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Abstract— Constantly increasing demand for throughput and 
quality in wireless communication systems leads to continuous 
research of wise radio resource management, because of the 
scarce availability of frequency bands and the consequent 
capacity limitations. In addition, technology evolution is 
addressed towards spectral efficient techniques that can offer 
higher data rates. This is the case of OFDMA (Orthogonal 
Frequency-Division Multiple Access), introduced by 3GPP as the 
technology for future Long Term Evolution (LTE). However, 
given the current penetration of legacy technologies such as 
UMTS (Universal Mobile Telecommunications System), 
operators will have to deal with the coexistence of multiple Radio 
Access Technologies (RATs), so that the exploitation of the 
complementarities between technologies through Joint Radio 
Resource Management (JRRM) mechanisms will be needed. In 
this paper we propose a novel dynamic JRRM algorithm for 
LTE-UMTS coexistence scenarios. The proposed mechanism is 
based on Reinforcement Learning (RL) which is considered to be 
a good candidate to achieve cognition in future reconfigurable 
networks. The proposed solution implements autonomous RL 
agents in each base station which decide on the allocation of the 
most suitable RAT to each user. We give a detailed description of 
the solution and analyze the behavior under various load 
conditions. We also demonstrate the capability of the algorithm 
to adjust in dynamic scenarios.  

Keywords: joint radio resource management, LTE, WCDMA, 
reinforcement learning  

I. INTRODUCTION 
Digital mobile telecommunications penetrated mass 

markets with voice as a primary service at first. However, 
development of mobile communications in the last decade is 
characterized by constant expansion of data services. Lower 
prices of mobile services brought heterogeneity in every sense: 
presence of vast variety of mobile services, heterogeneity in 
Radio Access Technologies (RATs), growth in number of 
wireless service providers and users’ profiles, etc. To achieve 
capacity maximization in such complex and competitive 
circumstances, optimized use of spectral resources is needed. 
Spectral efficiency improvements require, on the one hand, to 
have evolved technologies that can offer higher data rates and, 
on the other hand, to operate the network with smart Radio 
Resource Management (RRM) mechanisms that enable the 
dynamic use of radio resources to meet the instantaneous users’ 
demands and cope with network dynamics in terms of mobility, 

traffic generation, etc. Furthermore, the coexistence of multiple 
access technologies, due to e.g. the deployment of the different 
generations of mobile communications, has provided an 
additional degree of freedom in the RRM through smart 
mechanisms that take jointly into account the resources 
available in all the RATs to make the appropriate allocations. 
These are referred to as Joint RRM (JRRM) or Common RRM 
(CRRM) [1]. 

Starting from Release 8, 3GPP has adopted OFDMA 
(Orthogonal Frequency-Division Multiple Access) as the 
technology for the so-called Long Term Evolution (LTE) [2] to 
achieve high traffic capacities in 4G mobile networks. 
However, the penetration of WCDMA (Wideband Code 
Division Multiple Access) as 3G UMTS (Universal Mobile 
Telecommunications System) in mobile markets is already 
significant. Therefore, it is expected that these two RATs will 
have to coexist during significant periods of time. During these 
periods, WCDMA can be used not only to serve those mobile 
devices that have no support of OFDMA, but also, thanks to 
the relatively high bit rates and good performance that can be 
obtained for some services with WCDMA, this technology can 
be exploited to achieve an efficient use of the total spectrum 
allocated to UMTS and LTE by a smart distribution of the 
users that support both technologies.  

Under the above consideration, in this paper we present a 
JRRM solution for scenarios in which LTE and UMTS 
technologies coexist. The objective of the proposed mechanism 
is to decide dynamically the most suitable RAT to serve each 
session. Adaptability in this solution is achieved by applying 
Reinforcement Learning (RL) actor-critic methods [3]. We 
choose reinforcement learning as a mechanism to cope with the 
dynamic changes in the radio environment, providing the 
network with the necessary cognition capabilities to modify its 
operation in accordance with the network status [4]. In our 
previous work, we have applied similar learning technique to 
improve spectrum efficiency by means of dynamic spectrum 
management in WCDMA [5]. 

Different works have addressed the JRRM problem in the 
literature during the recent years. The JRRM algorithms 
developed so far apply on different network aspects (see [6] 
and references within) and usually consider GPRS (General 
Packet Radio Service), UMTS and WLAN (Wireless Local 
Area Network) [7]. JRRM solutions for these networks range 
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from dynamic load distribution mechanisms [8] to complex 
Fuzzy-neural [9] solutions for advanced network supervision.  

