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Joint Prostate Cancer Detection and Gleason Score

Prediction in mp-MRI via FocalNet
Ruiming Cao, Member, IEEE, Amirhossein Mohammadian Bajgiran, Sohrab Afshari Mirak, Sepideh Shakeri,

Xinran Zhong, Dieter Enzmann, Steven Raman, and Kyunghyun Sung

Abstract—Multi-parametric MRI (mp-MRI) is considered the
best non-invasive imaging modality for diagnosing prostate can-
cer (PCa). However, mp-MRI for PCa diagnosis is currently
limited by the qualitative or semi-quantitative interpretation cri-
teria, leading to inter-reader variability and a suboptimal ability
to assess lesion aggressiveness. Convolutional neural networks
(CNNs) are a powerful method to automatically learn the discrim-
inative features for various tasks, including cancer detection. We
propose a novel multi-class CNN, FocalNet, to jointly detect PCa
lesions and predict their aggressiveness using Gleason score (GS).
FocalNet characterizes lesion aggressiveness and fully utilizes
distinctive knowledge from mp-MRI. We collected a prostate
mp-MRI dataset from 417 patients who underwent 3T mp-
MRI exams prior to robotic-assisted laparoscopic prostatectomy
(RALP). FocalNet is trained and evaluated in this large study
cohort with 5-fold cross-validation. In the free-response receiver
operating characteristics (FROC) analysis for lesion detection,
FocalNet achieved 89.7% and 87.9% sensitivity for index lesions
and clinically significant lesions at 1 false positive per patient,
respectively. For GS classification, evaluated by the receiver
operating characteristics (ROC) analysis, FocalNet received the
area under the curve (AUC) of 0.81 and 0.79 for the classifications
of clinically significant PCa (GS≥3+4) and PCa with GS≥4+3,
respectively. With the comparison to the prospective performance
of radiologists using the current diagnostic guideline, FocalNet
demonstrated comparable detection sensitivity for index lesions
and clinically significant lesions, only 3.4% and 1.5% lower than
highly experienced radiologists without statistical significance.

Index Terms—Prostate cancer, magnetic resonance imaging,
computer-aided detection and diagnosis, convolutional neural
network.

I. INTRODUCTION

THE challenge in diagnosing prostate cancer (PCa) is how

to detect and distinguish indolent PCa from potentially

clinically significant PCa. The current best assessment of

lesion aggressiveness is the use of histologically assigned

Gleason score (GS) [1]. The current diagnosis of PCa in

general medical practice still relies on non-targeted template

driven transrectal ultrasound-guided (TRUS) biopsy, which

results in under-detection of clinically significant PCa [2].

3 Tesla-based multi-parametric MRI (3T mp-MRI) provides
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a powerful combination of anatomical and functional infor-

mation for PCa and plays a pivotal role in the diagnosis

of PCa by reducing unnecessary biopsies [3] and adding

treatment options in active surveillance [4] and focal therapy

[5]. The core components of mp-MRI include T2-weighted

imaging (T2w), diffusion-weighted imaging (DWI), and dy-

namic contrast-enhanced imaging (DCE-MRI), each of which

provides distinct information. Current diagnostic practice for

mp-MRI follows the Prostate Imaging Reporting and Data

System: Version 2 (PI-RADS v2) [6], which evaluates radi-

ologic findings in a qualitative or semi-quantitative manner.

However, PI-RADS v2 still has limited ability to detect and

distinguish between indolent and clinically significant PCa,

with a wide range of sensitivity and specificity [7], mainly

due to inter-reader variability and suboptimal analysis.

Computer-aided diagnosis (CAD) using mp-MRI for PCa is

being actively investigated for lesion detection and classifica-

tion [8]–[22]. The lesion detection approach typically extracts

voxel- and/or region-level features from mp-MRI and predicts

either PCa localization points or lesion segmentation masks.

With recent advances in deep learning, convolutional neural

networks (CNNs) are a powerful tool for image classifica-

tion [23] and segmentation [24]. Recent studies also showed

the feasibility of training CNNs to detect cancer from mp-

MRI. Zhang et al. [25] designed hierarchical coarse-to-fine

CNNs to segment voxel-level tumor masks and suggest biopsy

locations for breast cancer from DCE-MRI. Song et al. [21]

built a patch-based CNN to classify between biopsy-proven

PCa lesion and non-lesion regions of interest (ROIs). Kiraly

et al. [19] proposed to predict voxel-level labels of clinically

significant PCa (GS>6) and non-clinically-significant PCa

(GS≤6) using CNN with two output channels to enable both

detection and classification at the same time.

Interpreting prostate mp-MRI generally requires a high level

of expertise as radiologic findings are qualitative, relying on

T2 morphology and non-quantitative assessment of diffusion

restriction and lesional enhancement [6]. Thus, radiologic find-

ings in one component of mp-MRI are more observable than

in others. Common approaches to utilize multiple components

of mp-MRI in CNNs are to stack them as different imaging

channels (e.g., RGB channels for a color image) [19]–[21],

[26], [27]. This enables CNNs to learn common knowledge

across mp-MRI components from groundtruth annotations but

may fail to learn the distinct information from each component

of mp-MRI. As a result, some features appearing in only

one or certain components of mp-MRI are difficult to be

trained, especially when the number of training data is limited.
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Inspired by the clinical interpretation of prostate mp-MRI [6],

we design the mutual finding loss (MFL) to selectively train

for different imaging components of mp-MRI. MFL identifies

which subset of components would contain more observable

information for a given PCa finding and defines the lesion-

specific training objective as to observe the PCa finding from

only the subset of imaging components.

A stratification of clinically significant PCa becomes im-

portant as differentiating between low- and intermediate/high-

grade PCa is highly correlated with clinical outcomes [4],

[28]. The correlation between mp-MRI and GS has been

studied [10], but to our knowledge, no prior study has explored

the use of mp-MRI to predict fine-grained GS groups via

CNNs. Even though multi-class classification using CNN is

widely available via one-hot encoding, different classes are

usually assumed to be equally distanced, which ignores the

progressiveness of GS groups (e.g., the difference between

low- and intermediate-grade PCa is assumed to be the same as

the difference between low- and high-grade PCa). Instead, we

develop the ordinal encoding for different GS groups to adopt

the lesion aggressiveness relationship into the encoded vectors.

Unlike one-hot encoded vectors, ordinal encoded vectors are

not mutually orthogonal and can suggest for the similarities

and differences between different GS groups.

Recent CAD systems for PCa are generally trained and

validated by using mp-MRI exams with biopsy-confirmed

lesion findings [13], [19]–[21]. However, the biopsy-confirmed

lesion annotations are weighted towards MRI-positive lesions

since biopsy cores are mostly based on MRI-positive findings

(PI-RADS≥3). As PI-RADS≥3 has a limited ability to detect

all PCa lesions [29]–[31], clinically significant lesions can

be missed and multi-focal lesions can be highly underes-

timated at mp-MRI [29], [32], resulting in an overestima-

tion of the performance of the CAD systems. Also, there

exists a significant risk of the inaccurate lesion annotations

since GS between prostate biopsy and radical prostatectomy

specimens is occasionally discordant [33]–[35]. Epstein et

al. reported that more than one-third of the biopsy cases

with GS≤6 were upgraded to GS≥7, and one-fourth of

GS 3+4 in biopsy were downgraded after checking with whole-

mount histopathology [35]. To overcome these limitations, we

use pre-operative mp-MRI exams before undergoing robotic-

assisted laparoscopic prostatectomy (RALP) for our training

and validation. The whole-mount histopathology analysis after

RALP would provide the best definition of the GS groups and

minimize the underestimation of the multi-focal lesions.

