min and a value max,

it is common to assume a uniform probability distribution

between min and max. This approach appeals to the Laplace

principle of insufficient reason, according to which all that is

equally plausible is equally probable. It can also be justified on

the basis of the ”maximum entropy” approach (see [34]). More

generally, the subjective probability view (for instance, Lindley

[38]) claims that any state of knowledge, however incomplete,

can be represented by means of a single (a priori) probability.

Such a claim is based on the theory of exchangeable bets,

where the degree of probability of an event is understood as

the price a player accepts to pay for buying a lottery ticket

that brings one dollar to the player if this event occurs. It is

assumed that the ticket seller and the player exchange roles if

the former finds the price proposed by the latter unfair. In such

a constrained framework, it is easy to verify that the lottery

ticket prices for all events must follow the rules of probability

theory, or else the player is sure to lose money. This view

of probability is indeed purely subjective since two different

persons may offer different prices for the lottery tickets. Based

on this conceptual framework, Bayesian probabilists tend to

dismiss all alternative approaches to incomplete information

and belief representation as being irrational.

However, this point of view can be challenged in various

ways. First, adopting uniform probabilities to express igno-

rance implies that degrees of probability will depend on the

size of the universe of discourse. Two uniform probability

distributions relative to two different frames of discernment

representing the same problem may be incompatible with each

other (Shafer [42]). Besides, if ignorance means not being able

to tell whether one contingent event is more or less probable

than any other contingent event, then uniform probabilities

cannot account for this postulate because, unless the frame of

discernment is Boolean: even assuming a uniform probability,

some event will have a probability higher than another [20].

The subjective probability approach has also been criticized by

pointing out that the exchangeable bet framework is debatable:

the player may be allowed not to play. There is a maximal price

(s)he is ready to pay for buying the lottery ticket, and the seller

has a minimal price below which he no longer wants to sell

it. This is the basis of the imprecise probability framework of

Walley [43]. The bottom line of the criticism made by non-

additive probability theories is that while in the exchangeable
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bet framework, lottery prices are induced by the belief state

of the player, there is no one-to-one correspondence between

lottery prices and degrees of belief. For instance, the meaning

of a uniform probability distribution obtained from an expert

is ambiguous: it may be that the expert knows the underlying

phenomenon is really random (like a fair die), or that (s)he is

totally ignorant of this phenomenon, hence sees no reason to

bet more money on one outcome rather than another.

C. Numerical Possibility Theory

Possibility theory [15] is convenient to represent consonant

imprecise knowledge. The basic notion is the possibility distri-

bution, denoted π, here a mapping from the real line to the unit

interval, unimodal and upper semi-continuous. A possibility

distribution describes the more or less plausible values of

some uncertain variable X. Possibility theory provides two

evaluations of the likelihood of an event, for instance that the

value of a real variable X should lie within a certain interval:

the possibility Π and the necessity N . The normalized measure

of possibility Π (respectively necessity N) is defined from the

possibility distribution π : R→ [0, 1] such that supx∈R π(x) = 1

as follows:

Π(A) = sup
x∈A

π(x) (5)

N(A) = 1 − Π(A) = inf
x<A

(1 − π(x)) (6)

• The possibility measure Π verifies :

∀A, B ⊆ R Π(A ∪ B) = max(Π(A),Π(B)) (7)

• The necessity measure N verifies :

∀A, B ⊆ R N(A ∩ B) = min(N(A),N(B)) (8)

A possibility distribution may also be viewed as a nested set of

confidence intervals, which are the α-cuts [x
α
, xα] = {x, π(x) ≥

α} of π. The degree of certainty that [x
α
, xα] contains X is

N([x
α
, xα]) (= 1 − α if π is continuous). Conversely, suppose

a nested set of intervals Ai with degrees of certainty λi that

Ai contains X is available. Provided that λi is interpreted as

N(Ai) ≥ λi, and π is chosen as the least specific possibility

distribution satisfying these inequalities [18], this is equivalent

to knowing the possibility distribution

π(x) = min
i=1...n
{1 − λi, x < Ai}

with convention min ∅ = 1.

A pair (interval A, necessity weight λ) supplied by an

expert is interpreted as stating that the (subjective) probability

P(A) is at least equal to λ [18] where A is a measurable

set. This definition is mathematically meaningful [8], and in

particular, the α-cut of a continuous possibility distribution

can be understood as the inequality P(X ∈ [x
α
, xα]) ≥ 1 − α.

Equivalently, the probability P(X < [x
α
, xα]) is at most equal

to α. Degrees of necessity are equated to lower probability

bounds and degrees of possibility are then equated to upper

probability bounds.

D. Evidence Theory

The theory of belief functions [42] (also called evidence

theory) allows imprecision and variability to be treated sepa-

rately within a single finite framework. Indeed, belief functions

provide mathematical tools to process information which is at

the same time of random and imprecise nature. We typically

find this kind of knowledge when one uses some measure-

ment device which has a systematic error (imprecision) and

a random error (variability). We may obtain a sample of

random intervals ([mi − δ,mi + δ])i=1...K supposedly containing

the true value, where δ is a systematic error, mi is the

observed measurement i = 1 . . .K and K is the number of

interval observations. Each interval is attached probability νi

of observing the measured value mi. That is, we obtain a mass

distribution (νi)i=1...K on intervals. The probability mass νi can

be freely re-allocated to points within interval [mi − δ,mi + δ].

However, there is not enough information to do it.

Contrary to probability theory which assigns probability

weights to atoms (elements of the referential) the theory of

evidence may assign such weights to any subsets, called focal

sets, with the understanding that portions of these weights may

move freely from one element of such subsets to another . As

in possibility theory, evidence theory provides two indicators,

plausibility Pl and belief Bel, to qualify the validity of a

proposition stating that the value of variable X should lie

within a set A (a certain interval for example). Plausibility Pl

and belief Bel measures are defined from the mass distribution:

ν : P(Ω)→ [0, 1] such that
∑

E∈P(Ω)

ν(E) = 1 (9)

as follows:

Bel(A) =
∑

E,E⊆A

ν(E) (10)

Pl(A) =
∑

E,E∩A,∅

ν(E) = 1 − Bel(Ā) (11)

where P(Ω) is the power set of Ω and E is called focal element

of P(Ω), when ν(E) > 0.

Bel(A) gathers the imprecise evidence that asserts A ; following

Dempster [12], it is the minimal amount of probability that can

be assigned to A by sharing the probability weights defined by

the mass function among single values in the focal sets. Pl(A)

gathers the imprecise evidence that does not contradict A ; it

is the maximal amount of probability that can be assigned to

A in the same fashion.

Evidence theory encompasses possibility and probability the-

ory.

• When focal elements are nested, a belief measure Bel

is a necessity measure, that is Bel = N. A Plausibility

measure Pl is a possibility measure, that is Pl = Π.

• When focal elements are some disjoint intervals, plau-

sibility Pl and belief Bel measures are both probability

measures, that is we have Bel = P = Pl, for unions of

such intervals.