To the authors’ best knowledge there is no previous work in 
literature that addresses JRRM problem for LTE-UMTS 
coexistence. As for the utilization of machine learning 
mechanisms, in [10] authors introduce Q-learning model to 
achieve joint call admission control in a generic heterogeneous 
network. No specific technology is considered, but it is rather 
supposed that the two systems have fixed and limited capacity 
expressed through multiples of some elementary bandwidth 
units. In UMTS and LTE, due to power control and scheduling 
respectively, short term capacity variations make such 
approach hardly feasible. In [11], authors use Semi Markov 
Decision Process (SMDP) theory to compute optimal user 
satisfaction for collocated HSDPA (High Speed Downlink 
Packet Access) – WLAN base stations. In that study coverage 
areas appear as a main decision issue. Finally, in [12] the 
authors apply Q-Learning for joint call admission control in 
GPRS, UMTS and WLAN.  

Apart of the fact that we consider different access 
technologies, with different characteristics, one of the novelties 
of the proposed approach, is that we also reduce the complexity 
by building an algorithm that has reduced number of states 
when compared with other approaches such as [11] and [12]. In 
general, this property enables faster learning, which is 
especially important for real-time learning.  

On the other hand, the proposed approach can support a 
distributed implementation at the base stations, assuming that 
LTE and UMTS technologies are co-located in the same sites, 
which is also a difference with respect to prior works.  

The rest of this paper is organized as follows. In Section II 
we first give the JRRM-RL (JRL) framework description. 
Afterwards, in Section III reinforcement learning mechanism 
for the JRRM model is explained. Simulation parameters and 
obtained results are included in Section IV. Finally, Section V 
contains the summary of the main conclusions. 

II. JRRM-RL (JRL) FRAMEWORK 
The proposed JRRM mechanism assumes autonomous RL 

agents assigned to cells. UMTS and LTE are collocated on the 
same base station in a cell. Notice that these co-located 
scenarios are very likely to occur in the future since, by reusing 
UMTS infrastructure, LTE will be more easily deployed at 
lower expenditures for operators. The agent in each cell works 
in real-time, independently from the agents in other cells. This 
agent is responsible for distributing the users between the two 
technologies (UMTS or LTE). This decision can be taken 
either at session initiation, or during session lifetime, which 
could lead to a vertical handover (i.e. a change in the currently 
assigned RAT), in order to adapt to traffic variations. Fig 1 
shows the distributed JRRM model. In each cell mobile users 
will be directed to LTE or UMTS technology through the RL 
agent. Based on the current cell conditions (load and 
interference) and on the previous experience, RL agent will 
adapt decision policies to increase user satisfaction.  

RL is a branch of machine learning where an agent through 
interaction with environment learns and decides on actions in 

order to maximize some long term reward. The reward is an 
input that the agent receives from the environment, which 
represents the quality of the actions taken by the agent, and that 
should reflect the goals and needs of the system. In this work, 
we assume that the reward has to reflect the overall user 
satisfaction with the received service. Specifically, a user is 
satisfied when it gets a throughput higher than a given 
threshold ThLIM, no matter which technology it uses. Throughput 
is evaluated through time and an average is used at instants 
when reward is calculated. Based on this, we define a limit 
threshold ΘMAX for the maximum tolerable percentage of 
unsatisfied users in the system. 

As aforementioned, in addition to deciding the RAT on the 
session arrival (incoming requests), the same RL mechanism 
also decides on session reconfigurations (re-assignation). In 
particular, after a session has started, the algorithm checks 
every TREQ seconds whether the RAT should be changed for a 
given user or not. Example with three mobiles in Fig 2 
illustrates initial and re-assignation decisions by RL agent. 
Introduction of reconfiguration brings two benefits. First, we 
avoid long user sessions to stick with one technology in case 
system conditions change. Second, algorithm learns faster 
(because the RL mechanism observes and learns based on each 
request), which is of high importance for such real-time 
mechanism. 

III. REINFORCEMENT LEARNING FOR JRL 
In this paper we use actor-critic learning [3], as this method 

requires minimal computation in order to select actions and can 
learn optimal probabilities of selecting various actions. The 
actor is the entity that selects actions. The critic is a state-value 
function that takes the form of Temporal Difference (TD) error 
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Figure 1.  Reinforcement learning for JRRM. 
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Figure 2.  JRL: Session activations and reconfigurations. 
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and “criticizes” the actions made by the actor: after each action 
taken it evaluates the new state to determine whether the results 
have gone better or worse than expected. This is carried out 
based on the interaction with the environment through a 
reward function. The general procedure is illustrated in Fig 3. 
In the following, we explain the specific states, actors, learning 
engine and reward used for the proposed JRL. 

A. States 
Each cell in the system has one RL agent to handle 

sessions. The agent has nine states implemented (as in Fig. 4-
left) that reflect the current conditions (dissatisfaction level 
Pdis) in each of the two technologies. These conditions can be: 
complete satisfaction in UMTS/LTE, dissatisfaction lower than 
a limit threshold ΘMAX, or dissatisfaction higher than the 
threshold value.  

