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Joint Radio and Computational Resource Allocation

in IoT Fog Computing
Yunan Gu, Student Member, IEEE, Zheng Chang, Senior Member, IEEE, Miao Pan, Member, IEEE, Lingyang

Song, Senior Member, IEEE, Zhu Han, Fellow, IEEE,

Abstract—The current cloud-based Internet-of-Things (IoT)
model has revealed great potential in offering storage and com-
puting services to the IoT users. Fog computing, as an emerging
paradigm to complement the cloud computing platform, has been
proposed to extend the IoT role to the edge of the network.
With fog computing, service providers can exchange the control
signals with the users for specific task requirements, and offload
users’ delay-sensitive tasks directly to the widely distributed
fog nodes (FNs) at the network edge, and thus improving user
experience. So far, most existing works have focused on either the
radio or computational resource allocation in the fog computing.
In this work, we investigate a joint radio and computational
resource allocation problem to optimize the system performance
and improve user satisfaction. Important factors, such as service
delay, link quality, mandatory benefit and so on, are taken
into consideration. Instead of the conventional centralized op-
timization, we propose to use a matching game framework, in
particular, student project allocation (SPA) game, to provide a
distributed solution for the formulated joint resource allocation
problem. The efficient SPA-(S,P) algorithm is implemented to find
a stable result for the SPA problem. In addition, the instability
caused by the external effect, i.e., the inter-independence between
matching players, is removed by the proposed user-oriented
cooperation (UOC) strategy. The system performance is also
further improved by adopting the UOC strategy.

Index Terms—Fog computing, IoT, resource allocation, match-
ing theory, student project allocation.

I. INTRODUCTION

Internet of things (IoT) which supports ubiquitous infor-

mation exchange and content sharing among smart devices

with little or no human intervention is a key enabler for

various applications such as smart city, smart grid, smart

health, intelligent transportation systems, and so on [1] [2].

Cloud computing is an Internet-based computing platform that

provides shared processing resources and data to computers

and other devices on demand [3]. In particular, mobile cloud

computing (MCC), as a combination of cloud computing,

mobile computing and wireless networks, has made it possible

for the mobile users to access the cloud resources to offload

the computational-intensive tasks [4]. By integrating the cloud

into the IoT platform, information collected from end users

Y. Gu is with IP Technology Research Department, Huawei, Beijing,
China. Z. Chang is with Faculty of Information Technology, University of
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can be exchanged and processed through cloud-based devices,

thus enabling a wide range of new services such as connected

vehicles, smart grid, wireless sensor networks and health

system monitoring. However, moving the data generated at the

IoT edges to the network core (i.e., cloud) has brought new

issues, such as the data transferring expense, cloud storing

cost, Internet access management and security issues.

On the other hand, to be implemented in the next generation

wireless networks, the IoT platform is facing not only the

volume, velocity and variety increase regarding the communi-

cation contents, but also the emerging of new communication

specifications, such as quality of service (QoS), location

awareness, real-time mobility support, and latency-sensitive

requirements. Therefore, it requires a new designed cloud-

based IoT framework to meet these critical requirements for

the next generation communication network [5]. CISCO first

proposed the idea of Fog Computing in 2014, as a platform

that exists between the end devices and the cloud data centers,

to provide compute, storage and communication resources to

the close proximity of mobile users [6].

Fog computing bringing the cloud closer to the end users,

processes and analyzes the most time-sensitive data at the

network edge instead of sending them to the cloud [6]. Typi-

cally located at the network edge, the fog nodes (FNs), which

provide storage, computation and communication capabilities,

are characterized with low latency, wide-spread distribution,

support for mobility, heterogeneity, interoperability and fed-

eration [5]. As the layered architecture shown in Fig. 1, the

fog computing extends the cloud computing by introducing an

intermediate fog layer between the mobile users/IoT layer and

the cloud. A FN can be a cellular base station, Wi-Fi access

point or femtocell router with upgraded CPU and memories

in either fixed locations, such as a bus, a shopping mall and a

road side unit, or being mobile. With communication ability,

FNs can communicate with nearby users for both control

signal communication and data transmission. However, this

direct communication may cause the security issues without

the surveillance and protection from the cloud security system,

such as eavesdropping and data hijack. One way to avoid the

security issues is to transfer them from the FN side to the

cloud system side. In other words, the cloud, as the centralized

controller of all the FNs and the users, will be responsible for

the security controls, including authentication, authorization

and so on. Thus, the communication between FNs and users

only involves the computation/storage data.

Currently, there are some major obstacles that can limit the

deployment and performance of MCC and fog computing. A
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lot of research has been done on studying how to efficiently

allocate the cloud/fog computational resources to various users

with heterogeneous requirements, especially on the offloading

problem [7] [8]. In [7], the authors investigate a multi-user

computation offloading problem for mobile-edge cloud com-

puting in a multi-channel wireless interference environment

and propose a game theoretic approach for distributed com-

putation offloading solution. A dynamic offloading framework

for extending the lifetime of mobile users is discussed in [8].