Thus, all probability distributions and all possibility distri-

butions may be interpreted by mass functions. Hence, one

may work in a common framework to treat the information

of imprecise and random nature.
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E. Approximate Encoding of Continuous Possibility and Prob-

ability as Belief Functions

Belief functions [42] encompass possibility and probability

theories in the finite case (see Section II-D). Here we explain

more precisely how we can build a mass distribution ν

from a probability distribution function p or a possibility

distribution π. In the continuous case, the representation will

be approximate but this is how we shall make computations.

1) Probability → Belief function.

Let X be a real random variable with a probability

density pX . By discretizing it into m intervals, we define,

as focal elements, disjoint intervals (]ai, ai+1])i=1...m and

we can build the mass distribution (νi)i=1...m as follows

∀i = 1...m [17]:

ν(]ai, ai+1]) = νi = P(X ∈]ai, ai+1]) (12)

2) Possibility → Belief function.

Let Y be a possibilistic variable. We denote by π the

possibility distribution of Y and πα the α-cuts of π. Focal

elements for Y corresponding to α-cuts are denoted

(πα j
) j=1...q with α0 = α1 = 1 > α2 > · · · > αq > αq+1 = 0

and are nested. We denote by (ν j = α j − α j+1) j=1...q the

mass distribution associated to (πα j
) j=1...q (see Figure 1

for instance). Note that we thus approximate π by the

discrete possibility distribution π∗ such that π∗(x) = α j ≤

π(x) if x ∈ πα j
− πα j+1

. It is a lower approximation of π.

Alternatively one might prefer an upper approximation

π∗ such that π∗(x) = α j ≥ π(x) if x ∈ πα j−1
− πα j

(see

Figure 1 for instance).

F. Imprecise Probability

Let P be a probability family on the referential Ω. For all

A ⊆ Ω measurable, we can define:

its upper probability P(A) = sup
P∈P

P(A) (13)

its lower probability P(A) = inf
P∈P

P(A). (14)

Let P(P < P) = {P,∀A ⊆ Ω, P(A) ≤ P(A) ≤ P(A)} be

the family probability induced from upper P and lower P

probability induced from P. Clearly P is a proper subset of

P(P < P) generally. The notion of cumulative distribution

function becomes a pair of upper & lower cumulative dis-

tribution functions F and F defined as follows:

∀x ∈ R F(x) = P(X ∈] −∞, x]) (15)

∀x ∈ R F(x) = P(X ∈] −∞, x]) (16)

where X is a random variable associated to P. The gap between

F and F reflects the incomplete nature of the knowledge, thus

picturing what is unknown.

We can interpret any pair of dual functions neces-

sity/possibility [N,Π], or belief/plausibility [Bel, Pl] as upper

and lower probabilities induced from specific probability fam-

ilies.

• Let π be a possibility distribution inducing a pair of

functions [N,Π]. We define the probability family P(π) =

{P,∀A measurable, N(A) ≤ P(A)} = {P,∀A measurable,

P(A) ≤ Π(A)}. In this case, supP∈P(π) P(A) = Π(A) and

infP∈P(π) P(A) = N(A) (see [8], [18]).

• Conversely, given A1 ⊆ A2 ⊆ ... ⊆ An some measurable

subsets of Ω with their confidence degrees 1 − α1 ≤

... ≤ 1 − αn (1 − αi probabilities given by experts for

example), we define the probability family as follows:

P = {P,∀Ai, 1−αi ≤ P(Ai)}. We thus know that P = Π and

P = N (see [18], and in the infinite case [8]). We hence

can define upper F and lower F cumulative distribution

functions such that ∀x ∈ R F(x) ≤ F(x) ≤ F(x) with :

F(x) = Π(X ∈] −∞, x]) (17)

F(x) = N(X ∈] −∞, x]) (18)

• A mass distribution ν may encode probability family P =

{P,∀A measurable, Bel(A) ≤ P(A)} = {P,∀A measurable,

P(A) ≤ Pl(A)} [12]. In this case we have: P = Pl and

P = Bel, so that:

∀P ∈ P, Bel ≤ P ≤ Pl (19)

Hence, We can define upper F and lower F cumulative

distribution functions such that ∀x ∈ R F(x) ≤ F(x) ≤

F(x) with :

F(x) = Pl(X ∈] −∞, x]) (20)

F(x) = Bel(X ∈] −∞, x]) (21)

So, we may cast possibility theory and evidence theories

into a probabilistic framework respectful of the incompleteness

of the available information. Possibility distributions π and

mass distributions ν then encode probability families P(π) and

thus allow to represent incomplete probabilistic knowledge.

The intervals [N,Π] induced from π and [Bel, Pl] induced from

ν thus provide some bracketing of ill-known probabilities [5]

[21] [19] [26]. Note that this is not at all the view of belief

functions advocated by Shafer, nor Smets [41] 1. Moreover,

while a unique probability measure can be reconstructed

from the cumulative distribution F, there are several mass

functions yielding a given pair of upper and lower cumulative

distribution functions.

III. J      

 

Let us assume k < n random variables (X1, ..., Xk) taking

values (x1, ..., xk) and n− k possibilistic variables (Xk+1, ..., Xn)

taking values (xk+1, ..., xn) represented by possibility distribu-

tions (πXk+1 , ..., πXn). This section explains how to propagate

heterogeneous uncertainties pervading the parameters (Xi)i=1...n

through a function T by means of an hybrid probabilis-

tic/possibilistic method.

1These authors systematically refrain from referring to probability bounds,
and rather view Bel(A) as a degree of belief per se.
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a1a2a3a4a5 a1 a2 a3 a4 a5

ν1 = α1 − α2
associated to [a1, a1] = πα1

ν2 = α2 − α3
associated to [a2, a2] = πα2

ν3 = α3 − α4
associated to [a3, a3] = πα3

ν4 = α4 − α5
associated to [a4, a4] = πα4

ν5 = α5 − α6
associated to [a5, a5] = πα5

α1 = 1

α2

α3

α4

α5

α6 = 0

Lower approximation π∗ of π Upper approximation π∗ of πPossibility distribution π

Fig. 1. Transformation possibility→belief function

A. The hybrid propagation method

The hybrid propagation method, variants of which were

proposed in [9] [25] [33] involves two main steps (see Figure

2). It combines a Monte Carlo technique (Random Sampling

[7]) with the extension principle of fuzzy set theory [14]. We

first perform a Monte Carlo sampling of the random variables,

taking into account dependencies (if known), thus processing

variability (probability). Values thus obtained form prescribed

k-tuples (X1 = x1, ..., Xk = xk) and fuzzy interval analysis

is used to estimate T . The knowledge on the value of T (X)

becomes a fuzzy subset, for each k-tuple. Random sampling is

resumed and the process is performed in an iterative fashion

in order to obtain a sample (πT
1
, ..., πT

m) of fuzzy subsets where

m is the realization number of the k random variables. T (X)

then becomes a fuzzy random variable (or a random possibility

distribution) in the sense of [32] [36].