Here, we present a novel multi-class CNN, FocalNet, that

jointly detects PCa lesions and predicts their GS. We arrange

GS into five fine-grained GS groups [36], i.e., GS 3+3, GS 3+4,

GS 4+3, GS=8, and GS≥9. FocalNet encodes six labels, the

five GS groups and normal tissue, into ordinal encoded vectors,

and predicts the label for each pixel using mp-MRI. FocalNet

is also designed to selectively train distinctive features in

one or certain imaging components of mp-MRI using mutual

finding loss during the training.

We summarize our contributions as follows. Firstly, we

propose FocalNet, an improved multi-class CNN to jointly

detect PCa lesions and predict their Gleason score groups from

T2w

ADC

Annotate PCa lesions on 

whole-mount histopathology 

into mp-MRI

3T mp-MRI
Radical 

prostatectomy

within 6 months

GS 3+3

GS 3+4

GS 4+3

GS = 8  

GS ≥ 9

Whole-mount specimen

Lesion groundtruth

Fig. 1. Data preparation pipeline. 278 out of 400 prospectively missed (false
negative) lesions were retrospectively identified and annotated in mp-MRI,
referring to whole-mount histopathology. In the shown example, the lesion
in the left anterior (GS 3+4, index lesion) was prospectively missed and
retrospectively identified.

mp-MRI. Secondly, in FocalNet, we design ordinal encoding

to characterize lesion aggressiveness and mutual finding loss

to fully exploit knowledge in the multi-parametric imaging.

Thirdly, to our knowledge, this is the first study that trained

or validated a CNN-based PCa detection and diagnosis system

using lesion findings confirmed with whole-mount histopathol-

ogy in a large study cohort.

This paper is organized as follows: In Section II, we

describe the MRI data and annotation process, the technical

framework for FocalNet, and the experimental setups for pre-

processing, training and validation. Section III presents PCa

lesion detection and GS prediction results. In Section IV,

we discuss potential implications and extensions of FocalNet,

followed by concluding remarks.

II. MATERIALS AND METHODS

A. MRI data

Pre-operative mp-MRI exams from 417 patients who later

underwent RALP were included in the study. Patients with

prior radiotherapy or hormonal therapy were not included.

All imaging was performed on one of the four different

3T scanners (126 patients on Trio, 255 patients on Skyra,

17 patients on Prisma, and 19 patients on Verio; Siemens

Healthcare, Erlangen, Germany) with the standardized clinical

mp-MRI protocol, including T2w and DWI. We excluded the

DCE-MRI for our study because of the limited role in the

current diagnostic practice [6], [31], [37]. We used axial T2w

turbo spin-echo (TSE) imaging and maps of the apparent

diffusion coefficient (ADC) using echo-planar imaging (EPI)

DWI sequence. For T2w, the repetition time (TR) and echo

time (TE) of the T2w TSE were 3800-5040 ms and 101 ms,

respectively. With a 14 cm FOV and a matrix size of 256 ×
205, we acquired and reconstructed T2w TSE images with

0.55 mm × 0.68 mm in-plane resolution and 3 mm through-

plane resolution with no gaps. For DWI, we used TR and TE of

4800 ms and 80 ms. With FOV of 21 cm × 26 cm and matrix

of 94 × 160, DWI images were reconstructed with in-plane
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Lesion 

groundtruth

Fig. 2. The workflow of FocalNet for training and validation. Image registration and intensity normalization are performed with 3D image volumes. As
FocalNet operates with 2D images, the corresponding T2w and ADC slices are grouped and fed into FocalNet for pixel-level predictions.

resolution of 1.6 mm2 and a slice thickness of 3.6 mm. The

ADC maps were obtained by using linear least squares curve

fitting of pixels (in log scale) in the four diffusion-weighted

images against their corresponding b values (0/100/400/800

s/mm2).

The mp-MRI exams were reviewed by three genitouri-

nary (GU) radiologists (10+ years of clinical prostate MRI

reading) as part of the standard clinical care. The findings with

PI-RADS score≥3 were reported and considered to be MRI-

positive findings. The rest of the findings with PI-RADS≤2

were considered to be MRI-negatives in this study.

B. Whole-mount histopathology matching & annotation

As in Fig. 1, the groundtruth of this study was lesion

confirmation on whole-mount histopathology after RALP.

The excised prostate was sliced from apex to base with 4-

5 mm increment at the approximated mp-MRI orientation.

Histopathology examinations of whole-mount specimens were

performed by GU pathologists, blinded to all MRI information.

Later, at least one GU radiologist and one GU pathol-

ogist re-reviewed mp-MRI and histopathology examinations

together at a multidisciplinary meeting scheduled monthly.

Each ROI in MRI was matched to the corresponding location

on the specimen through visual co-registration. MRI-positive

findings were considered to be either true positive if they were

in the same quadrant (left and right, anterior and posterior)

and in the appropriate segment (base, midgland, and apex)

on both mp-MRI and histopathology, or false positive if no

corresponding lesions were found on the histopathology.

After the multidisciplinary meeting, GU radiology re-

search fellows, supervised by GU radiologists, retrospec-

tively reviewed each mp-MRI exam, referring to whole-mount

histopathology, and annotated all MRI-visible lesions. 69.5%

(278 out of 400) of prospectively missed (false negative)

lesions were retrospectively identified in the review and were

annotated. The MRI non-visible lesions were not included in

this study due to the difficulty of the annotation.

Overall, we have annotated 728 lesions, consisting of 286

GS 3+3 lesions, 270 GS 3+4 lesions, 110 GS 4+3 lesions, 30

GS=8 lesions, and 32 GS≥9 lesions. Among these, 93 GS 3+3

lesions, 204 GS 3+4 lesions, 98 GS 4+3 lesions, 26 GS=8

lesions, and 29 GS≥9 lesions were prospectively identified by

radiologists. All annotations were on T2w. The index lesion

was defined as the lesion with the highest GS or the largest

diameter when multiple lesions had the same grade on the

histopathology, and clinically significant lesions were lesions

with GS≥7 [38].

TABLE I
GLEASON SCORE ENCODING FOR MULTI-CLASS CNNS.

Label Class One-hot encoding Ordinal encoding

Non-lesion 0 1 0 0 0 0 0 0 0 0 0 0

GS 3+3 1 0 1 0 0 0 0 1 0 0 0 0

GS 3+4 2 0 0 1 0 0 0 1 1 0 0 0

GS 4+3 3 0 0 0 1 0 0 1 1 1 0 0

GS = 8 4 0 0 0 0 1 0 1 1 1 1 0

GS ≥ 9 5 0 0 0 0 0 1 1 1 1 1 1

C. FocalNet for PCa detection and Gleason score prediction

FocalNet is an end-to-end multi-class CNN to jointly detect

PCa lesions and predict their GS. As shown in Fig. 2, FocalNet

takes the corresponding T2w and ADC slices into two imaging

channels of the input and predicts for the pixel-level labels of

the six classes: non-lesion, GS 3+3, GS 3+4, GS 4+3, GS=8,

and GS≥9. As in Fig. 3, the lesion groundtruth is first con-

verted into a 5-channel groundtruth mask via ordinal encoding,

and FocalNet predicts the groundtruth mask via its backbone

CNN architecture. FocalNet is trained simultaneously by focal

loss (FL) with regard to both T2w and ADC and mutual

finding loss (MFL) for PCa features in either of the imaging

components.