The proposed algorithm, based on Lyapunov optimization,

is able to extend the battery lifetime while satisfying the

execution time requirement. The energy efficiency issue of

mobile users during the cloud computing is also discussed

[9] [10]. For example, [9] studies the optimal offloading

problem in fog computing system to minimize the energy

consumption and delay performance. By reconfiguring the

offloading probability and varying the transmit power, the

objective is to conserve energy for the mobile device and

minimize the service delay. In [10], the wireless powered

mobile device model is considered. A framework for energy

efficient computing is proposed that comprises a set of policies

for configuring CPU cycles of local computing and offloading

probability. The above mentioned works are all solved in a

centralized way. However, the large scale and high mobility

features of IoT and the cellular network have made the

centralized optimization less efficient, with respect to (w.r.t.)

extremely high computation complexity and heavy communi-

cation overhead. In addition with the self-organizing feature

of the next generation communications, distributive solutions

have become more and more needed. Game theory [11], as a

popular mathematical framework, has already been applied in

the resource allocations of MCC. However, it is worth noticing

that there are some shortcomings for using game-theoretic ap-

proaches. For example, some knowledge of the other players’

actions are required in the classical game-theoretic algorithms,

which is hard to be implemented in a distributed manner.

Second, in some practical cases, the specific structure in the

objective functions of the game-theoretic methods may not

always be satisfied [13]. In [12], a joint radio and computation

resource allocation in cloud computing is discussed, with user

energy and delay requirements considered. The optimization

problem is solved in a distributive way, however only one

centralized cloud provider is considered without FN.

Considering the above mentioned research challenges in

fog computing, we want to study a joint radio access and

computational resources allocation when optimizing the sys-

tem performance. The important factors, such as, transmit

power, service latency, and transmission quality, can be jointly

considered. To the best of our knowledge, this work is the

first attempt to investigate the joint radio and computational

resource allocation problem with multiple cloud providers in

the fog computing. In addition, we advocate the matching

theory framework, in particular, student project allocation

(SPA) game, to model the problem and solve it in a distributive

manner. The efficient SPA-(S,P) algorithm is implemented to

find a stable result for the formulated SPA problem. Matching

game is able to some aforementioned limitations of game-

theoretic and centralized approaches. There are many benefits

to apply the matching game, instead of traditional game theory,

to address radio resource allocation problems [14], as it can

provide a better model to characterize interactions between

different players, define the preferences that can properly

present the system requirements, and offers feasible solutions

etc [15]. By applying the matching game to the resource

allocation problem in IoT fog system, both the cloud provider

and the IoT devices are able to express their preference when

designing the resource allocation strategy. The considered

scenario and proposed scheme can be applied to some typical

IoT applications, such as smart home and Industry 4.0, where

fog computing and resource allocation play a significant role.

The major contributions of this work are briefly summarized

as follows.

• We propose to address a joint radio and computational

resource allocation problem for fog computing. We allow

users to express their needs, w.r.t. the delay requirement

and data size, in the form of mandatory offer to the cloud

providers. On the hand, by communicating with the users,

cloud providers try to find suitable FNs for offloading

users’ computation tasks, together with the assignment

of radio spectrum, to satisfy users’ requirements.

• With the objective of optimizing the user satisfaction,

we formulate this joint resource allocation as a mix

integer nonlinear programming (MINLP) problem. In

formulation, system constraints such as service delay,

transmission quality, power control and so on are consid-

ered. We advocate the SPA matching game to model the

optimization problem, where cloud providers (modeled as

lecturers) own the radio/computation resources (modeled

as the projects), and are responsible for the communi-

cations with users (modeled as students), as shown in

Fig. 1(b).

• We adopt the SPA-(S,P) algorithm to find a stable match-

ing result of the SPA game. In addition, the external

effect, due to the inter-independence of matching play-

ers’ preferences lists, is removed by the proposed user-

oriented cooperation (UOC) strategy. After the UOC

procedure, the network stability is guaranteed and the

system performance is further improved.

The rest of this paper is organized as follows. In Section II,

some related works in cloud computing and fog computing

are discussed. In Section III, we provide the framework and

system assumptions of the joint resource allocation problem.

Then in Section IV, we formulate the proposed problem as

an optimization problem aiming at maximizing the system

cost performance. After that, the SPA matching approach

is introduced to model the optimization problem, and the

SPA-(S,P) algorithm is adopted as a distributed solution in

Section V. Simulations results are analyzed in Section VI

and conclusions are drawn in Section VII.

II. RELATED WORKS

An overview of fog computing and its role in IoT is pro-

vided in [5], ranging from conceptual visions to existing point

solution prototypes. The opportunities and challenges of fog,

focusing primarily on the networking context of IoT, have been
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discussed in [16]. [17] provided the insight on why the current

compute and storage models confined to data centers are not

suitable for some of the applications in the IoT scenarios,

regarding three requirements: mobility, reliable control and

actuation, and scalability. The analysis demonstrates that fog

computing is the natural choice for the IoT development

considering the large geographical distribution of fog devices

and the real-time decision making requirements from users.

Some applications of fog computing framework in IoT

have been proposed. For example, [18] explores the social

connections of the IoT devices, and develop a relay selec-

tion mechanism based on the coalitional game solution to

improve the communications among devices. [19] addresses

the utility based pairing problem between the IoT devices

for resource sharing in the fog computing paradigm. The

Irving’s stable roommate algorithm is proposed to find a

stable matching between the IoT devices. [20] introduced a

method for measuring the UV radiance through mobile phone

cameras, and the measurements are gathered and amended, by

utilizing fog computing, through the fog servers to provide

more accurate results. In [21], the authors have identified

the requirements in the fog computing application, such as

device heterogeneity, support for Perception-Action cycles,

mobility and scalability, and proposed a Distributed Dataflow

(DDF) programming model. The proposed DDF framework is

evaluated by implementing it on a visual programming tool,

named Node-RED, that uses a flow-based model for building

IoT applications. Some existing works have been proposed,

using distributive game-theoretical approaches, to solve the

resource allocations in the cloud computing networks. For

example, [22] discusses the resource management problem

in the fog computing network, which is modeled with a 3-

layer architecture: FNs are in the upper layer, data center

operators in the middle layer, the users in the bottom layer. A

hierarchical Stackelberg game is proposed to find the network

equilibrium.