The hybrid procedure is summarized as follows [33]

1) Generate k random numbers (p1, ..., pk) from a uniform

distribution on [0, 1] taking account dependencies (if

known) and sample the k probability distribution func-

tions to obtain a realization of the k random variables:

(x1, ..., xk) (see Figure 2.a)

2) Select a possibility value α and the corresponding cut

as the selected interval.

3) Interval calculation : calculate the In f (smallest) and

S up (largest) values of T (x1, ..., xk, Xk+1, ..., Xn), con-

sidering all values located within the α-cuts for each

possibility distribution (see Figure 2.b).

4) Assign these In f and S up values to the lower and upper

limits of the α-cut of T (x1, ..., xk, Xk+1, ..., Xn).

5) Return to step 2 and repeat steps 3 and 4 for an-

other α-cut. The fuzzy result of T (x1, ..., xk, Xk+1, ..., Xn)

is obtained from the In f and S up values of

T (x1, ..., xk, Xk+1, ..., Xn) for each α-cut.

6) Return to step 1 to generate a new realization of the

random variables. A family of fuzzy numbers (πT
1
, ..., πT

m)

is obtained (see Figure 2.c).

B. Underlying independence assumptions

The classical Monte Carlo method has been criticized by

Ferson [23] because it presupposes stochastic independence

between random variables. In the case where we know that

random variables are independent, the Monte Carlo method

is correct. It is worthwile noticing that within a Monte Carlo

approach the rank correlation (non linear monotone depen-

dency) between the random variables [6] can be taken into

consideration (if known). Even if we can account for some

dependencies between random variables with Monte-Carlo, it

is necessary to be aware that the Monte Carlo method cannot

account for all forms of dependence.

Similarly, we must be careful with the extension principle be-

cause it underlies a meta-dependence assumption on possibilis-

tic variables. In fact the presence of imprecision on Xk+1, ..., Xn

potentially generates two levels of dependencies. The first one

is a (meta-)dependence between information sources attached

to variables and the second one is a dependence between

variables themselves. The extension principle [14], ∀u ∈ R

defines the resulting possibility distribution as:

πT (u) = sup
xk+1,...,xn,T (x1,...,xn)=u

min(πXk+1 (xk+1), ..., πXn(xn)). (22)

It is equivalent to performing interval analysis on α − cuts

and hence assumes strong dependence between information

sources (observers) supplying the input possibility distribu-

tions, since the same confidence level is chosen to build these

α-cuts [17]. Namely, one expert interprets fuzzy intervals πX

and πY for two possibilistic variables X and Y as α-cuts πX
α

and

πY
α

with the same confidence degree 1 − α. This suggests that

if the source informing on X is rather precise then the one in-

forming on Y is also precise (for instance it is the same source).

It induces a dependence between the knowledge of X and the

knowledge of Y since for instance pairs of values in πX
1
× πY

1

are supposed to be the most plausible. However, this form of

meta-dependence does not presuppose any genuine functional

(objective) dependence between possibilistic variables inside

the domain πX
α
× πY
α

(the observed phenomenona). The use of

”minimum” assumes the non-interaction of Xk+1, ..., Xn, which

expresses a lack of knowledge about the links between the

actual values of Xk+1, ..., Xn, hence a lack of commitment as to

whether Xk+1, ..., Xn are linked or not. Indeed, the least specific

joint possibility distribution whose projections on the X and

Y axes is precisely πX,Y = min(πX , πY).

As a consequence of the dependence between the choice

of confidence levels, one cannot interpret the calculus of

possibilistic variables as a conservative counterpart to the
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Fig. 2. Schematic illustration of the ”hybrid” method

calculus of probabilistic variables under stochastic indepen-

dence. Namely if PX and PY are probability measures assigned

to X and Y such that PX ∈ P(πX) and PY ∈ P(πY), it

does not imply that the joint probability PX,Y = PX · PY is

contained in P(min(πX , πY)). To wit, assume X and Y have

uniform probability densities on [0, 1], and that πX and πY are

linear decreasing on [0, 1], so that πX(u) = πY(u) = 1 − u.

Clearly, PX([u, 1]) = ΠX([u, 1]) = 1 − u. So PX ∈ P(πX),

PY ∈ P(πY). Yet, let C(u) = {(x, y) : x + y ≥ u}. It is

clear that PX,Y(C(u)) = 1 − u2

2
if u ≤ 1 and

(2−u)2

2
otherwise;

while ΠX,Y(C(u)) = supx min(1 − x, 1 − u + x) = 1 − u
2
. So,

ΠX,Y (C(u)) < PX,Y(C(u)) whenever u ≤ 1. It means that if

Z = X + Y, then PZ does not belong to P(πZ).

Besides, the hybrid propagation method clearly assumes

stochastic independence between the group of probabilistic

variables and the group of possibilistic ones, the latter viewed

as forming a random Cartesian product on the space of possi-

bilistic variables, as explained in the next section. Being aware

of the underlying assumptions, we can use this methodology

in risk assessment. We will see in the next sections how we

can estimate for example P(T (X) ∈] − ∞, t]) (where t can be

a threshold) from this hybrid result (random fuzzy number).

C. Casting uncertainty propagation in the setting of random

sets

Belief functions [42] encompass possibility and probability

theory. In this section the hybrid method is cast in this enlarged

setting so as to better lay bare the underlying independence

assumptions and illustrate the links between the propagation

results obtained with the hybrid approach and what could be

a pure random set approach. For the sake of clarity, consider

a continuous function T of two variables. Let X be a discrete

random variable with ΩX = {x1, ..., xm} and pX
i
= P(X = xi),

Y a possibilistic variable. with possibility distribution πY .

Focal elements for X are singletons ({xi})i=1...m and the mass

distribution is equal to (pX
i

)i=1..m because X is discrete. We

choose a discrete probability for the sake of clarity. Focal

elements for Y corresponding to α-cuts are denoted (πY
α j

) j=1...q

with αq > 0 and are nested. We denote by (νY
j
= α j−α j+1) j=1...q

the mass distribution associated to (πY
α j

) j=1...q. We thus encode

probabilistic and possibilistic variables as belief functions, in

the spirit of section 2.4.

Under the hybrid method, T (X, Y) is a discrete random fuzzy

subset. That is, we obtain m fuzzy numbers (πT
i

)i=1...m with

corresponding probabilities (pX
i

)i=1..m. Under the random set

approach [3] we interpret this random fuzzy set as m×q focal

elements (intervals) with mass distributions (pX
i
νY

j
)i=1...m, j=1...q

and focal elements πT
i j
= T (xi, πα j

). We have the following

result:

Proposition: The plausibility PlT and belief function

BelT associated to focal elements πT
i j

and mass distribution

(pX
i
νY

j
)i=1...m, j=1...q are such that ∀A measurable set,

PlT (A) =

m∑
i=1

pX
i Π

T
i (A)

BelT (A) =

m∑
i=1

pX
i NT

i (A)

where ΠT
i

and NT
i

are the possibility and necessity measures

associated to fuzzy numbers πT
i

.