1) Ordinal encoding for Gleason scores: A conventional

multi-class CNN encodes each label into a one-hot vector

and predicts the one-hot vector through the multi-channel

output [23]. The six different labels can be converted into 6-bit

one-hot vectors as in TABLE I. One-hot encoding assumes that

different labels are unrelated to each other, and thus the cross-

entropy loss penalizes misclassifications equally. However, the

progressiveness between different GS, such that the treatment

prognosis of a GS 4+4 PCa is more similar to GS 4+3 than to

GS 3+3 [36], cannot be accounted for in one-hot encoding. In

addition, by dividing lesions into separate classes, the number

of samples in each class is very limited.

We instead convert labels from six classes into 5-bit ordinal

vectors using ordinal encoding [39], [40]. As shown in TA-

BLE I, each bit of an ordinal vector identifies a non-mutually-

exclusive condition, such that the k-th bit indicates whether

the label is from a class greater or equal to k. In this way,

the groundtruth is encoded into a 5-channel mask, e.g., the

first channel is the mask for all lesions, the second channel is

the mask for clinically significant lesions, etc. Then, the CNN

predicts for the encoded mask using the 5-channel output, and

a sigmoid function is applied on top of each output channel

to normalize the output into the prediction probability from 0

to 1. I.e., the first output channel naturally predicts for lesion

detection probabilities.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at  http://dx.doi.org/10.1109/TMI.2019.2901928

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

FL
Focal loss (FL) for 
ordinal encoding

fout = f (IADC, IT2w)

<latexit sha1_base64="/6RWNjRX/VBrEW5bIRUoXRb18ZU="></latexit><latexit sha1_base64="/6RWNjRX/VBrEW5bIRUoXRb18ZU="></latexit><latexit sha1_base64="/6RWNjRX/VBrEW5bIRUoXRb18ZU="></latexit>

CNN

⊗

⊗

L2ADC

L2T2w

L2
T2 w

>L2
ADC

Yes

No

Mutual finding loss (MFL)

⊗

Forward-
propagation

Back-propagation 

from FL

Back-propagation 

from MFL

Element-wise 
product

CNN Backbone CNN

channel 5 
channel 4 

channel 3channel 2channel 1 

GS 3+3

GS 3+4

GS 4+3

GS  = 8  

GS  ≥ 9

Non-lesion 0  0  0  0  0

1  1  1  1  1

1  1  1  1  0

1  1  1  0  0

1  1  0  0  0

1  0  0  0  0

b
it
 5

 

b
it
 4

 

b
it
 3

b
it
 2

b
it
 1

 

Ordinal encoding

Lesion groundtruth
y

<latexit sha1_base64="5+p4EM05xf8KvkLTF81DrRL87QQ=">AAACInicbVDLSsNAFJ3UV019tLp0EyyCq5KIoMuCFtyILdgHNKXMTG/aoZNMmJkIJeQL3Oof+DXuxJXgxzhts7DVCxcO59zLufeQmDOlXffLKmxsbm3vFHft0t7+wWG5ctRRIpEU2lRwIXsEK+AsgrZmmkMvloBDwqFLpjdzvfsEUjERPepZDIMQjyMWMIq1oVqzYbnq1txFOX+Bl4Mqyqs5rFglfyRoEkKkKcdK9T031oMUS80oh8z2EwUxplM8hr6BEQ5BDdLFpZlzZpiREwhpOtLOgv29keJQqVlIzGSI9USta3PyP62f6OB6kLIoTjREdGkUJNzRwpm/7YyYBKr5zABMJTO3OnSCJabahLPiQojgo8y2/Vsw/0m4N14PMUishUz9Rpb6c3dC0kaW2SY+bz2sv6BzUfMMbl1W624eZBGdoFN0jjx0heroDjVRG1EE6Bm9oFfrzXq3PqzP5WjByneO0UpZ3z/2GKNQ</latexit><latexit sha1_base64="5+p4EM05xf8KvkLTF81DrRL87QQ=">AAACInicbVDLSsNAFJ3UV019tLp0EyyCq5KIoMuCFtyILdgHNKXMTG/aoZNMmJkIJeQL3Oof+DXuxJXgxzhts7DVCxcO59zLufeQmDOlXffLKmxsbm3vFHft0t7+wWG5ctRRIpEU2lRwIXsEK+AsgrZmmkMvloBDwqFLpjdzvfsEUjERPepZDIMQjyMWMIq1oVqzYbnq1txFOX+Bl4Mqyqs5rFglfyRoEkKkKcdK9T031oMUS80oh8z2EwUxplM8hr6BEQ5BDdLFpZlzZpiREwhpOtLOgv29keJQqVlIzGSI9USta3PyP62f6OB6kLIoTjREdGkUJNzRwpm/7YyYBKr5zABMJTO3OnSCJabahLPiQojgo8y2/Vsw/0m4N14PMUishUz9Rpb6c3dC0kaW2SY+bz2sv6BzUfMMbl1W624eZBGdoFN0jjx0heroDjVRG1EE6Bm9oFfrzXq3PqzP5WjByneO0UpZ3z/2GKNQ</latexit><latexit sha1_base64="5+p4EM05xf8KvkLTF81DrRL87QQ=">AAACInicbVDLSsNAFJ3UV019tLp0EyyCq5KIoMuCFtyILdgHNKXMTG/aoZNMmJkIJeQL3Oof+DXuxJXgxzhts7DVCxcO59zLufeQmDOlXffLKmxsbm3vFHft0t7+wWG5ctRRIpEU2lRwIXsEK+AsgrZmmkMvloBDwqFLpjdzvfsEUjERPepZDIMQjyMWMIq1oVqzYbnq1txFOX+Bl4Mqyqs5rFglfyRoEkKkKcdK9T031oMUS80oh8z2EwUxplM8hr6BEQ5BDdLFpZlzZpiREwhpOtLOgv29keJQqVlIzGSI9USta3PyP62f6OB6kLIoTjREdGkUJNzRwpm/7YyYBKr5zABMJTO3OnSCJabahLPiQojgo8y2/Vsw/0m4N14PMUishUz9Rpb6c3dC0kaW2SY+bz2sv6BzUfMMbl1W624eZBGdoFN0jjx0heroDjVRG1EE6Bm9oFfrzXq3PqzP5WjByneO0UpZ3z/2GKNQ</latexit>

Encoded mask

y ⊗ fout

<latexit sha1_base64="tx47DPxmVUlDl2a9RhzCiMuLZiI="></latexit><latexit sha1_base64="tx47DPxmVUlDl2a9RhzCiMuLZiI="></latexit><latexit sha1_base64="tx47DPxmVUlDl2a9RhzCiMuLZiI="></latexit>

y ⊗ fADC

<latexit sha1_base64="sl+8YOkmtlRAHw6JtbxVb8qOqg4="></latexit><latexit sha1_base64="sl+8YOkmtlRAHw6JtbxVb8qOqg4="></latexit><latexit sha1_base64="sl+8YOkmtlRAHw6JtbxVb8qOqg4="></latexit>

y ⊗ fT2w
<latexit sha1_base64="gKHQgbZFQtLpKleDnGSouQ5I0zo="></latexit><latexit sha1_base64="gKHQgbZFQtLpKleDnGSouQ5I0zo="></latexit><latexit sha1_base64="gKHQgbZFQtLpKleDnGSouQ5I0zo="></latexit>

⊗

IADC

<latexit sha1_base64="90ayAkC62s+8tn1R4EDbMJ1cvEM="></latexit><latexit sha1_base64="90ayAkC62s+8tn1R4EDbMJ1cvEM="></latexit><latexit sha1_base64="90ayAkC62s+8tn1R4EDbMJ1cvEM="></latexit>