III. SYSTEM MODEL

As shown in Fig. 1, we assume a network comprised of a

set of IoT devices, such as smart phones, surveillance cameras,

vehicles, fire alarm and so on, denoted as the IoT users U =
{u1, u2, ..., uM}. These IoT users may offload certain type

of computing or storage tasks to the cloud service providers

(SPs), which are denoted as SP = {sp1, sp2, ..., spN}. These

SPs can meet different users with specific computing require-

ments w.r.t. data size and service delay. For example, devices

like fire alarms are typically more delay sensitive, while

devices like freezers are typically more flexible regarding

the service latency requirement. For those users who are not

delay sensitive, the computing will be sent to the cloud, while

for those users with strict delay requirements, the SPs will

allocate one of the nearby FNs to offload the computation

task. It’s not hard to understand that FNs that are closer to

the users typically result in smaller transmission latencies.

However, the geography location is not the only factor that

affects the whole service delay. In fact, the service delay

consists of three time periods, which are transmitting time,

CPU processing time and receiving time. The transmitting and

receiving periods are defined as the time used for sending

data to FNs for processing and the time used for receiving the

processed results, respectively. Such communication latency is

not only related to the channel conditions but also affected by

the data size of the computing task. On the other hand, the

CPU processing time is decided by the CPU rate of each FN.

Thus, for any SP spj , when selecting the proper FN from the

set FN j = {fnj
1, fn

j
2, ..., fn

j
L} for each user, it will jointly

allocate its radio resources Wj = {wj
1, w

j
2, ..., w

j
K} (channel

bandwidth) and computational resources Cj = {cj1, c
j
2, ..., c

j
L}

(CPU cycle rate).

From the users’ perspective, who have delay sensitive

contents to process, will offer prices to the SPs to compete

for better resources (both radio and computational resources).

Intuitively, users who are requiring less latencies tend to offer

a higher price. In addition, users will take the data sizes

into consideration, since typically more data asks for longer

transmission period as well as longer CPU processing time.

Notice here, the CPU cycles for the processing tasks are related

to the data size but not exactly equal to it. Thus, we assume

each user ui carries Di (bits) data, and the corresponding

processing task requires DCi CPU cycles. Without loss of

generality, we simply assume a linear relation between the

DCi and Di [12].

So far, we can see the joint radio and computation resource

allocation can be treated as the mapping between the user

sets U and the (radio,computation) resource pair sets RPj =
{(wj

k, c
j
l )|∀w

j
k ∈ W

j , cjl ∈ C
j} owned by each SP spj , spj ∈

SP . In the rest of this work, we may use rpjl,k to denote

(wj
k, c

j
l ) for simplicity. We represent such mapping relation

with the binary value ρi,jk,l, where ρi,jk,l = 1 if ui is offloaded

to FN fnj
l using the channel wj

k owned by spj , and ρi,jk,l = 0
otherwise. In order to optimize the joint resource allocation,

we consider the profits of both users’ and SPs’, which are

discussed in the following two sections respectively.

A. User Satisfaction

One of the most important metrics that all SPs concern about

is the user experience or user satisfaction. As we mentioned

previously, we are discussing a set of users with sensitive delay

requirements, so service latency is used as the user satisfaction

measurement. However, before talking about the delay, we

should first guarantee that the transmission quality between

the users and FNs can meet the requirement. In other words,

the signal to interference noise ratio (SINR) should be higher

than a threshold Γmin in order to deliver the correct/complete

data. We define the received SINR from ui at fnj
l using wj

k

as follows.

Γi,j
k,l =

Pig
i,j
k,l∑

ui′∈U,i′ 6=i ρ
i′,j
k,l Pi′h

i′,j
k,l + σ2

N

, (1)

where Pi and gi,jk,l are the transmission power and channel

gain between user ui and fog node fnj
l using channel wj

k,

respectively. hi′,j
k,l represents the interference channel gain from
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Fig. 1: System model.

any other mobile user ui′ at fnj
l due to channel reuse. We

consider orthogonal radio resources are used among SPs and

the radio resources within SPs can be coordinated to avoid the

interference. σ2
N represents the channel noise. It is required

that Γi,j
k,l ≥ Γmin in order to ensure a successful transmission.

The transmission rate from ui at fnj
l using wj

k, if satisfying

the SINR requirement, can be represented as follows.

ri,jk,l = wj
k log(1 + Γi,j

k,l), (2)

As we discussed previously, the service delay consists

of three time periods: the transmitting time ttrans, the CPU

processing time tproc, and the receiving time trecv. Generally

speaking, the received result from the FN after processing is

typically in relatively trivial size compared to the original

unprocessed data. In addition, with no knowledge of the

result after processing, we cannot predict the exact size of

the returned data although pretty small. Thus, the receiving

time period should be sufficiently short, and we assume a

random variable δt, δt ∈ [0, 1] to represent trecv for any user.