Proof : The calculation of PlT reads as follows:

PlT (A) =
∑

(i, j), A∩πT
i j
,∅

pX
i ν

Y
j =

m∑
i=1

pX
i

∑
j=1...q, A∩πT

i j
,∅

ν
Y
j .

So, PlT (A) =
∑m

i=1 piPlT
i

(A), for each i varying from 1 to n,

we have πT
i j
⊆ ... ⊆ πT

ik
∀ j ≥ k. Thus PlT

i
(A) = ΠT

i
(A).�

These results still hold when several independent proba-

bilistic variables are involved. These results do not directly

apply with more than one possibilistic variable. Indeed recall

that fuzzy arithmetic presupposes total dependence between

α-cuts.
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The hybrid method can be cast in the random set setting,

when there are several (say two) possibilistic and probabilistic

variables. Consider X, Y, two possibilistic variables encoded

as belief functions, their focal elements being (πX
αi

)i=1...q,

(πY
α j

) j=1...q and the mass distributions (νX
i

)i=1...q, (νY
j
) j=1...q. Let

Z, W be two discrete probabilistic variables encoded by their

focal elements ({zk})k=1...m, ({wl})l=1...m and the mass distribu-

tions (pZ
k
)k=1...m, (pW

l
)l=1...m. If independence between focal sets

is assumed, we can define the joint mass distribution (denoted

νi jkl), associated to focal elements πT
i jkl
= T (πX

αi
, πY
α j
, {zk}, {wl})

of T (X, Y, Z,W), by:

∀i, j, k, l νi jkl = ν
X
i ν

Y
j pZ

k pW
l .

It corresponds to applying a Monte-Carlo method to all

variables. For each possibility distribution, an α-cut (here

πX
αi

, and πY
α j

) is independently selected. We thus assume the

stochastic independence of the focal elements pertaining to

different variables.

Suppose now the same value of α is selected for all

possibilistic variables. In the hybrid method, the joint pos-

sibility distribution πX,Y is characterized by min(πX , πY) which

corresponds to nested Cartesian products of α-cuts and let νX,Y
i

be the mass associated to the Cartesian product πX
αi
×πY
αi

. Then:

∀i, j, k, l, i = j : νiikl = ν
X,Y

i
pZ

k
pW

l

∀i, j, k, l, i , j : νi jkl = 0

Here we assume total dependence between focal elements

associated to possibilistic variables. Hence, if we want to

estimate PlT (A), for all measurable set A, using the last

definition of νi jkl, we still have:

PlT (A) =
∑

i,k,l; A∩πT
iikl
,∅

ν
X,Y
i

pZ
k pW

l =
∑
k,l

pZ
k pW

l Π
T
kl(A)

where ΠT
kl

are the possibility measures associated to the output

possibility distributions πT
kl

obtained by the hybrid method.

IV. E      



The results of the hybrid method are not easy to interpret

by a user and need to be summarized in some way so as

to be properly exploited. In this section we devise tools for

evaluating how much variability and how much imprecision

are contained in the output of the hybrid method, in the form

of separate indices. Then, we consider the problem of checking

to what extent the value of the quantity calculated by the

propagation step is likely to pass a given threshold. To this

end, we discuss methods for deriving cumulative distributions

from random fuzzy intervals. A method previously proposed

by some of the authors is criticized as being too conservative

and failing to separate variability from imprecision. A new

technique is proposed, based on averaging a random fuzzy

interval across α-cuts, in line with the previous discussion on

the hybrid method. This new technique is also compared to a

proposal by Ferson. Consider (πi)i=1...m being the sample of the

random fuzzy number T (X) obtained from the hybrid method

for the remainder of this section.

A. Measuring variability and imprecision separately

Since the output of the propagation technique is more

complex than a probability distribution, we cannot summarize

it by a mean value and a variance. Not only is the result

tainted with variability, but it also reflects the incompleteness

of the data via the presence of fuzzy intervals. It is possible

to summarize the imprecision contained in a fuzzy interval,

for instance using the mean interval (Dubois and Prade [16]).

The position of its middle-point (proposed a long time ago by

Yager [45]) reflects the average location of the fuzzy interval.

The width of the mean interval reflects the imprecision of the

fuzzy interval and is precisely equal to the surface under the

possibility distribution. Other evaluations like the degree of

fuzziness can be envisaged (see Delgado et al.[11])

Here we propose to combine probabilistic and possibilistic

summarized evaluations, with a view to process variability and

imprecision separely. To evaluate the average imprecision of

(πi)i, we can compute the average fuzzy interval (Kruse and

Meyer [36]) πmean
d

:

∀z, πmean
d (z) = sup

1
m

∑m
i=1 xi=z

min(π1(x1), . . . , πm(xm))

The average imprecision is measured by the area I under πmean
d

,

that is I =
∫
+∞

−∞
πmean

d
(u)du.

To estimate the locational variability of T , we can work

with a representative value hr
i

of each fuzzy interval πi. Then

we can estimate a standard variance V of the form:

V =
1

m

m∑
i=1

(hr
i )

2 −
2

m(m − 1)

∑
j<i

hr
jh

r
i

where hr
i

is a representative value of πi. As the representative

value hr
i

we can choose the middle point of the mean interval

(of each fuzzy interval πi). It is also equal to the average of

the midpoints of the α-cuts of πi, proposed by Yager [45] very

early :

hr
i =

∫ 1

0

(sup πiα + inf πiα)

2
dα

V appears only as an indicator of result variability. For

instance, on Figure 3a, the variability V is small but the im-

precision I is high. In contrast, on Figure 3b, the variability is

high, but the imprecision is small. We could also try to define

the variability of the imprecision in the sample, considering

the variance of the surface under the fuzzy numbers πi.

We could also estimate a fuzzy variance πvariance
d

. Let f be the

function which estimates the variance:

f : (x1, ..., xm) 7→
1

m

m∑
i=1

xi
2 −

2

m(m − 1)

∑
j<i

x jxi

To obtain πvariance
d

, we can work with α-cuts, and build nested

intervals πvariance
d,α

= [Vd,α,Vd,α], solving:

Vd,α = inf
xi∈πi,α

f (x1, ..., xm)

Vd,α = sup
xi∈πi,α

f (x1, ..., xm)

This fuzzy variance describes a potential variability, because

it scans variances of all probability functions compatible with
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the random fuzzy data. Ferson et al. [28] propose an algorithm

of quadratic complexity for computing the exact lower bound

Vd,α of the sample variance for interval valued data. However,

they show that computing the exact upper bound Vd,α is

NP-hard. There exists an algorithm that computes πvariance
d,α

but it is exponential in the sample size. They propose an

algorithm of quadratic complexity, but it presupposes all the

interval midpoints are away from each other. Computing a

fuzzy variance is not straightforward, as we must apply these

algorithms for all α-cuts. See Dubois et al. ([30]) for recent

results on this problem.