IADC

<latexit sha1_base64="90ayAkC62s+8tn1R4EDbMJ1cvEM="></latexit><latexit sha1_base64="90ayAkC62s+8tn1R4EDbMJ1cvEM="></latexit><latexit sha1_base64="90ayAkC62s+8tn1R4EDbMJ1cvEM="></latexit>

IT2w

<latexit sha1_base64="jcMzJxqJoSL+IupncOWFZdJo0qs="></latexit><latexit sha1_base64="jcMzJxqJoSL+IupncOWFZdJo0qs="></latexit><latexit sha1_base64="jcMzJxqJoSL+IupncOWFZdJo0qs="></latexit>

IT2w

<latexit sha1_base64="jcMzJxqJoSL+IupncOWFZdJo0qs="></latexit><latexit sha1_base64="jcMzJxqJoSL+IupncOWFZdJo0qs="></latexit><latexit sha1_base64="jcMzJxqJoSL+IupncOWFZdJo0qs="></latexit>

IBlank

<latexit sha1_base64="A/SqbKivBseLbPnzMwGHoTeR09Y="></latexit><latexit sha1_base64="A/SqbKivBseLbPnzMwGHoTeR09Y="></latexit><latexit sha1_base64="A/SqbKivBseLbPnzMwGHoTeR09Y="></latexit>

IBlank

<latexit sha1_base64="A/SqbKivBseLbPnzMwGHoTeR09Y="></latexit><latexit sha1_base64="A/SqbKivBseLbPnzMwGHoTeR09Y="></latexit><latexit sha1_base64="A/SqbKivBseLbPnzMwGHoTeR09Y="></latexit>

MFL

fADC = f (IADC, Iblank)

<latexit sha1_base64="TFlvils7ihPzyywe9Q4BIDCPRsk=">AAACanicbVBdSxtBFJ1s60dXq4k+iS9Do6BQZFcEfREUlepDqQWjQjaEmcndZMjszDJztxCW/Un+Gp8K9R/0R3Ty8aCxFy4czrmXc+/huZIOo+h3LfjwcWFxaflTuLL6eW293ti4d6awAlrCKGMfOXOgpIYWSlTwmFtgGVfwwIcXY/3hF1gnjb7DUQ6djPW1TKVg6Klu/VvaLZOM4cBm5fnlRVXRU5omClLcozdz0tfXDFdMD/14YmV/gPvdejM6iCZF34N4BppkVrfdRm0l6RlRZKBRKOZcO45y7JTMohQKqjApHORMDFkf2h5qloHrlJOPK7rrmR5NjfWtkU7Y1xsly5wbZdxPju9189qY/J/WLjA96ZRS5wWCFlOjtFAUDR3HR3vSgkA18oAJK/2tVAyYZQJ9yG9cODeqV4Vhcgn+PwvfvdePHCxDY8vkqpomyXl5VVWhjy+eD+s9uD88iD3+edQ8i2ZBLpNt8oXskZgckzNyTW5JiwjyRJ7JH/JS+xtsBFvB9nQ0qM12NsmbCnb+ARo9vDU=</latexit><latexit sha1_base64="TFlvils7ihPzyywe9Q4BIDCPRsk=">AAACanicbVBdSxtBFJ1s60dXq4k+iS9Do6BQZFcEfREUlepDqQWjQjaEmcndZMjszDJztxCW/Un+Gp8K9R/0R3Ty8aCxFy4czrmXc+/huZIOo+h3LfjwcWFxaflTuLL6eW293ti4d6awAlrCKGMfOXOgpIYWSlTwmFtgGVfwwIcXY/3hF1gnjb7DUQ6djPW1TKVg6Klu/VvaLZOM4cBm5fnlRVXRU5omClLcozdz0tfXDFdMD/14YmV/gPvdejM6iCZF34N4BppkVrfdRm0l6RlRZKBRKOZcO45y7JTMohQKqjApHORMDFkf2h5qloHrlJOPK7rrmR5NjfWtkU7Y1xsly5wbZdxPju9189qY/J/WLjA96ZRS5wWCFlOjtFAUDR3HR3vSgkA18oAJK/2tVAyYZQJ9yG9cODeqV4Vhcgn+PwvfvdePHCxDY8vkqpomyXl5VVWhjy+eD+s9uD88iD3+edQ8i2ZBLpNt8oXskZgckzNyTW5JiwjyRJ7JH/JS+xtsBFvB9nQ0qM12NsmbCnb+ARo9vDU=</latexit><latexit sha1_base64="TFlvils7ihPzyywe9Q4BIDCPRsk=">AAACanicbVBdSxtBFJ1s60dXq4k+iS9Do6BQZFcEfREUlepDqQWjQjaEmcndZMjszDJztxCW/Un+Gp8K9R/0R3Ty8aCxFy4czrmXc+/huZIOo+h3LfjwcWFxaflTuLL6eW293ti4d6awAlrCKGMfOXOgpIYWSlTwmFtgGVfwwIcXY/3hF1gnjb7DUQ6djPW1TKVg6Klu/VvaLZOM4cBm5fnlRVXRU5omClLcozdz0tfXDFdMD/14YmV/gPvdejM6iCZF34N4BppkVrfdRm0l6RlRZKBRKOZcO45y7JTMohQKqjApHORMDFkf2h5qloHrlJOPK7rrmR5NjfWtkU7Y1xsly5wbZdxPju9189qY/J/WLjA96ZRS5wWCFlOjtFAUDR3HR3vSgkA18oAJK/2tVAyYZQJ9yG9cODeqV4Vhcgn+PwvfvdePHCxDY8vkqpomyXl5VVWhjy+eD+s9uD88iD3+edQ8i2ZBLpNt8oXskZgckzNyTW5JiwjyRJ7JH/JS+xtsBFvB9nQ0qM12NsmbCnb+ARo9vDU=</latexit>

fT2w = f (Iblank, IT2w)
<latexit sha1_base64="hiPkNK6ymua8n7ltSS7EzdkUi5c=">AAACanicbVDbShxBEO2dXDRjjKt5Cr40WQMGRGYWQV8EIRH1IcSAq8LOsnT31uw229M9dNckLEN/Ur4mT4L+QT4ivReIt4KCwzlVnKrDSyUdJslNI3rx8tXrpeU38crb1XdrzfWNS2cqK6AjjDL2mjMHSmrooEQF16UFVnAFV3z8Zapf/QTrpNEXOCmhV7ChlrkUDAPVb57k/TorGI5sUV+0f3lPD2meKchxm579l7hieuz9zn1uPp5ZORzh536zlewms6JPQboALbKo8/56YyUbGFEVoFEo5lw3TUrs1cyiFAp8nFUOSibGbAjdADUrwPXq2ceefgrMgObGhtZIZ+z9jZoVzk0KHian17rH2pR8TutWmB/0aqnLCkGLuVFeKYqGTuOjA2lBoJoEwISV4VYqRswygSHkBy6cGzXwcZx9hfCfhW/B63sJlqGxdXbs5zlyXh97H4f40sdhPQWX7d004B97raNkEeQy2SQfyTZJyT45IqfknHSIIL/JH3JL7hp/o43oQ7Q5H40ai5335EFFW/8A6k68nw==</latexit><latexit sha1_base64="hiPkNK6ymua8n7ltSS7EzdkUi5c="></latexit><latexit sha1_base64="hiPkNK6ymua8n7ltSS7EzdkUi5c="></latexit>

Legend

Fig. 3. FocalNet for joint PCa detection and Gleason score prediction. The
lesion groundtruth is converted into a 5-channel groundtruth mask using
ordinal encoding. The CNN predicts the mask via its multi-channel pixel-level
output. Focal loss (FL) trains the CNN with respect to fout using both ADC
and T2w inputs. Meanwhile, mutual finding loss (MFL) computes L2ADC

and L2T2w in the forward-propagation and trains the imaging component of
the smaller L2.