When defining ttrans and tproc, we should consider the channel

reuse and CPU sharing among multiple users. We allow each

channel to be shared among more than one user within it

capacity qR, and also allow each FN to accommodate more

than one user to share its CPU within its capacity qC . We also

denote qSP as the maximum number of users that one SP can

serve. Thus, the transmission rate for each user can be affected

by the interference from the co-channel users, as represented

in (1). In addition, the CPU processing rate for each user is

affected by the co-CPU users. For simplicity, we assume each

co-CPU user will be allocated an equal share of the total CPU

rate, denoted as ci,jk,l =
1

∑
ui∈U

ρ
i,j

k,l

cjl . Now, we can define the

service delay of ui when using the resource pair (wj
k, c

j
l ) as

follows.

ti,jk,l = ttrans + tproc + trecv =
Di

ri,jk,l

+
DCi

ci,jk,l
+ δt. (3)

B. SP Revenue

The mandatory revenue is the incentive that makes SPs

provide better service to its subscribed users. Also as another

factor to measure the system performance, we adopt the price

offers from the users as the benefit/revenue of the SPs. As

we have discussed, the price that each user offers is not only

related to its delay requirement Ti but also its data size Di.

Without loss of generality, we assume a linear relation between

the price and the data size, as well as the inverse of the delay

requirement. Thus, the offer from each user can be represented

as follows.

Oi = f(Di, Ti), (4)

where f(·) should be a monotonic increasing function for Di

and monotonic decreasing function for Ti. For simplicity, we

advocate following function to define f(Di, Ti).

Oi = a
Di

Ti

, (5)

where a is a parameter with unit dollar/Mbps, and Oi is the

price that ui is willing to pay for any SP if matched.

Each SP serves more than one user, and thus receiving

more than one offer. We define each SP spj’s revenue as

the summation of the mandatory offer collected from all

its matched users. In this work, we consider the cost of
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each SP related to power consumption of transmission and

maintenance. For the sake of simplicity, we assume it is fixed

in this work. When considering the SP’s revenue, we ignore

the effect of the fixed service cost. As a result, the total revenue

for each SP is represented as follows.

Revj =
∑

ui∈U

ρi,jk,lOi. (6)

IV. PROBLEM FORMULATION

In the previous section, we discuss two performance metrics,

which are both essential for a good resource allocation in fog

computing. The system objective in this work is designed as

a combination of both metrics, and is named as the cost-

performance (CP). The CP is defined as the ratio between

each user’s average data rate and its price cost, with the unit

of Mbps/sec/dollar. The date rate, instead of pure delay, is

considered because that the actual delay value is strongly

related to the user’s data size to be transmitted and processed.

Thus, the actual data rate is a more fair measurement than the

delay value if comparing horizontally with other users. Then,

for the cost factor, it’s also reasonable to use the monetary

payment/offer of the user for the corresponding fog computing

service it acquires. As a result, to combine both factors in one

metric, we have defined the cost-performance function for each

user, which physically represents the service quality that the

user pays for. The system CP CPsys is the average of all users’

CP value CP (i), which is represented as follows.

CPsys =

∑
ui∈U CP (i)

M
,ui ∈ U , (7)

where CP (i) is the CP value for user ui, and is defined as

follows.

CP (i) = ρi,jk,l

Di

t
i,j

k,l

Oi

. (8)

Next, we are ready to formulate the optimization problem,

which is shown below.

max :
ρ
i,j

k,l

∑
ui∈U CP (i)

M
(9)

s.t. : ρi,jk,lt
i,j
k,l ≤ Ti,

∀ui ∈ U , rp
j
l,k ∈ RP

j , spj ∈ SP, (10)

ρi,jk,lΓ
i,j
k,l ≥ Γmin,

∀ui ∈ U , rp
j
l,k ∈ RP

j , spj ∈ SP, (11)
∑

ui∈U,fn
j

l
∈FN j

ρi,jk,l ≤ qR, ∀w
j
k ∈ W

j , spj ∈ SP, (12)

∑

ui∈U,w
j

k
∈Wj

ρi,jk,l ≤ qC , ∀fn
j
l ∈ FN

j , spj ∈ SP, (13)

∑

ui∈U,rp
j

l,k
∈RPj

ρi,jk,l ≤ qSP , ∀spj ∈ SP, (14)

ρi,jk,l ∈ {0, 1}, (15)

where (9) is the system objective, representing the overall cost

performance for users. (10) represents the delay requirement

for each user. (11) defines the minimum SINR requirement for

each user. (12), (13) and (14) satisfy the capacity constraints

for each channel, FN and SP, respectively.

Obviously, this optimization problem is a MINLP problem,

which is generally NP-hard to solve [23]. Therefore, it mo-

tivates us to find a feasible suboptimal solution. Thus, we

introduce the matching-theory based distributed approach: the

student project allocation game, which will be discussed in

the next section.

V. A STUDENT-PROJECT MATCHING GAME

In the previous section we have formulated the joint radio

and computational resource allocation as a MINLP problem.

Due to the NP-hardness, as well as the new trend of 5G re-

source management that shifts from the traditional centralized

optimization to distributive or semi-distributive approaches,

we are proposing a semi-distributive matching-based solution

in this section. The fact that assignment of the radio and

computation resources are coupled has motivated us to treat

the (radio, computation) pair as one individual entity. We

can enumerate all possible combinations of the two types of

resources and try to map the user sets to the resource pair

sets. Apparently, this process of enumerating and mapping

should be under the assistance of the SPs, who are responsible

for the control signal communication with the users and both

resources.