B. The fuzzy prediction interval method

Let pi be the probability associated to fuzzy number πi

resulting from the hybrid method. If the Monte Carlo method

yields distinct fuzzy numbers, then pi = 1/m. Guyonnet et al.

in [33] propose to synthesize this random fuzzy result into a

single fuzzy subset denoted πd, discarding outliers. For a given

membership grade α, consider the intervals πiα = [u
iα
, uiα].

The distribution of the greatest lower bounds {u
iα
}i=1,m and that

of the least upper bounds {uiα}i=1,m are built up. The interval

πdα = [u
dα
, udα] is computed as u

dα
=
∑m

i=1 u
iα
δ] i−1

m
,

i
m

](1− d%),

udα =
∑m

i=1 uiαδ] i−1
m
,

i
m

](d%) where δ] i−1
m
,

i
m

](a) = 1 if a ∈] i−1
m
, i

m
],

0 otherwise. Varying α ∈ [0, 1], a fuzzy interval πd is thus built.

The standard value d = 95 is chosen. That is, they eliminate

5% on the left and on the right side and perform the pointwise

union of the remaining fuzzy intervals, thus generalizing the

computation of an empirical prediction interval. Starting from

this fuzzy interval πd, we now can try to estimate the probabil-

ity of events such that: ]−∞, e], ]e,+∞], ]e1, e2] according to

whether we are interested in checking the probability that the

output value lies under a threshold e, crosses this threshold,

or remains in between two prescribed values.

Unfortunately, there are caveats with this postprocessing

method. First, and most importantly, this method confuses

variability and imprecision. It does not account for the proba-

bilities generated by the random variables and it thus forgets

the frequency of each output fuzzy number. This may put

excessive emphasis on randomly generated fuzzy numbers

located on the extreme right-handside and left-handside parts

of the result πd. Next, one may obtain the same result whether

the πi’s have large imprecision and small variability as in

Fig.3a, or they are more precise with a great variability as

in Fig.3b.

We can illustrate these problems more clearly when com-

bining intervals and probability. For instance, let A, B be two

independent random variables such that: P(A = 1) = P(A =

2) = 0.5, P(B = 4) = 1/3, P(B = 6) = 2/3 and C = [1, 2].

We compute T = (A + B)/C. With the hybrid method, we

obtain a random interval: T1 = [2.5, 5] with probability 1/6,

T2 = [3.5, 7] with probability 2/6; T3 = [3, 6] with probability

1/6 and T4 = [4, 8] with probability 2/6. Putting d = 20%, with

this postprocessing we obtain Td = [3, 7], and we assign to it

a mass equal to 1, which is debatable. Indeed we eliminate the

knowledge (frequency) brought by A and B, i.e. variability.

Lastly, we get false estimates of probabilities such as

PT (X)([e1, e2]). Indeed the method independently processes the

left-hand and the right-hand sides of the fuzzy intervals πi

while they are not independent, since any α-cut is generated as

a whole. The postprocessing proposed by Guyonnet et al. [33]

is thus debatable. Better alternative methods can separately

assess variability and imprecision.

C. Computing average upper and lower cumulative distribu-

tions

Recall (πi, pi)i=1...m is the sample of random fuzzy numbers

resulting from the hybrid method. Let us encode each πi

with focal elements corresponding to α-cuts (πiα)α and the

associated mass distribution is (ναpi)α (see Section II-E). We

obtain a weighted random sampling of intervals defining a

belief function. Then, we can estimate, for all measurable sets

A, Pl(A) and Bel(A) such that:

Pl(A) =
∑

(i,α); πiα∩A,∅

ναpi; Bel(A) =
∑

(i,α); πiα⊆A

ναpi

We can dub it ”homogeneous postprocessing”. This technique

again yields as in section 3.2:

Pl(A) =
∑

i

piΠi(A); Bel(A) =
∑

i

piNi(A)

This technique thus computes the eventwise weighted average

of the possibility measures associated with each output fuzzy

interval. It applies to any event, not just to the crossing of a

threshold .

Let us compare the previous postprocessing method of

Guyonnet et al. [33] with the pair of average cumulative dis-

tributions F(e) = Pl(T (X) ∈ (−∞, e]) and F(e) = Bel(T (X) ∈

(−∞, e]) defined from the above method. Note that the fuzzy

confidence interval computed by the former method can also

be expressed by a pair of cumulative distributions Πd(T (X) ∈

(−∞, e]) and Nd(T (X) ∈ (−∞, e]) defined from πd (see Section

IV-B).

With the homogeneous postprocessing, we get Pl(T (X) ∈

(−∞, t]) = 1 if and only if ∀i = 1...m, Πi(T (X) ∈]−∞, t]) = 1.

That is t ≥ t∗ = maxi{inf(core(πi))}. We also have Pl(T (X) ∈

(−∞, t]) = 0 if and only if ∀i = 1...m Πi(T (X) ∈ (−∞, t]) = 0.

That is t ≤ t∗ = mini{inf(support(πi))} (see Figure 3). We

study only the left-hand side part (for simplicity), that is

Πd(T (X) ∈ (−∞, e]), with the Guyonnet et al. method of

Section IV-B. If d = 100%, the construction of u
dα

will

necessarily imply:

for α = 0, u
dα
= t∗

for α = 1, u
dα
= min

i
{inf(core(πi))} < t∗

Thus, we can say that for d = 100%, the cumulative dis-

tribution Πd(T (X) ∈ (−∞, e]) = 1 ∀ e ≥ u
d1

, so it is

more conservative than Pl(T (X) ∈] − ∞, e]) obtained by the

homogeneous postprocessing (because of not accounting for

frequencies). If d , 100%, the construction of u
dα

will

necessarily imply (see Figure 3):

for α = 0, u
dα
≥ t∗

for α = 1, u
dα
≤ t∗
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Fig. 3. Guyonnet et al. [33] postprocessing : the same possibility distribution πd is obtained for different scenarii of variability and imprecision

That is Πd(T (X) ∈ (−∞, e]) = 0 ∀ e ∈ [t∗, ud0[ and

Πd(T (X) ∈ (−∞, e]) = 1 ∀ e ≥ u
d1

[. So, the fuzzy prediction

interval method according to [33], is essentially more

conservative (because of not accounting for frequencies) than

the method proposed in this section, and the reason why it

may appear less conservative for low plausibility values is

rhe use of outlier elimination.