Given the predicted ordinal encoded vector for a pixel,

ŷ =
(

ŷ1, ŷ2, ŷ3, ŷ4, ŷ5
)

∈ {0, 1}, the predicted class is the

highest class k such that ŷi = 1 ∀i ≤ k, or non-lesion if

ŷi = 0 ∀i. The predicted class is written alternatively as

max1≤k≤5

(

∏k
i=1 ŷi

)(

∑k
i=1 ŷi

)

.

The ordinal encoding characterizes the relationships be-

tween different labels. E.g., GS=8 shares 4 bits in common

with GS 4+3, while only 1 bit with non-lesion. The common-

ness and differences between labels are represented as the

shared and distinct bits in ordinal vectors. As a result, ordinal

encoding allows the multi-class CNN to learn the commonness

of all lesions and the distinctions between different GS at the

same time. Besides, even though ordinal encoding does not

increase the number of samples directly, it groups different

labels so that each channel has a larger joint population of

lesions compared with one-hot encoding.

2) Focal loss for ordinal encoding: PCa lesion and

non-lesion labels are very imbalanced in the pixel-level

groundtruth. In our dataset, non-lesion pixels outnumber lesion

pixels by 62:1. After ordinal encoding for GS, the positive bit

ratio of the groundtruth mask is only 0.77%. As a result, by

accounting for lesion and non-lesion pixels evenly, the cross-

entropy loss is occupied by the overwhelming amount of non-

lesion terms, many of which are from easily predicted non-

lesion pixels. Lesion-related terms, on the other hand, have

little emphasis.

Alternatively, we deploy focal loss (FL) [41] to balance the

learning between lesion and non-lesion pixels. FL adds a focal

weight of (1− pT )
2

to the binary cross-entropy loss, where

pT is the prediction probability for the true class. Thereby,

true predictions with high confidence contribute much less to

the total loss [41]. A common scenario during the training is

that a clear non-lesion pixel (e.g., with high ADC intensity, or

outside of prostate gland) receives 0.95 prediction probability

for being non-lesion, which contributes 0.022 to the standard

cross-entropy loss while only 5.6 × 10−5 to FL. By down-

weighting easily predicted pixels, the training can be focused

on suspicious or hard-to-predict pixels.

FL is further adapted to the ordinal encoding. For a given

pixel, let ~y =
(

y1, y2, y3, y4, y5
)

∈ {0, 1} be the groundtruth

encoded vector corresponding to the 5-channel prediction

probability vector ~p =
(

p1, p2, p3, p4, p5
)

∈ [0, 1]. Then, the

FL for each pixel is

FL (~p) = q (~p)

5
∑

i=1

−αyi log (pi)−(1− α) (1− yi) log (1− pi) .

(1)

q is the focal weight defined as the largest margin between

the prediction probability and the groundtruth among the five

channels, such that

q (~p) = max
1≤j≤5

yj (1− pj)
2
+ (1− yj) p

2
j . (2)

In this way, high-grade lesions receive large focal weights if

they are missed or downgraded, so that high-grade lesions can

receive better attention for lesion detection as well.

Moreover, α is a constant that controls the penalty between

false negative and false positive predictions. We find it is

desirable to have a smaller penalty for false positives in PCa

detection, since benign non-lesion findings, such as benign

prostatic hyperplasia and benign adenomas, sometimes have a

similar appearance to PCa lesions [42]. Consequently, a large

penalty for false positives hinders the learning of true positive

PCa features. Besides, a max spatial pooling filter is applied

to the focal weight q before the calculation of FL, in order

to maintain consistent weights for positive and negative pixels

around lesion boundaries. In our practice, α is set to 0.75 for

better sensitivity, and the max pooling filter is sized to 3× 3.

3) Mutual finding loss for multi-parametric imaging:

During the interpretation of prostate mp-MRI, a radiologic

finding is initially identified from a single component and

later consolidated or rejected after referencing to other imaging

components. The PI-RADS v2 score is then assessed primarily

based on the finding’s suspiciousness in the specific imaging

component which describes the finding clearly [6]. Hence, it

is desirable for a CAD system to also determine PCa lesions

from an individual imaging component as well as from the

correspondence between multiple components of mp-MRI.

The underlying challenge is that different components of

mp-MRI capture distinct information and only a portion of
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the information is shared across all components. As a result,

findings observable in one component may be partially-/non-

observable in the others. During the end-to-end training, a

CNN with stacked imaging components can effectively learn

the common features across components, but there is no

mechanism to train for features observable only in a specific

imaging component.

Mutual finding loss (MFL) is designed to identify the

specific imaging component that contains distinct PCa fea-

tures and train for the PCa features in the identified compo-

nent. Firstly, given a training slice, MFL determines whether

T2w or ADC alone can provide more information for the

groundtruth lesion. As shown in Fig. 3, T2w and ADC are

individually passed into the same CNN with a blank image

with all zeros to substitute for the other component. We

compare the CNN prediction output from ADC or T2w alone,

fADC = f (IADC, Iblank), fT2w = f (Iblank, IT2w), with the

output using both components, fout = f (IADC, IT2w). The

component resulting in a prediction output more similar to

fout on the groundtruth lesion region is considered to contain

more PCa features. In this way, MFL selects a component to

train for each slice.

Then, MFL trains the CNN so that lesion findings can

be equivalently observed from the selected imaging compo-

nent alone. Specifically, MFL minimizes the L2-distance on

groundtruth mask y between fout and the output using the

selected component. I.e., L2ADC = ‖y ⊗ (fout − fADC)‖
2

or L2T2w = ‖y ⊗ (fout − fT2w)‖
2, where ⊗ is the element-

wise product. The L2-distance is calculated on the groundtruth

lesion region while not on non-lesion regions, as MFL aims to

train for PCa features. Since non-lesion regions are more likely

to have the appearance similar to lesions from the observation

of a single component than from both components, enforcing

fADC or fT2w to have the same non-lesion finding of fout
may counteract the training for PCa features. Moreover, fout is

utilized as a “soft” and adaptive truth reference to train for the

specific component, compared with the groundtruth y. When

the CNN cannot detect a barely visible lesion even with both

components, fout does not expect the CNN to learn the lesion

using a single imaging component. Conversely, the CNN is

trained for the certain PCa features in a single component if

a lesion is clearly detected using both components.

As shown in Fig. 3, the process of MFL is summarized into

a loss term for the end-to-end learning such that

MFL =
1

N
min{L2ADC, L2T2w}, (3)

where N is the total number of pixels of an image.
4) FocalNet training: FocalNet is trained by the combined

loss from FL and MFL,

L = E~p∼S(fout)FL (~p) + λ ·MFL, (4)

where S is the sigmoid function and λ = 1
positive bit ratio

is a

constant weight to balance between FL and MFL. Besides,

as in Fig. 3, the orange arrows indicate the back-propagation

paths of FL, and the red arrows are back-propagation paths of

MFL. MFL does not pass the gradient to fout to train with

respect to both imaging components, since fout serves as a

truth reference for fADC or fT2w in MFL.

D. Pre-processing & Training

1) Registration: ADC images were registered to T2w im-

ages via rigid transformation using scanner coordinate in-

formation, as in [11]. Since ADC and T2w sequences are

temporally close to each other in our scanning protocol, we

found minimal patient motion between ADC and T2w. Hence,

as suggested in [14], we did not utilize additional non-rigid

registration. After the registration, for each patient, an 80 mm

× 80 mm region centered on the prostate was identified

manually and later resized to 128 × 128 pixels [19].