A suitable matching model that exactly offers such structure

is the Student Project Allocation (SPA) problem [24], where

various students will be assigned different projects (owned by

different lecturers) under the assistance of the lecturers. In this

section, we first introduce how to model our proposed problem

using the SPA model, and then implement the SPA-(S,P)

algorithm to find a stable matching solution in Section V-A.

However, to deal with the externality that appears during the

matching, we propose the inter-channel cooperative strategy

to remove the external effect and ensure the system stability

in Section V-B.

A. Student-Project Allocation Modeling

In many university departments, students seek to undertake

a project (e.g., senior design) from lecturers. Typically each

lecturer will offer a variety of projects. Each student has pref-

erences over the available projects that he/she finds acceptable,

whilst a lecturer normally have some form of preferences over

his/her projects and/or the students who find them acceptable.

There may also be upper bounds on the number of students that

can be assigned to a particular project, and also the number

of students that a given lecturer is willing to supervise. One

variant is the SPA problem with lecturer preferences over

student-project pairs, referred to as SPA-(S,P), in which each

lecturer has a preference list that depends on not only the

students who find his/her projects acceptable, but also the

particular projects that these students would undertake [25].

Inspired by the SPA problem, we model the resource

allocation problem in fog computing as the SPA game, in
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which we assume the SPs, the (radio, computation) resource

pairs and the users as the lecturers, the projects and the stu-

dents, respectively. In the SPA model, lecturers offer different

projects, and students can apply for these projects. Similarly in

our work, SPs offer available radio and CPU resource bundles,

and users propose to the SPs for acceptable resource bundles.

SPs make decisions based on the revenue that can be collected

from the users by offering the resource bundles. The stability

notion here implies the robustness to deviations that can benefit

both the users and the resources. An unstable matching can

lead to cases in which two SPs can swap their matched users if

this swap is beneficial to both of them. Having such network-

wide deviations ultimately leads to an undesirable and unstable

network operation. The formal stability definition is provided

in Definition 1.

Definition 1. Stability: A matching M is said be stable, if

there’s no blocking pair (BP). A pair (ui, rp
j
l,k) is defined as

a BP if all of the following conditions are satisfied:

(1) ui finds rpjl,k acceptable;

(2) either ui is unmatched inM, or ui prefers rpjl,k toM(ui);
(3) either

(3.1) rpjl,k is under subscribed and either of the following

three conditions is satisfied:

a)M(ui) ∈ RPj , and spj prefers (ui, rp
j
l,k) to

(ui,M(ui)); or

b)M(ui) /∈ RPj and spj is under-subscribed; or

c)M(ui) /∈ RPj and spj is full and spj prefers (ui, rp
j
l,k)

to its current worst pair (uwst, rp
j
wst);

(3.2) rpjl,k is full and spj prefers (ui, rp
j
l,k) to the its current

worst pair (uwst, rp
j
wst), and either of the following two con-

ditions is satisfied:

a)M(ui) /∈ RPj;

b)M(ui) ∈ RP
j and spj prefers (ui, rp

j
l,k) to (ui,M(ui)).

In Definition 1, M(x) represents the partner/matching of

the player x in matching M. More precisely, M(ui) =
rpjl,k, (w

j
k, c

j
l ) ∈ RP

j .

In order to find a stable matching, the preference lists of

both users’ and SPs’, denoted as PLuser and PLSP , need to

be established first. During this procedure, the constraints (10)

and (11) should be satisfied from both users’ perspective, w.r.t.

delay and SINR requirement. In other words, when setting up

the preference lists for users, each user needs to first check the

two constraints, and include those resource pairs that satisfy

them. These sets of resource pairs are called the acceptable

sets. After finding all users’ acceptable sets, we rank these

resource pairs in descending/ascending orders for each user ac-

cording to their preferences. Intuitively, users prefer resources

that can offer the computation offloading with the least delay.

However, since we allow each resource pair to accommodate

more than one user, then the multi-user coexistence will affect

both the radio and the CPU performances. For simplification,

we assume these coexisting users share the frequency band

as well as the CPU rate equally. Thus, it is not who the user

will share resources with that matters but how many of them.

Before the matching is finalized, this number is unknown

to any user nor SP, although each SP and each radio and

CPU resource do have quotas, qSP qR and qC , that limit the

maximum number of users. In order to calculate the potential

service delay, each user will assume a 1
Q

share of the radio

and CPU resource depending on the exact quota Q. The true

performance actually may deviate from this evaluation, which

causes the external effect during the matching (We’ll address

this issue in the Section V-B). Thus, the preference of any user

ui over the rpjl,k is based on the potential service delay t′i,jk,l ,

and is represented as follows.

PLuser
i (j, k, l) = t′i,jk,l = t′trans + t′proc + t′recv

=
Di

1
qR

r′i,jk,l

+
DCi

1
qR

cjl
+ δt′, (16)

where r′i,jk,l the data rate from ui to FN fnj
l when only

ui is using the channel wj
k, and is represented as r′i,jk,l =

wj
k log(1+

Pig
i,j

k,l

σ2

N

). δt′ is an another random value within [0, 1]

that represents the possible time period for returning the result.

On the other hand, when selecting the users to match its

resource pairs, SPs not only consider the mandatory benefit

that is related to the data size, but also the potential service

delay. The delay factor works likewise for users and SPs, since

users expect faster service and SPs pursuit short service times

in each user so that to serve more users in the long term

consideration. Thus, the preferences of SPs over the users are

based on the ratio of price over delay (same as the potential

delay evaluation for users), and is represented as follows.