Finally, the homogeneous post processing method separates

imprecision from variability. Namely the cumulative distribu-

tions F(e) = Pl(T (X) ∈ (−∞, e]) and F(e) = Bel(T (X) ∈

(−∞, e]) will be close to each other and their associated

variances will be large in Figure 3a, thus preserving the

high variability and precision of the output. On the contrary,

F(e) = Pl(T (X) ∈ (−∞, e]) and F(e) = Bel(T (X) ∈ (−∞, e])

will be very steepy and far away from one another in Figure

3b, reflecting the fact that the obtained fuzzy intervals are

imprecise but very close to one another. However, upper and

lower cumulative distributions cannot be used for predicting

if the output lies between two thresholds e1 and e2. This is

because neither Pl(T (X) ∈ [e1, e2]) nor Bel(T (X) ∈ [e1, e2]) can

be expressed in terms of upper and lower cumulative functions

F and F respectively.

D. Comparison with Ferson method

Ferson et al. [9] [22] [25] also treats variability and im-

precision separately in his technique for handling random

fuzzy numbers. In fact, they prescribe a degree of confidence

(thus a value α) and compute the upper and lower cumulative

probability distributions induced by the α-cuts of the fuzzy

intervals, weighted by probabilities (pi). The upper (noted Fα)

and lower (noted F
α
) cumulative distributions for a prescribed

α are ∀x ∈ R,:

Fα(x) = card{u
iα
≤ x}/m

and

∀x ∈ R, F
α
(x) = card{uiα ≤ x}/m

The gap between Fα and F
α

represents the imprecision due to

possibilistic variables and the choice of α. The slopes of Fα
and F

α
characterize the variability of the results. Thus with

this kind of representation, Ferson captures the variability and

imprecision of a random fuzzy interval in a parameterized

way and displays extreme pairs of cumulative distributions,

respectively outer, (F0, F0), and inner ones (F1, F1) (see

Figure 4). Thus if the user is optimistic and assumes high

precision ( α = 1), he works with the cores of the fuzzy

intervals, but, if cautious, he may choose α = 0 and use their

supports.

Let us compare this postprocessing technique with the av-

erage cumulative distributions in Section IV-C. In the latter

approach, each interval πiα is associated to mass ναpi. With

F0

0

1

0.2

0.4

0.6

0.8 F0

F1

F1

Average cumulative
distributions

T(X)

F

F

Fig. 4. Postprocessing of Ferson and comparison with our homogeneous
postprocessing results.

the Ferson approach, level α is fixed and it computes:

Fα(x) =
∑

i

piΠiα(T (X) ∈ (−∞, x])

and

Fα(x) =
∑

i

piNiα(T (X) ∈ (−∞, x])

where Πiα(T (X) ∈ (−∞, x]) = 1 if x ≥ a
iα

and 0 otherwise,

Niα(T (X) ∈ (−∞, x]) = 1 if x > aiα and 0 otherwise. It is

obvious, since πi1 ⊆ πi ⊆ πi0, that Πi0(T (X) ∈ (−∞, x]) ≥

Πi(T (X) ∈ (−∞, x]) ≥ Πi1(T (X) ∈ (−∞, x]) and Ni1(T (X) ∈

(−∞, x]) ≥ Ni(T (X) ∈ (−∞, x]) ≥ Ni0(T (X) ∈ (−∞, x]). Hence

(see Fig.4)

F1 ≤ Pl(T (X) ∈ (−∞, e]) ≤ F0

and (see Fig.4)

F0 ≤ Bel(T (X) ∈ (−∞, e]) ≤ F1

Hence our homogeneous method produces average upper and

lower cumulative distributions which span the ranges between
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F0 and F1 on the one hand, F
0

and F
1

on the other hand;

moreover it holds [16]

F(e) =

∫ 1

0

Fα(t)dα and F(e) =

∫ 1

0

Fα(t)dα

V. I    

In order to illustrate the application and implications of

these post-treatment methods, we consider a generic ”model”

T that is a simple function of four parameters A, B, C and D:

T =
A + B

D +C

For the purpose of the illustration we will consider two cases:

1) One with small variability and large imprecision.

2) Another with large variability and small imprecision.

A. Case 1. Small Variability, Large Imprecision.

Both A and C are represented by normal probability dis-

tributions (of average 100, resp. 10, and standard deviation 2,

resp. 0.5; see Figures 5 & 6), while B and D are represented by

possibility distributions (of core=[2, 10], support=[0, 20] resp.

core=[10, 50], support=[1, 90] see Figures 7 & 8). The appli-

cation of the hybrid method (see III-A) yields many possibility

distributions for T , ten of which are depicted in Figure 9 (1000

fuzzy realizations of the probability distribution functions were

obtained). We represent the result of the hybrid method by
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Fig. 5. Cumulative normal distri-
bution function with mean 100 and
standard deviation 2.

5 10 15 20
0

0.2

0.4

0.6

0.8

1

C

C
u
m

u
la

tiv
e
 d

is
tr

ib
u
tio

n

Fig. 6. Cumulative normal distri-
bution function with mean 10 and
standard deviation 0.5.
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showing, on the same picture, imprecision and variability by

means of a three-dimensional image of the random fuzzy set

T . Figure 10 displays the envelope of the hybrid result. We

can see on Figure 11 that a projection on the possibility space

[0, 1] × R provides a two-dimensional view of the random
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Fig. 9. 10 samples of the random fuzzy set of T .

fuzzy result (the envelope of fuzzy numbers in Figure 9).

Now using a projection on the probability space [0, 1]×R, we

obtain Ferson’s view on Figure 12 (see Section IV-D). Outer

(resp. inner) cumulative distribution functions correspond to α-

cut=0 (resp. α-cut=1) and represent the most likely cumulative

distributions (resp. the least likely cumulative distribution).
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Fig. 10. Three-dimensional image of random fuzzy numbers induced by
hybrid method.

Figure 13 displays upper and lower probabilities of the

proposition A+B
C+D

≤ t deduced from different postprocessings

presented in Sections IV-B, IV-C, IV-D where t is any value.

(Π,^) and (N,_) are the upper resp. lower distributions ob-

tained from the post-treatment by Guyonnet et al. (see Section

IV-B). Pl(T ≤ t) and Bel(T ≤ t) are the upper resp. lower

distributions obtained from our homogeneous postprocessing

method (see Section IV-C). We also represent the pairs of

inner and outer distributions of Ferson method. We recall

Guyonnet et al. postprocessing is debatable because it forgets

the variability of random variables A and C. We can see on

Figure 13 that Bel(T ∈] − ∞, 10.96]) = 95% whereas N(T ∈

]−∞, 11.4]) = 95%, namely Guyonnet et al. do over-estimate

the result by 4% compared to our approach. This error is small

here because variabilities of A and B are small, but it will be

more important in Case 2. The post-treatment of Guyonnet

et al. therefore appears more conservative. The method of

Ferson in section IV-D presents some disadvantages. Indeed,
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Fig. 11. The projection of Three-
dimensional image T on the possi-
bility space [0, 1] × R.
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Fig. 12. The projection of Three-
dimensional image T on the prob-
ability space [0, 1] × R.
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Fig. 13. Comparison with three postprocessing on indicators of the veracity
of the proposition ” A+B