2) Intensity normalization & variation: There are large

intensity variations between mp-MRI exams with and without

the usage of the endorectal coil, and, as a result, the com-

monly used normalization via histogram [20] cannot work

consistently. Instead, we clip the T2w intensity value by

a lower threshold with the intensity of air and an upper

threshold based on the intensity of bladder since 1) bladder

is easy to locate programmatically, and 2) the intensity of

bladder depends on water and is relatively consistent across

patients. Then, we linearly normalize the clipped T2w intensity

into [0, 1] using the lower and upper thresholds. Moreover,

as ADC is quantitative imaging and its intensity value is

indicative of lesion detection and classification [43], [44],

we clip ADC intensity by patient-independent thresholds and

normalize to [0, 1]. During the training, T2w intensity variation

is applied to improve the CNN robustness to variable image

intensity caused by the endorectal coil in some scans [45].

The T2w upper-intensity threshold is randomly fluctuated in

the estimated range that PCa lesions are detectable after the

intensity normalization, which is empirically from -15% to

+20%.

3) Implementations: The backbone CNN architecture of

FocalNet is implemented using Deeplab [46] with the 101-

layer deep residual network [47] on 2D image inputs. In

the preliminary experiment, we also tested U-Net [45] as

the backbone CNN, but the training with U-Net commonly

failed in early stages due to the model diverging, presumably

caused by the incompatibility between FL and U-Net skip con-

nections. Furthermore, pre-trained CNN weights from object

classification task are applied as a weight initialization [48].

The total loss is optimized by stochastic gradient descent

with momentum 0.9 and L2-regularizer of weight 0.0001.

The learning rate starts at 0.001 with 0.7 decay every 2000

steps. The CNN is trained for 200 epochs with batch size

16. In addition to the T2w intensity variation, common image

augmentations, including image shifting, scaling, and flipping,

are also applied during the training. We did not apply image

rotation, as a small angle rotation creates blurriness during

interpolation. The image augmentations are performed for each

batch of the training images and not for the validation images.

The image registration is implemented using the statistical

parametric mapping toolbox [49], and the pre-processing steps

take around one minute for the images of each case. FocalNet

is implemented using TensorFlow machine learning framework

(Google; Mountain View, CA) [50]. The average training time

is 3-4 hours for each fold using a NVIDIA Titan Xp GPU

with 12GB memory, and the prediction is relatively quick,
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about 0.5-1 second for each patient, due to the non-iterative

nature of CNNs.

E. Validation

1) Cross-validation: We train and validate this study using

5-fold cross-validation. Each fold consists of 333 or 334

training cases and 84 or 83 cases for validation. In both

training and validation, only annotated slices are included as

in [19], in order to minimize the chance for miss-annotated

lesions. Each case contains 2 to 7 slices, and each fold of

training and validation sets has around 1400 and 350 slices,

respectively.

2) Lesion localization: For PCa detection, we extract lesion

localization points from CNN pixel-level detection output as

in [13], [51]. For each case, we find 2D local maxima from the

detection output of the slices. The trade-off between detection

sensitivity and false detections is controlled by thresholding

on the detection probabilities of the local maxima.

3) FROC for lesion detection: The lesion detection perfor-

mance is evaluated through free-response receiver operating

characteristics (FROC) analysis due to PCa’s multi-focality

[13], [20]. FROC measures the lesion detection sensitivity

versus the number of false positives per patient. True pos-

itive detections are localized points in or within 5 mm of

lesion ROIs since PCa lesion diameters on the whole-mount

specimen are roughly 10 mm greater than the corresponding

ROIs in mp-MRI [52]. False positive detections are localized

points that are not true positive detections. Since our lesion

groundtruth is annotated in 2D slices without the consideration

of the 3D lesion volume, a localized point must be in the

same slice of an ROI to be considered as a true detection.

Lesion detection sensitivity is the number of detected lesions

divided by the total number of visible lesions, including

both the prospectively identified lesions and the prospectively

missed lesions identified in the retrospective review described

in Sec. II-B. Because of the availability of whole-mount

histopathology, the definition of true or false detection is more

accurate than the studies only using biopsy cores.

Moreover, the lesion detection performance is further stud-

ied in fine-grained lesion groups as they have different de-

tectabilities, i.e., FROC for lesion detection of each specific GS

group. Under this setting, lesion detection sensitivity considers

only lesions in a specific GS group. Lesions with GS=8 and

GS≥9 are grouped together since 1) either of them have

very limited quantity in each fold of validation, and 2) the

difference between their treatment is minimal.

4) ROC for Gleason score prediction: The GS prediction

is evaluated by receiver operative characteristic (ROC) analy-

sis. We group the multi-class classification into four binary

classification tasks [15]: 1) GS≥7 vs. GS<7, 2) GS≥4+3

vs. GS≤3+4, 3) GS≥8 vs. GS<8 and 4) GS≥9 vs. GS<9.

A voxel-level ROC is assessed for each task. Specifically, to

mimic biopsy setting, twelve detection voxels were sampled

for each case by finding the localized points as in Sec. II-E3.

In a joint model for detection and classification, this setting

evaluates classification performance without being affected by

lesion misdetection, since if a lesion is completely missed by
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Fig. 4. From top to down shows T2w images, ADC images, and whole-
mount specimens. Lesion detection points from FocalNet are shown as the
orange cross signs. Groundtruth lesion contours overlay on T2w images with
the colors corresponding to their Gleason score groups.

the model, the classification result for the lesion is meaningless

as well.

5) Comparison to radiologists: We compare FocalNet with

the prospective clinical performance of radiologists for lesion

detection. Radiologist performance is assessed on the entire

417 cases grouped by the five validation sets. Radiologist’s

findings were determined to be true or false positives as

described in Sec. II-B. The sensitivity is calculated on the

number of true positive findings versus the total number of

MRI-visible lesions.

III. RESULTS

A. Baseline methods

Deeplab, U-Net-Mult, and U-Net-Sing are the three baseline

methods in this study. Deeplab [46] is the base model of

FocalNet, which has the same backbone CNN architecture of

FocalNet with one-hot encoding for six classes, i.e., five GS

groups and non-lesion. The same pre-trained weight initial-

ization is applied for Deeplab as for FocalNet. U-Net [45] is

a popular CNN architecture for various biomedical imaging

segmentation tasks. Multi-class U-Net (U-Net-Mult) is trained

to detect and classify lesions using one-hot encoding as in

Deeplab. Single-class U-Net (U-Net-Sing) is trained for a

simplified task to detect lesions only, regardless of their GS. To

enable a fair comparison, the training and validation workflows

in Fig. 2, consisting of image pre-processing, intensity nor-

malization & variation and image augmentation procedures,

are applied equally to all methods. Under the cross-validation

setting, the p-values are obtained by two-sample Welch’s t-

test, with the alpha level adjusted by Bonferroni correction

for multiple comparisons.
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(a) Index lesions (b) Clinically significant lesions (c) All lesions

Fig. 5. FROC analysis for detection sensitivity on index lesions, clinically significant lesions, and all lesions, based on 5-fold cross-validation. The number of
false positives per patient (x-axis) is shown on log-scale. The transparent areas are 95% confidence intervals estimated by two times of the standard deviation.
The green markers indicate radiologist’s performance with a 95% confidence intervals also estimated by two times of the standard deviation.

TABLE II
FALSE POSITIVES PER PATIENT (FP) AT GIVEN LESION DETECTION SENSITIVITY (SEN). AVG±STD.