PLSP
j,k,l(i) =

Oi

t′i,jk,l

. (17)

With the preference lists set up, we can apply the SPA-(S,P)

algorithm, as illustrated in Algorithm 1, to find an efficient

matching between users and resources. The key idea of the

SPA-(S,P) algorithm is developed from the classical Gale-

Shapley algorithm [26]. It consists of sequential proposing

and accepting/rejecting operations by users and SPs. The

convergence of the SPA-(S,P) algorithm is guaranteed and the

existence of a stable matching is proven in [24]. As it is Gale-

Shapley algorithm-based, the overall computation complexity

is O(m) where m is the total length of the preferences lists.

It can be noticed that a stable matching is ensured under the

condition of Canonical matching. It implies that the preference

of any players don’t depend on the choices/actions of other

players, but on the local information about the other type

of players. While this assumption is no longer true in this

work, since with more users sharing the same radio/CPU

resources, their performances will be degraded. Thus, the

resulting matching after running the SPA-(S,P) algorithm is

not necessarily stable, and calls for further actions to reach

stability. In the next subsection, we propose a cooperative

procedure to transform the current matching into being stable

again.

B. User-Oriented Cooperation Strategy

Due to the inter-dependence of the preferences of users and

resources (i.e., they are influenced by the existing matching),
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Algorithm 1 SPA-(S,P) Algorithm

Input: U ,SP,W,FN ,PLuser,PLSP ;

Output: Matching M;

Initialization: set M empty, set all users free;

1: while some user ui is free and ui has a non-empty

preference list do

2: for all ui ∈ U do

3: ui proposes to the first entity rpjl,k in PLuser
i ,

and then remove rpjl,k from PLuser
i ;

4: M←M∪ (ui, rp
j
l,k);

5: end for

6: for all rpjl,k, rpjl,k ∈ RP
j , spj ∈ SP do

7: while rpjl,k is over-subscribed do

8: Find the worst pair (uwst, rpwst) assigned to

rpjl,k in spj’s list;

9: M←M/(uwst, rpwst);
10: end while

11: end for

12: for all spj ∈ SP do

13: while spj is over-subscribed do

14: Find the worst pair (uwst, rpwst) in spj’s

list;

15: M←M/(uwst, rpwst);
16: end while

17: end for

18: end while

19: Terminate with a matching M.

the matching yielded by SPA-(S,P) algorithm is not nec-

essarily stable. We call the matching framework with such

inter-dependence as matching games with externality [27].

For example, a previously good resource pair may be over

evaluated with many users sharing it, while a not so good

one may become better with very few users sharing it. There

may be incentives for users to swap to other resources, which

become the BPs in the matching. We can design algorithms

to remove those BPs; however, it is also reasonable to think

more from the users’ point of view. With our system objective

evaluated through the average users’ cost performance, we

believe that it’s workable to begin to value the stability notion

solely from the user side at this time point. In other words, we

assume that only users have the incentive to make changes.

Thus, a new ”stability” notation should be defined among the

users. This new ”stability”, different from Definition 1, relies

on the equilibrium among all users. Cooperation between users

are needed to transform the existing matching into a stable

one. We call such one-sided ”stability” as ”Pareto Optimality”

in matching theory [25]. The definition of Pareto optimal is

provided as follows.

Definition 2. Pareto Optimal: A matching is said to be Pareto

Optimal if there is no other matching in which some player is

better off, whilst no player is worse off.

Accordingly, the new BP definition for the one-sided match-

ing problem in given in Definition 3.

Definition 3. A BP in the one-sided matching: A user pair

(ui, uj) is defined as a BP, if both ui and uj are better off

after exchanging their parters.

To find such Pareto optimal matching, users again requires

assistance from the SPs for utility evaluation. The stabil-

ity/Pareto optimality is achieved through finite partner switch

operations between user pairs. As stated in Definition 2, the

stability/Pareto optimality is reached when no player/user is

better off without other player(s) being worse off. In other

words, every swap operation should be beneficial to some

user(s) while being no harm to the rest users. Through finite

such swaps, we can finally reach a swap-free system, which

means a stable system. We call such procedure as the User

Cooperation (UOC) Strategy, and the details are illustrated in

Algorithm 2.

Algorithm 2 User-Oriented Cooperation (UOC) Strategy

Input: Existing matching M0;

Output: Pareto optimal matching Ms.

1: Mt =M0;

2: while Mt is ”unstable” (user,user) pairs BP do

3: for all (ui1, ui2) ∈ BP do

4: if ∃u ∈ Mt(rpi1) ∪ Mt(rpi2), ∆U(u) < 0
then

5: (ui1, ui2) are not allowed to switch part-

ners;

6: else

7: (ui1, ui2) are allowed to switch partners;

8: end if

9: end for

10: Find the optimal BP (u∗
i1, u

∗
i2) ∈ BP;

11: u∗
i1 and u∗

i2 switch partners;

12: Mt+1 ←Mt/{(u
∗
i1,Mt(u

∗
i1)), (u

∗
i2,Mt(u

∗
i2))};

13: Mt+1 ←Mt ∪ {(u
∗
i1,Mt(u

∗
i2)), (u

∗
i2,Mt(u

∗
i1))};

14: Update PLuser based on Mt;

15: end while

16: Ms =Mt.