In each state an actor decides on the action selection for a 
user. Each action corresponds to a RAT assignation (i.e. UMTS 
or LTE). The initial nine state set (presented in Fig. 4-left) 
corresponds to users with the same profile – same service and 
similar performance requirements (QoS requirements: 
throughput, delay, etc.). In a more general case users can be 
grouped under different Profile Groups (PGs). In that case the 
algorithm will contain as many nine state sets as there are 
different user profile groups in the system (Fig 4-right). Then, 
the states are defined by the system conditions (satisfaction) 
and the profile group that current user belongs to.  

B. Actors 
RL agents use softmax action selection, so probability to 

select action a (over A possible actions) in state sxx of cell j is:  
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For each action the corresponding learning parameter is 
pj(a,sxx). Parameter τ is a positive constant parameter.  

C. REINFORCE learning engine 
The learning process in JRL algorithm is achieved through 

the update of the parameters pj(a,sxx). We use REINFORCE 
[13] learning techniques to make this update. In particular, for 
the action at taken in the state st of the cell j the learning 
parameter is updated based on the reward as: 

 ˆ( ( ( ) (1 ( ))jj t t t t j j j t tp a s p a s r r a sβ π, ) ← , ) + ⋅ − ⋅ − , . (2) 
Here β is a positive step size parameter, whereas rj is the 

reward estimate at cell j. 

In our JRL mechanism, reward is calculated in each cell 
periodically (with period ΔRT). The corresponding cumulative 
reward is then updated after each iteration ΔRT:  

 
ˆ ˆ ˆ( )j j j jr r r rγ← + ⋅ −  (3) 

where γ is represents the step-size. After this value is 
obtained the parameters pj(a,sxx) of the actions taken within that 
period are updated based on Eq. (2). 

D. Reward function 
The reward function is the evaluation of the actions taken 

by RL agents through the algorithm’s evolution. The RL 
algorithm tends to achieve maximization of the reward function 
r through time [13]. Consequently, by a proper mapping of the 
desired QoS goals onto the reward function, these goals can be 
optimized. In particular, in this work we define the reward for 
cell j as: 

 ,

,
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n
= − ⋅Θ − ⋅Θ  (4) 

The first term of this function reflects the user satisfaction 
and is computed as the fraction of satisfied users ,

satisfied
active jn with 

respect to the overall number of active users nactive,j in the cell j.  

The second and the third terms have been introduced 
empirically in order to have better performances. We 
subtracted constant kLTE or kUMTS in case dissatisfaction is 
higher than ΘMAX in LTE or UMTS respectively; that is: 

 
0, 0,
1, 1,
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j MAX j MAXLTE UMTS
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j MAX j MAX

⎧ ⎧Θ < Θ Θ < Θ⎪ ⎪Θ = Θ =⎨ ⎨Θ > Θ Θ > Θ⎪ ⎪⎩ ⎩
 (5) 

IV. SIMULATION RESULTS 

The simulated environment includes a base station with two 
5MHz frequency bands, one used for one carrier of 
WCDMA/UMTS and the other for OFDMA/LTE. We suppose 
the reuse factor 3 for the LTE, so that only 8 out of 24 
frequency chunks (resource blocks) are assigned to one cell as 
active. The remaining 16 chunks would be used by neighboring 
cells. The parameters used in simulations are given in table I. 
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Figure 3.  Actor-critic RL: the agent-environment interaction. 
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Figure 4.  Reinforcement learning model for JRL. 
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Evaluation is carried out in the downlink and all users use the 
same service. Each simulation length was 104 sec. 

In order to assess the performance of the applied RL 
mechanism, we use some baseline solutions to compare with:  

• Separate UMTS / LTE: Performance of the two RATs is 
tested separately in the same scenarios. This is done to get an 
insight into the average potential of each of the two RATs. 
• Classic load balancing (LB): This approach assigns an 
incoming session to the RAT with the lowest load. We use a 
version of the approach in [18] adapted to the two RATs in 
this study. In UMTS downlink the load is measured as the 
transmitted power divided by the maximum power available. 
In LTE, load is measured as the average number of used 
chunks over the maximum number of available chunks. 
• Satisfaction-based load balancing (SLB): We also do tests 
with load balancing that monitors satisfaction in each RAT. 
This model assigns sessions to the RAT with the highest 
satisfaction probability. In case of the same satisfaction 
conditions a session is assigned to LTE – additional tests, not 

presented due to space limits, show that this gives better 
results when compared with the possibility to randomly assign 
a RAT or to assign it to UMTS. 

In both LB and SLB we introduce re-assignation requests in 
the same manner we do it for the JRL, so that sessions may be 
reconfigured after TREQ seconds. 