Index lesions Clinically significant lesions All lesions

FP@Sen80% FP@Sen90% FP@Sen80% FP@Sen90% FP@Sen60% FP@Sen80%

U-Net-Mult 1.194±0.387 1.741±0.491 1.386±0.363 2.150±0.596 1.384±0.411 3.525±0.412

U-Net-Sing 1.161±0.373 1.613±0.260 1.211±0.202 1.753±0.550 1.287±0.389 2.982±0.184

Deeplab 1.375±0.401 2.201±0.637 1.454±0.427 2.442±0.802 1.553±0.459 3.698±1.044

FocalNet 0.610±0.246 1.015±0.369 0.651±0.149 1.130±0.345 0.804±0.210 2.296±0.608

TABLE III
FALSE POSITIVES PER PATIENT (FP) AT GIVEN LESION DETECTION SENSITIVITY (SEN) FOR EACH SPECIFIC GLEASON SCORE GROUP. AVG±STD.

GS 3+3 GS 3+4 GS 4+3 GS≥8

FP@Sen60% FP@Sen70% FP@Sen80% FP@Sen90% FP@Sen80% FP@Sen90% FP@Sen80% FP@Sen90%

U-Net-Mult 1.651±0.514 2.161±0.675 1.189±0.316 1.738±0.822 0.122±0.109 0.284±0.258 0.042±0.028 0.097±0.104

U-Net-Sing 1.450±0.273 1.974±1.135 0.860±0.236 1.585±1.476 0.111±0.096 0.230±0.194 0.078±0.091 0.210±0.143

Deeplab 1.410±0.806 2.458±1.132 1.131±0.335 1.821±0.500 0.273±0.112 0.399±0.324 0.061±0.020 0.244±0.186

FocalNet 1.211±0.483 1.763±0.631 0.577±0.180 0.899±0.779 0.071±0.108 0.231±0.143 0.035± 0.018 0.055±0.065

Fig. 6. FROC analysis for detection sensitivity of FocalNet for each specific
Gleason score group. Transparent areas are 95% confidence intervals estimated
by two times of the standard deviation. The results of baseline methods are
reported in TABLE III.

B. Lesion detection

Fig. 5 shows the FROC analysis for index lesions, clinically

significant lesions, and all lesions, respectively, and examples

for lesion detection are shown in Fig. 4. As in TABLE II,

FocalNet achieved 90% sensitivity for index lesion at the

cost of 1.02 false positives per patient, while U-Net-Sing

and Deeplab triggered 54.3% and 116.8% more false de-

tections, respectively, for the same sensitivity. Furthermore,

as in Fig. 5b, FocalNet detected 87.9% clinically significant

lesions at 1 false positive per patient, outperforming the

best baseline, U-Net-Sing, by 11.1%. The partial area under

the curve between 0.01 to 1 and 0.1 to 3 false positives

per patient for FocalNet are 0.685±0.056 and 2.570±0.101,

respectively, which are higher than U-Net-Sing (0.596±0.061,

2.402±0.106). Moreover, as in Fig. 5c, the sensitivity for all

PCa lesions detection is 64.4% at 1 false positive per patient,

while U-Net-Sing required 1.65 false positives per patient for

the same sensitivity. FocalNet reached its maximum sensitivity

of 89.3% at 4.64 false positives per patient, in comparison to

U-Net-Sing’s maximum sensitivity of 84.7% at similar false

positives per patient.

The radiologist performance is shown in Fig. 5 as green

markers. Radiologists achieved 83.9% sensitivity for index
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(a) GS≥7 vs. GS<7 (b) GS≥4+3 vs. GS≤3+4

(c) GS≥8 vs. GS<8 (d) GS≥9 vs. GS<9

Fig. 7. ROC analysis for Gleason score classification. Transparent areas are
95% confidence intervals estimated by two times of the standard deviation.
U-Net-Sing is not in this comparison since U-Net-Sing does not classify for
Gleason scores.

lesions, 80.7% sensitivity for clinically significant lesions, and

61.8% sensitivity for all lesions, with 0.62 false positives per

patient. The radiologist detection sensitivity for index lesions,

clinically significant lesions, and all lesions is, respectively,

3.4%, 1.5%, and 6.2% higher than FocalNet at the same false

positives per patient.

Lesion detection sensitivity for lesions of each specific GS

group is reported in Fig. 6 and TABLE III. Both FocalNet

and baseline methods had high sensitivity for lesions with

GS≥4+3. FocalNet reached 95.3% and 96.8% sensitivity for

GS 4+3 and GS≥8 at 0.231 and 0.377 false positives per

patient, respectively. FocalNet outperformed baseline methods

for the detection of GS 3+4 lesions. At 0.5 and 1 false positive

per patient, FocalNet respectively received 76.4% and 91.0%

sensitivity for GS 3+4, which are 7.7% and 6.3% higher than

U-Net-Sing, 15.1% and 16.9% higher than U-Net-Mult, and

16.1% and 14.3% higher than Deeplab.

C. Gleason score prediction

Fig. 7a and Fig. 7b show the ROC analysis for GS≥7 vs.

GS<7 and GS≥4+3 vs. GS≤3+4. FocalNet achieved ROC

area under the curve (AUC) 0.81±0.01 and 0.79±0.01, respec-

tively in 5-fold cross-validation, in comparison to U-Net-Mult

(0.72±0.01 and 0.71±0.03) and Deeplab (0.71±0.02 and

0.70±0.02). FocalNet achieved AUC significantly higher than

U-Net-Mult (p<0.0005) and Deeplab (p<0.01) for clini-

cally significant lesion (GS≥7) classification. However, as

in Fig. 7c and Fig. 7d, both FocalNet and baseline meth-

ods exhibited limited capabilities of classifying GS≥8 vs.

GS<8 and GS≥9 vs. GS<9. FocalNet has ROC AUC

0.67±0.04, and 0.57±0.02 respectively, not significantly dif-

Fig. 8. FROC analysis for the detection of clinically significant lesions using
three different loss combinations during the training: cross-entropy loss (CE),
focal loss (FL), and the combined loss from focal loss and mutual finding
loss (FL+MFL). The number of false positives per patient (x-axis) is shown
on log-scale. The transparent areas are 95% confidence intervals estimated by
two times of the standard deviation.

ferent from U-Net-Mult (0.60±0.03, and 0.60±0.03) and

Deeplab (0.59±0.01, and 0.60±0.04).

D. Loss contribution

We trained FocalNet with different loss combinations to

understand their contributions to PCa detection performance.

Under the same setting, we specifically compared three dif-

ferent losses: cross-entropy loss (CE), focal loss (FL), and

the combined loss from FL and MFL (FL+MFL) described

in II-C4. As shown in Fig. 8, CE had only 62.9% lesion

detection sensitivity at 1 false positive per patient, as the cross-

entropy loss was dominated by non-cancerous pixels during

the training. FL showed its effectiveness for the imbalanced

labels and improved the detection sensitivity by more than

15% from CE in range of 0.05 to 1.42 false positives per

patient. The combination of FL and MFL (FL+MFL) further

improved the lesion detection sensitivity from CE and FL

respectively by 30.3%, 14.2% at 0.5 false positives per patient

and by 25.0%, 8.1% at 1 false positive per patient. We also

noted that the detection performance of CE was marginally

lower than Deeplab reported in Fig. 5b, as the ordinal encoding

strategy caused the labels to become more imbalanced for CE.