In Algorithm 2, rpi1 = Mt(ui1), rpi2 = Mt(ui2). We

define U(x) as the utility function of user x, and is equal to

its service delay. Thus, we define ∆U(x) = U(x)′ − U(x),
where U(x)′ is the utility after exchanging partners. In other

words, ∆U(x) represents user x’s performance change, and is

improved if ∆U(x) > 0 or decreased if ∆U(x) < 0. A user

pair is allowed to switch partners if and only if ∆U(x) ≥
0 for any user x that is affected in this switch (e.g., ∀x ∈
Mt(rpi1) ∪Mt(rpi2)). Then to find the optimal BP among

all the BPs allowed to switch partners, we search for a BP

which provides the highest the performance improvement. The

performance here refers to the overal time delay for all users.

We define the optimal BP as follows.

(u∗
i1, u

∗
i2) = argmax

(ui1,ui2)

∑

u∈{ui1∪ui2∪Mt(rpi1)∪Mt(rpi2)}

∆U(u),

(18)
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Fig. 2: Users’ average service latency.

where the user pair (ui1, ui2) should be allowed to exchange

partners.

We summarize the steps of the UOC strategy as follows:

firstly search all ”unstable” user-user pairs (who have the

exchange incentive) regarding the current matching; secondly,

check whether the exchange/switch between such a pair is

allowed (beneficial to related users); thirdly, find the allowed

pair, that provides the greatest throughput improvement, to

switch their partners, and update the current matching; then

keep searching such BPs until we reach a trade-in-free net-

work. The convergence of the UOC process is guaranteed

by the irreversibility of each switch. Finally, UOC terminates

with a Pareto optimal matching, and simultaneously improves

the system throughput. The total iterations of BP searches or

swaps are bounded by N2. Thus, the worst case complexity

of terminating the algorithm is O(N3M).

VI. PERFORMANCE EVALUATION

In this Section, we first evaluate both SPA-(S,P) algorithm

and the UOC strategy w.r.t. users’ service latency, SPs’ profit

and the system cost performance. In addition, the convergence

of UOC will be analyzed.

We consider a network with N = 2 SPs, each equipped

with L = 5 FNs randomly distributed within the network,

with a radius of R = 1 km. Assume a number of IoT

users M,M ∈ [45, 210], also randomly distributed within the

network. Each SP owns K = 5 channel bands for users to

share, and the bandwidth is set to w = 5 MHz. The SINR

requirement Γmin for users is a uniform random distribution

within [20, 30] dB. We set equal capacity requirement for

each channel and each FN, which is qR = qC = 10, and

the SP’s capacity is set as qSP = 80 for each. Users’ delay

requirement and data size, as well as the corresponding CPU

cycles, are determined by the specific IoT device types. The

service delay includes both transmission latency and CPU

processing latency, and total delay requirement Td for each

user is uniformly distributed within [6, 7] sec. The users’

data size D is set as a uniform distribution, [2, 8] Mb, and
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Fig. 3: SPs’ profit.

corresponding CPU cycles is set as DCi = Di ∗ 10
4 cycles.

The CPU processing rate for each FN is set as a uniform

distribution within [5, 6]∗1010 cycles/sec. For the propagation

gain g, we set the pass loss constant C as 10−2, the path loss

exponent α as 4, the multipath fading gain as the exponential

distribution with unit mean, and the shadowing gain as the

log-normal distribution with 4 dB deviation.

In Fig. 2 and Fig. 3, we evaluate the performance of

users and SPs. For comparison purposes, we use the Random

method as the victim strategy, which refers to a random re-

source allocation between users and resource pairs. In addition,

we also modify the one proposed in [9], which consider a joint

optimization of energy consumption and delay performance

(EDM). Fig. 2 shows the average service delay evaluation un-

der the comparison of four methods: the Random method, the

EDM algorithm, the SPA-(S,P) algorithm and the SPA-(S,P)

with the UOC strategy. We increase the number of users from

45 to 210 by the step of 15 to show the change of latencies.

Apparently, the service latency for all four strategies increase

with the number of users. It is understandable since more

users means less resource share for each averagely, which

thus leading to higher delay. Among the four methods, the

Random curve gives the highest average latency, and is much

higher than the others. The EDM also has a worse latency

performance comparing with the proposed ones. For the rest

two matching curves, SPA with UOC is slightly better than

the SPA-(S,P) when the user number M < 150, and is almost

the same as SPA-(S,P) when M > 150. It tells two things,

one is that UOC can further improve users’ performance

while guarantee network stability, and second thing is that

the improvement is less apparent when the user number is

close to or has reached the network capacity M = 160. The

network capacity refers to the maximum number of users that

the SPs can accommodate without any user left unmatched.

The reason that UOC can further improve users’ performance

is the user switching rules designed for UOC. Only when a

switch is beneficial to both of the users and does no harm to the

performance of the rest users can this swap be allowed. From
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Fig. 4: The ratio of users satisfying delay requirement.

the SPs’ perspective, it gains mandatory profit from matched

users. As shown in Fig. 3, the average profit gained by SPs

are almost the same for all three methods when M < 150,

and after M > 150 both SPA-(S,P) and SPA-(S,P) with UOC

outperform the Random method. In fact, the SPs’ benefit is

decided by the number of users who get matched as well as

who are matched and who are not. Before the user number

reaches the network capacity, almost all the users can be

matched to a resource pair under different methods, good or

not. Thus, SPs can still gain all the money. However, when

the users are more than the network capacity, then users need

to compete for a share. Thus, which users are kicked off and

which ones stay? As we discussed in Section III, users who

have more strict latency requirement offer higher prices, thus

making them more likely to be selected by the SPs. In turn,

users with higher offers make the SPs gain more profit. That’s

why both matching curves beat the the other curves when

M > 150.