C+D
≤ t”.

there is a lower fractile at 95%(resp. upper probability) for

α = 0 equal to 5.8 (resp. upper probability for α = 1 equal

to 11.9). That is, the value 11.9 is prudent but not very

informative and 5.8 is a risky value but maybe not sufficiently

conservative. The question is: what would be a reasonable

value for α. Our homogeneous postprocessing in Section IV-C

seems to be a good trade-off between the inner and the outer

distribution pairs, that also discriminates between variability

and imprecision. The imprecision due to B and D is reflected

in the gap between Pl and Bel measures, the variability due

to A and C is pictured in the slope of Pl and Bel. One

way to estimate the total uncertainty (imprecision+variability)

on T is to provide a confidence 90% interval (for example)

whose lower bound is computed from Pl(T ≤ t) and upper

bound from Bel(T ≤ t)(here [1.7, 10.76]). Being aware of the

dependency assumptions between parameters in the hybrid

method (see Section III-A) we are not sure that the actual

probability P(T ∈] −∞, t]) lies between Bel(T ∈] −∞, t]) and

Pl(T ∈] − ∞, t]) if special forms of unpredicted dependence

are present [3].

B. Case 2. Large Variability, Small Imprecision.

As previously, both A and C have normal probability distri-

butions (of average 100, resp. 10, and standard deviation 30,

resp. 3; see Figures 14 & 15), while B and D are represented

by possibility distributions (of core={10}, support=[8, 12] resp.

core={45}, support=[42, 48]; see Figures 16 & 17). Figure

18 proposes samples of outputs. Figure 22 presents the same

distributions as in Case 1. Contrary to Case 1, this example
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Fig. 14. Cumulative normal dis-
tribution function of mean 100 and
standard deviation 30.
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Fig. 15. Cumulative normal dis-
tribution function of mean 10 and
standard deviation 3.
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Fig. 18. 20 samples of the random fuzzy set of T .

highlights the defects of Guyonnet et al., postprocessing.

Indeed we obtain for example Π(T ∈] − ∞, 1.1]) = 95%

whereas Pl(T ∈] − ∞, 2.87]) = 95%, i.e. a underestimation of

62% compared to 2.87. Assuming a tolerance criterion of 2.5,

the post-treatment of Guyonnet et al. yields a lower cumulative

probability of 0%, (that is, A+B
C+D
> t is true), while from our

homogeneous postprocessing, it is close to 75%. The larger

discrepancy between the two postprocessing methods for Case

2 is due to the fact that Case 2 is dominated by variability

rather than by imprecision.
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Fig. 19. Three-dimensional image of random fuzzy numbers induced by
hybrid method.
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Fig. 20. The projection of Three-
dimensional image T on the possi-
bility space [0, 1] × R..
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Fig. 21. The projection of Three-
dimensional image T on the prob-
ability space [0, 1] × R.

VI. C

This paper proposes an approach to jointly propagate proba-

bilistic and possibilistic uncertainty in deterministic mathemat-

ical models. It provides a computational device for generating

fuzzy random variables. Dependence and independence as-

sumptions underlying the approach have been laid bare, and a

postprocessing method based on belief functions has been de-

vised so as to extract useful information. This method assesses

the imprecision and the variability of the results separately, and

extracts average upper and lower cumulative distributions for

checking the positioning of the output variable with respect

to a threshold. Our proposal improves on previous works.

This methodology is currently experimented on environmental

pollution prediction problems where some parameters are ill-

informed and while statistical data are available on other ones

(see [2], [3]). The most common pitfall in risk assessment

is to assume variability in the face of partial ignorance,

thereby conveying a level of confidence in the outcome of

the analysis that is not consistent with the knowledge that

is truly available. An important message to be delivered to

decision-makers, or other stakeholders, is that a risk specialist

should be equipped with a formal language where the lack of

knowledge on model parameters is encoded in a specific way,
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Fig. 22. Comparison with three postprocessing on indicators of the veracity
of the proposal ” A+B

C+D ≤ t”.

different from observed data stemming from acknowledgedly

random phenomena.

Further research is needed for representing knowledge on

dependence. The hybrid propagation scheme presented here

does account for partial prior knowledge on distributions,

not so much on dependence. Accounting for dependence

between variables in the propagation process is a very difficult

problem, let alone partial knowledge on dependence. Using

ideas of rank correlations [6], copulas [39] and the general

framework of upper and lower probabilities introduced by

Couso et al. [10] we may try to take into consideration some

links or dependencies which could exist between possibilistic

variables. Current work [3] is devoted to the computation

of conservative bounds that avoid making independence or

dependence assumptions. Such bounds can be obtained, even

if tediously so in the common framework of random sets [12]

outlined above, improving on Williamson and Downs [44].

A

This work has been supported by three French risk assess-

ment institutes: BRGM, IRSN, INERIS.

R

[1] A. Bardossy, A. Bronstert, B. and Merz. 1-, 2- and 3-dimensional
modeling of groundwater movement in the unsaturated soil matrix using
a fuzzy approach. Advances in Water Resources, 18(4), 237-251, 1995.

[2] C. Baudrit, D. Guyonnet, H. Baroudi, S. Denys, Ph. Begassat. Assessment
of child exposure to lead on an ironworks brownfi eld: uncertainty
analysis. To appear in Conference on Contaminated Soil (ConSoil’05),

Bordeaux (France), 2005.
[3] C. Baudrit, D. Dubois. Comparing Methods for Joint Objective and

Subjective Uncertainty Propagation with an example in risk assessment.
Fourth International Symposium on Imprecise Probabilities and Their
Application (ISIPTA’05), Pittsburgh (USA, Pennsylvanie), 31-40, 2005.

[4] C. Baudrit, D. Guyonnet, D. Dubois. Post-processing the hybrid method
for addressing uncertainty in risk assessments. To appear in Journal of

Environmental Engineering.
[5] C. Baudrit, D. Dubois, H. Fargier. Practical Representation of Incomplete

Probabilistic Information. In : special session in Soft Methodology and

Random Information Systems in the ’2nd Int. Conf. on Soft Methods in
Probability and Statistics’ (SMPS’04), Oviedo (Spain). Lopz-Diaz, M. A.
Gil, P. Grzegorzewski, O. Hyrniewicz (Eds.), Springer, p. 149-156, 2004.



JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 13

[6] W.J. Connover, R.L. Iman. A Distribution-Free Approach to Inducing
Rank Correlation Among Input Variables. Technometric, 3, 311-334,
1982.

[7] W.J. Connover, M.D. McKay, R.J. Becknam. A Comparaison of Three
Methods for Selecting Values of Input Variables in the Analysis of Output
from a Computer Code. Technometric, 21, 239-245, 1979.

[8] G. De Cooman, D. Aeyels. Supremum-preserving upper probabilities.
Information Sciences, 118, 173-212, 1999.