E. Image augmentation

As image augmentation is non-trivial for training a CNN

when the number of training data is limited, we compared

three different augmentation strategies in the context of PCa

detection: training without augmentation, with basic augmen-

tation, and with advanced augmentation. The basic augmen-

tation included image shifting, scaling, and flipping, while

the advanced augmentation additionally includes intensity

variation as described in Sec. II-D2. As shown in Fig. 9,

the advanced augmentation strategy became effective as false

positives per patient become higher (>0.24), and the basic

augmentation was ineffective when the number of false posi-

tives per patient was greater than 0.75. The sensitivity with

the advanced augmentation strategy was 9.8% higher than

the one with the basic augmentation at 1 false positive per

patient. This suggests that applying random intensity variation
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Fig. 9. FROC analysis for the detection of clinically significant lesions
under three different augmentation strategies during the training: with no
augmentation, with basic augmentation (image shifting, scaling and flipping),
and with advanced augmentation (basic augmentation + intensity variation).
Transparent areas are 95% confidence intervals estimated by two times of the
standard deviation.

during training improves the detection of hard-to-spot lesions

rather than easy-to-spot lesions. This would be particularly

important when there exist strong intensity variations caused

by the endorectal coil.

IV. DISCUSSION

We compared FocalNet with the prospective clinical per-

formance of radiologists for lesion detection and did not

find differences with statistical significance. The radiologists

following PI-RADS v2 achieved 83.9% and 80.7% sensitivity

for the detection of histopathology-proven index lesions and

clinically significant lesions. FocalNet had slightly lower,

80.5% and 79.2% sensitivity at the same false positives

per patient, which were not significantly different from the

radiologist performance (p=0.53 and p=0.66). Our prostate

mp-MRI exams were interpreted and scored by expert GU

radiologists who have 10+ years of post-fellowship experience

and read more than 1,000 prostate MRI exams yearly. Hence,

the reported radiologist performance is expected to reflect

or to be close to the upper limit of prostate MRI reading

quality under the current guideline. As prostate MRI reading

quality largely varies according to reader’s experience [7],

FocalNet can potentially assist less experienced readers or

augment the PCa detection task for non-experts. In addition,

the direct numerical comparisons between FocalNet and the

radiologist performance may include some bias due to their

different definitions for true and false detection. The true

positives for FocalNet are defined as localized detection points

in or within 5mm of the lesion ROIs, while the true positives

for the radiologist performance are defined as lesions in the

same quadrant and in the appropriate segment, as described

in Sec. II-B. This is mainly because PI-RADS is designed for

the clinical interpretation, not for the specific detection task.

The handling of multi-parametric imaging information was

previously explored. Wang et al. [51] proposed to use sep-

arate CNNs for individual imaging components of mp-MRI

and enforced the consistency between different outputs of

the imaging components. Fidon et al. [53] designed the

ScaleNet block to extract multi-component features and single-

component features. In comparison, MFL does not rely on

the strong assumption of the consistency across all imaging

components. Instead, inspired by the clinical interpretation of

prostate mp-MRI, MFL identifies the most distinctive imaging

features from one or certain components of mp-MRI and

trains the CNN together with FL for both single and multiple

imaging component knowledge at the same time, with minimal

changes to the existing CNNs and no additional parameters to

train.

We demonstrated FocalNet with two imaging components

of mp-MRI. MFL can be extended to multiple imaging com-

ponents, such that

MFL = min
1≤i≤m

‖y ⊗ (fout − fi)‖
2, (5)

where fout is the CNN output with all components, m is the

number of imaging component subsets, and fi is the CNN

output using the i-th subset of imaging components. However,

each additional imaging component will require extra GPU

memory and create considerable computation overhead during

the training, since every imaging component subset requires

one forward-propagation of the CNN for the calculation of

MFL as shown in Fig. 3. It is hence impractical to account for a

large number of imaging components. An alternative approach

to reducing the computational cost would be to utilize pre-

determined combinations of imaging components, similar to

PI-RADS v2 [6], and to consider only these as possible subsets

of imaging components to train with MFL.

Furthermore, FocalNet can be adapted for the PCa lesion

segmentation task [8]. As the first output channel of the

FocalNet predicts for lesion vs. non-lesion, additional post-

processing methods (e.g., simple thresholding, fully-connected

conditional random field [54], etc.) can be applied on the

predicted probabilities for the lesion segmentation.

We used a 2D CNN instead of a 3D CNN for prostate mp-

MRI since 1) the imaging is non-isotropic in our protocol, 2)

3D PCa lesion annotations are error-prone due to the difficulty

of prostate mp-MRI interpretation, and 3) a 3D CNN has

more parameters and thus requires more training samples.

Nevertheless, FocalNet is not limited to 2D CNNs. In some

other domains (e.g., brain imaging), 3D CNNs may be more

suitable for lesion detection or segmentation as 3D CNNs can

fully benefit from the volumetric spatial information.

FocalNet can be further improved by combining the voxel-

level predictions with a region-level GS classifier. Similar

to previous works [12], [15], we can build the region-level

classification models to classify GS for candidate regions

provided by the output from FocalNet’s lesion detection. This

hybrid approach can potentially improve the GS classification

performance since region-based classifiers provide additional

robustness to pixel-level classifications.

The prediction of fine-grained GS groups is an early attempt

to apply multi-class CNN models to explore the correlation

between mp-MRI and PCa aggressiveness. The ordinal encod-

ing for GS is used under the assumption that different PCa

aggressiveness on microscopic tumor structure exhibit both

similarities and distinctions in mp-MRI as suggested by [10],

[43]. Further study is needed to consolidate the correlation

between mp-MRI and PCa aggressiveness, particularly with

available molecular subtypes of PCa [55].
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The accurate groundtruth lesion annotation is one of the

key challenges for PCa CAD systems. Many studies used

mp-MRI exams with biopsy-confirmed lesion findings as the

groundtruth [8], [14], [17], which could potentially include

some inaccuracies because of the discrepancy between prostate

biopsy and radical prostatectomy in histologic findings. Re-

cently, the ProstateX Challenge [13] has attempted to improve

the inaccurate lesion annotations by using MR-guided biopsy

as the groundtruth. This will reduce the chances of lesion

misdetection and GS upgrading/downgrading due to the biopsy

needle misplacement, but the MR-guided biopsy confirmations

may still include the inaccurate histologic finding [33] and do

not provide the information of the exact shape, location, and

size of the lesions. Here, we annotated lesions based on whole-

mount histopathology specimens from radical prostatectomy,

providing the most accurate lesion characterizations.

Our study did not include MRI non-visible lesions because

1) they are difficult to annotate via visual co-registration from

whole-mount histopathology, and 2) it is hard to confirm

whether the imaging plane sufficiently contains the lesion

information at the time of MRI scan. Future study may

investigate rigid registration between whole-mount slices and

mp-MRI imaging, which enables a direct correlation between

histopathology and mp-MRI. The discovery of lesions not

detectable by human eyes from mp-MRI can further extend

the utility of machine learning in clinical practice.

In conclusion, we proposed a novel multi-class CNN, Focal-

Net, consisting of mutual finding loss to fully utilize distinctive

knowledge from multi-parametric MRI and ordinal encoding

to preserve the progressiveness between labels in a multi-class

CNN. We used FocalNet to jointly detect prostate cancer and

predict the fine-grained Gleason score groups. We trained and

validated FocalNet under 5-fold cross-validation using 417

pre-operative mp-MRI exams with annotations of all MRI-

visible PCa lesions on whole-mount histopathology. For the

detection of histopathology-proven index lesions and clinically

significant lesions, FocalNet achieved 89.7% and 87.9% sen-

sitivity at 1 false positive per patient and received sensitivity

only 3.4% and 1.5% lower than experienced radiologists using

PI-RADS v2. FocalNet also outperformed all three CNN-based

baseline methods, with an AUC of 0.809 for the classification

of clinically significant PCa.
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