The user satisfaction is evaluated in Fig. 4, w.r.t. the ratio of

users whose actual service latencies meet their requirements.

We have modified the one in [22] and applied the Stackelberg

game to model the interactions between SPs and users. Ap-

parently, the ratio of satisfied users decrease with the increase

of users for all four methods. The starting points of all four

methods are almost 100%, and after that the Random method

drops faster than the other three algorithms. The two matching

curves decrease in similar speeds, and the decrease become

slower after the user number M > 150. At the end point

when M = 210, both the SPA-(S,P) with UOC method and

SPA-(S,P) method reach almost 75%, while the Random curve

falls below 50%. In other words, more than 75% of users are

satisfied with their performances with the allocated fog and

radio resources under the proposed matching methods when

M < 150. Fig. 4, together with the average delay evaluation

shown in Fig. 2, shows that our proposed matching algorithms

not only think from the users’ and SPs’ point of view in an

average way, but also takes each individual user’s performance

into consideration.
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Fig. 5: The system cost performance.

In Fig. 5, we evaluate the system cost performance under

three methods. Intuitively, the cost performance is a measure-

ment of how much service one can buy at what price. It’s

an joint consideration of both users’ and SPs’ benefits, with

the objective to allocate the best resources to users who want

them most (i.e., who offer the highest prices). As shown in

Fig. 5, when M < 75, SPA-(S,P) with UOC outperforms the

other two, while the Random allocation beats the SPA-(S,P).

This happens because in SPA-(S,P), users first propose to their

favorite resources, and thus some good resources may receive

many more proposals than the rest resources. Thus, when

user number is relatively small and there are sufficient spare

resources, the good resources, who are matched with users to

their full capacities, may be not so good as those resource who

have sufficient spare rooms. On the other hand, the Random

allocation method is designed as a uniform random allocation

in our simulation, which allocates users more distributively

than the SPA-(S,P). Thus, when user number is small, the

SPA-(S,P) is worse than the Random. After M > 80, both

matching algorithms are better than the Random one. SPA-

(S,P) with UOC outperforms SPA-(S,P) when M < 150.

The performance of all three curves are decreasing with

the increase of M . It is reasonable since the offers keep

unchanged, but more users lead to less resource share for each,

thus making the average cost performance decrease.

Lastly, the convergence of the proposed UOC strategy is

analyzed in Fig. 6. The iteration of users swaps/switches

during UOC is taken as the measurement of its convergence,

which is calculated under averaging 200 times of simulation.

As we discussed in Section V, the convergence of UOC to a

Pareto optimal matching is guaranteed since each switch is not

revertible. By each switch, some users can switch to currently

better resource pairs, which are preciously under evaluated.

With so many switch options, our proposed UOC selects the

currently best user pair to switch. It’s not hard to understand,

such pair selection procedure can greatly reduce the number

of switching times if switch under no pre-selection. We can

see a decrease of iterations with the increase of user number
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Fig. 6: UOC Convergence Analysis.

M when M < 150, and then begin to increase with the

increase of user number when M > 150. Notice here, the

network capacity is M = 160 and the user increase step is

15, which means when M > 150 the user number exceeds

the network capacity. So before the user number exceeds the

capacity, SPs have some resource pairs who have spare rooms

for more users. Thus with more such rooms, users have more

chances to improve their performance by switching. Thus,

it explains that with the decrease of spare network capacity

(i.e., when M < 160), the switching times decrease. However

after the user number has reached the network capacity, there

are more users who can not get any resources. Thus the

competition between these unmatched users and the matched

users will bring more switches. Thus, after M > 160, with

more unmatched users in the network, the switch times start

to increase. No matter decreasing or increasing, the total

swapping time is limited by 10 in this network setting, which

is in fact a trivial number.

VII. CONCLUSION

In this work, we have studied the joint radio and com-

putational resource allocation problem in fog computing.

Considering the distributive features of the IoT framework,

we have proposed matching theory, as a semi-distributive

solution approach, to find a stable matching between the

users and resources. With the proposed SPA framework, we

have modeled the interaction between the IoT users, SPs and

FNs. System requirements, such as the transmission quality,

service latency, and maximum power requirement have been

addressed through the representation of the preference lists.

The proposed SPA-(S,P) algorithm together with the UOC

procedure can guarantee a stable matching. The simulations

results have demonstrated that our proposed framework can

provide distributive, close-to-optimal performance from both

the users’ perspective and the system’s view.
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Jyväskylä and Magister Solutions Ltd in Finland.
He was a visiting researcher at Tsinghua University,
China, from June to August in 2013, and at Univer-

sity of Houston, TX, from April to May in 2015. He has been awarded by the
Ulla Tuominen Foundation, the Nokia Foundation and the Riitta and Jorma
J. Takanen Foundation for his research excellence.

He serves as editor of IEEE Access, Springer Wireless Networks and IEEE
MMTC Communications Frontier, and guest editor for IEEE Access, IEEE
Communications Magazine, IEEE Internet of Things Journals, and Wireless
Communications and Mobile Computing. He also served as TPC member for
many IEEE major conferences. He has received Best Conference Paper awards
from IEEE Technical Committee on Green Communications & Computing
(TCGCC) and 23rd Asia-Pacific Conference on Communications (APCC) in
2017. Currently he is working as Assistant Professor at University of Jyväskylä
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