[9] J.A Cooper, S. Ferson, L.Ginzburg. Hybrid Processing of Stochastic and
Subjective Uncertainty Data. Risk Analysis, 16(6), 785-791, 1996.

[10] I. Couso, S. Moral, P. Walley. A survey of concepts of independence
for imprecise probabilities. Risk Decision and Policy, 5, 165-180, 2000.

[11] M. Delgado, M.A. Vila, W. Voxman. On a canonical representation for
fuzzy numbers, Fuzzy Sets and Systems, 93, 125-135, 1998.

[12] A.P. Dempster. Upper and Lower Probabilities Induced by a Multivalued
Mapping. Annals of Mathematical Statistics, 38, 325-339, 1967.

[13] C. Dou, W. Woldt, I. Bogardi and M. Dahab. Steady-state groundwater
flow simulation with imprecise parameters. Water Resource Res., 31(11),
2709-2719, 1995.

[14] D. Dubois, E. Kerre, R. Mesiar, H. Prade .Fuzzy interval analysis.
Fundamentals of Fuzzy Sets, Dubois,D. Prade,H., Eds: Kluwer , Boston,
Mass, 483-581, 2000.

[15] D. Dubois, H. T. Nguyen, H. Prade. Possibility theory, probability and
fuzzy sets: misunderstandings, bridges and gaps. Fundamentals of Fuzzy

Sets, Dubois,D. Prade,H., Eds: Kluwer , Boston, Mass, 343-438 , 2000.

[16] D. Dubois, H. Prade. The mean value of a fuzzy number, Fuzzy Sets

and Systems, 24, 279-300, 1987.

[17] D. Dubois, H. Prade. Random sets and fuzzy interval analysis. Fuzzy

Sets and Systems, 42, 87-101, 1991.

[18] D. Dubois, H. Prade: When upper probabilities are possibility measures.
Fuzzy Sets and Systems, 49, 65-74, 1992.

[19] D. Dubois, H. Prade, S.A. Sandri: On possibility/probability transforma-
tions.Fuzzy Logic: State of the Art (R. Lowen, M. Lowen, eds.), Kluwer
Academic Publ., 103-112, 1993.

[20] D. Dubois, H. Prade, P. Smets: (1996) Representing partial ignorance,
IEEE Trans. on Systems, Man and Cybernetics, 26(3), 361-377, 1996.

[21] D. Dubois, H. Prade, G. Mauris, L. Foulloy. Probability-possibility trans-
formations, triangular fuzzy sets and probabilistic inequalities. Reliable
Computing, 10, 273-297, 2004.

[22] S. Ferson. Using fuzzy arithmetic in Monte Carlo simulation of fi shery
populations. Management of Exploited Fish, T. Quinn (ed.), Proceedings

of the ISMSEFP, Anchorage, 595-608, 1992.

[23] S. Ferson. What Monte Carlo methods cannot do. Human and Ecology

Risk Assessment, 2, 990-1007, 1996.

[24] S. Ferson, M.A. Burman. Correlation, dependency bounds and extinction
risks. Biological Conservation, 73, 101-105, 1995.

[25] S. Ferson, L.R. Ginzburg. Hybrid Arithmetic. Proceedings of ISUMA-
NAFIPS’95, IEEE Computer Society Press, Los Alamitos, California,
619-623, 1995.

[26] S.Ferson, L.Ginzburg, R.Akcakaya. Whereof one cannot speak: when
input distributions are unknown. To appear in Risk Analysis.

[27] S. Ferson, L.R. Ginzburg. Different methods are needed to propagate
ignorance and variability. Reliability Engineering and Systems Safety, 54,
133-144, 1996.

[28] S. Ferson, L. Ginzburg, V. Kreinovich, L. Longpre, M. Aviles Computing
Variance for Interval Data is NP-Hard. ACM SIGACT News, 33(2), 108-
118, 2002.

[29] S. Ferson, T.F. Long. Conservative uncertainty propagation in environ-
mental risk assessments. Environmental Toxicology and Risk Assessment.
ASTM STP 1218, Ed J.S Hughes et al. Am. Soc. for Testing and
Materials, Philadelphia, 97-110, 1994.

[30] J. Fortin, D. Dubois, H. Fargier. The Empirical Variance of a Set of
Fuzzy Intervals. IEEE Int. Conf on Fuzzy Systems, Reno (Nevada) 885-
890, 2005.

[31] C. Freissinet, M. Vauclin. A fuzzy logic-based approach to assess im-
precision of soil water contamination modeling. Soil & Tillage Research,
47, 1-17, 1998.

[32] M.A Gil. (Ed.) Fuzzy Random Variables. Special issue of Information
Sciences, 133, Nos. 1-2, 2001.

[33] D. Guyonnet, B. Bourgine, D. Dubois, H. Fargier, B. Cme, J.P. Chils.
Hybrid approach for addressing uncertainty in risk assessments. Journal

of Environmental Engineering, 126, 68-78, 2003.

[34] H. Gzyl. The Method of Maximum Entropy. Series on Advances in

Mathematics for Applied Sciences, 29,1995.

[35] A. Kaufmann, M.M. Gupta. Introduction to Fuzzy Arithmetic: Theory
and Applications. Van Nostrand Reinhold, New York, 1985.

[36] R. Kruse, K.D Meyer. Statistics with Vague Data. Reidel, Dordrecht,

Netherlands, 1987.
[37] P. Labieniec, D. Dzombak, R.Siegrist. Evaluation of uncertainty in a site-

specifi c risk assessment. Journal of Environmental Engineering, 123(3),
234-243, 1997.

[38] D.V. Lindley. Scoring rules and the inevitability of probability. Int.
Statist. Rev., 50, 1-26, 1982.

[39] R.B. Nelsen. An Introduction to Copulas. Lecture Notes in Statistics,
Springer-Verlag, New York, v.139, 1999.

[40] P. Prado et al. Gesamac: Conceptual and computational tools to tackle
the long-term risk from nuclear waste disposal in the geosphere. European
Commission Report EUR 19113 EN. Office for Official Publications of

the European Communities, Luxemburg, 87, 1999.
[41] P. Smets. The normative representation of quantifi ed beliefs by belief

functions. Artificial Intelligence, 92, 229-242, 1997.
[42] G. Shafer. A Mathematical Theory of Evidence. Princeton University

Press, 1976.
[43] P. Walley. Statistical Reasoning with Imprecise Probabilities, Chapman

and Hall, 1991
[44] R.C. Williamson, T. Downs. Probabilistic arithmetic I: Numerical meth-

ods for calculating convolutions and dependency bounds. International

Journal of Approximate Reasoning, 4, 8-158, 1990.
[45] R.R. Yager. A procedure for ordering fuzzy subsets of the unit interval,

Information Sciences, 24, 143-161, 1981.

Cédric Baudrit is a graduate student at the Institut
de Recherche en Informatique de Toulouse, Toulouse
University, France. He holds a postgraduate spe-
cialization in Applied Mathematics and Computer
Science from the University of Orléans, France.
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