First results in Fig. 5 show the performance in terms of user 
satisfaction probability with varying average load. Results 
demonstrate better performance obtained by means of the JRL 
algorithm over classical LB and SLB approaches. In particular, 
assuming a minimum satisfaction probability of 95% (1-ΘMAX) 
to determine capacity limits, the maximum allowable average 
load for JRL is around 111 Erlangs, whereas for LB and SLB it 
is 91 and 101 Erlangs respectively, thus having a capacity 
improvement of ~22% and ~10%. 

In order to analyze in more detail the reasons for the better 
performance of JRL algorithm, in the following some results 
are shown under dynamic conditions in which the average load 
changes along simulation time. We set four temporal stages (S-
I to S-IV) in which average load is 70, 110, 50 and 100 Erlangs 
respectively. Each stage is 2500 sec long. 

Distribution of users between the two RATs is presented in 
Fig. 6-a. The probabilities to allocate the load between LTE 
and UMTS are equal for JRL at the beginning. As load 
increases, RL perceives the capacity limits of UMTS and starts 
loading LTE with a higher portion of users. JRL shows 
sporadic satisfaction degradation present with high cell loads 
(S-II) but to a lower extent than with LB and SLB (see Fig. 6-
d). The learning mechanism demonstrates the capability to 
react and adapt fast to system changes. 

LB mechanism demonstrates weakness in both S-II and S-
IV due to the incapability to make good decisions for high 
loads. The reason for this is that the assignation to the less 
loaded RAT does not always result in more user satisfaction. In 
fact, even if the load in UMTS and LTE is similar for the LB 
case (see Fig. 6-b-c), user satisfaction is very different (see Fig. 
6-e-f). SLB mechanism gives better results than the LB, but 
threatens to get into the oscillatory behavior when system load 
is high. An example for this is between 3500 and 4000 sec in 
Fig. 6e-f, where a lot of users start to be moved alternatively 
between the two RATs. This is due to the separate tracking of 
user satisfaction per RAT that can result in instable behavior 
for very high load. On the contrary, the proposed JRL 
mechanism, with the ability to track the overall satisfaction 
probability resulting from the different actions, is able to keep 
the satisfaction probability at good values in all the cases. 

TABLE I.  SIMULATION PARAMETERS 

Parameter Value / Description 
1 Cell area Hexagonal (Radius=0.5 km) 
Path loss 128,1+37,6·log10(d[km]) dB 
Shadow fading Log-normal, std=8dB 
Base station shadowing correlation 0.5 
User distribution Uniform 
Terminal speed 0 
Nominal bandwidth (w) 5 MHz per RAT 
Background noise in downlink (PN) -102 dBm (One RB PN /24) 
Max. base station Power (PTj

MAX) 43 dBm (per 5MHz) 
UMTS 
(Eb/No) target 5 dB 
Orthogonality factor 0.4 
Pilot + Control  30 dBm 
Max. Trans. Power per Mobile (PTi,j

MAX) 30 dBm 
LTE 
Multipath Fading 3GPP-Case 3 [14] 
Frame length 1ms (TTI=0.5ms) 
Subcarrier spacing (Δf) 15 kHz 
Resource block (RB) 180 kHz (12 x Δf) 
Subcarrier symbol rate 7 symbols / TTI 
L1/L2 Overhead 3 / 14 symbols [15] 
Number of RBs 24 (per 5MHz) 
Frequency reuse factor 3 (8/24 RBs per cell) 

AMC level [16] 
QPSK      1/3, 1/2, 2/3 
16-QAM  1/2, 2/3, 5/6   
64-QAM  2/3, 5/6 

Scheduler Proportional fair queuing [17] 
Session / System parameters 
System load (λ/μ) from 0 to 150 
Average session duration  expon. distr., mean 240 sec  
Average time between sessions expon. distr., mean 240 sec 
Re-assignation interval ( TREQ) 30 sec 
Generated data rate per user (Rb) 64 kbps (CBR) 

Throughput satisfaction threshold (ThLIM) 0.95·Rb 
Dissatisfaction threshold (ΘMAX) 5 % 
RL 
Reward update (ΔRT) 400 ms 
Parameter β 2.0 
Parameter τ 0.2 
Parameter γ 0.6 
kLTE 0.2 
kUMTS 0.4 

 
 

Figure 5.  User satisfaction probability.  
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V. CONCLUSION 
This paper has proposed a dynamic JRRM mechanism 

based on reinforcement leaning for LTE-UMTS coexistence 
scenarios. Simulation results have shown that the proposed 
mechanism outperforms both classic load balancing solution 
and load balancing based on user satisfaction probability. This 
kind of adaptive JRRM algorithms may serve as a tool to 
improve the spectral efficiency in mobile communications for 
the future technology transition period while ensuring user 
satisfaction. In the future work we plan to test the algorithm 
with more diverse services, spectrum conditions and with 
multiple cell scenarios. 
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