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ABSTRACT

The aim of this paper is to propose a specialized algorithm

to process Multitemporal or Multispectral 3D single-photon

Lidar images. Of particular interest are challenging scenarios

often encountered in real world, i.e., imaging through obscu-

rants such as water, fog or imaging multilayered targets such

as target behind camouflage. To restore the data, the algo-

rithm accounts for data Poisson statistics and available prior

knowledge regarding target depth and reflectivity estimates.

More precisely, it accounts for (a) the non-local spatial corre-

lations between pixels, (b) the spatial clustering of target re-

turned photons and (c) spectral and temporal correlations be-

tween frames. An ADMM algorithm is used to minimize the

resulting cost function since it offers good convergence prop-

erties. The algorithm is validated on real data which show the

benefit of the proposed strategy especially when dealing with

multi-dimensional 3D data.

Index Terms— 3D Lidar imaging, Poisson statistics,

Multispectral/Multitemporal, ADMM, NR3D, collaborative

sparsity, non-local TV.

1. INTRODUCTION

Single-photon 3D laser detection and ranging (Lidar) imag-

ing provides high resolution depth information that is required

in a range of emerging application areas: for example, navi-

gation of autonomous vehicles requires accurate high-speed

imaging of the surrounding scene. This leads to the acquisi-

tion of 3D videos which requires the development of special-

ized algorithms to account for repetitive information. This

paper proposes a sophisticated algorithm to process this high-

dimensional data while assuming the presence of multiple

peaks per-pixel in case the laser beam covers many depth sur-

faces [1, 2], accounting for photon starved regime in case of

fast or long-range imaging [3] and accounting for the pres-
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ence of obscurants (e.g., turbid media) leading to a high back-

ground level [4, 5].

Using a TCSPC-based ranging system in such realistic

scenarios requires the introduction of a restoration step to

optimize data exploitation. Several methods have been pro-

posed in the literature to deal with some specific cases. The

multilayered case has been considered in [1, 6, 7] while con-

sidering a costly MCMC method for the former, and faster

optimization algorithms for the latter. Solutions to process

multispectral 3D data have been proposed in [8, 9] but these

methods present some limitations when applied to challeng-

ing scenarios involving high background levels or requiring

fast processing. Other approaches propose fast reconstruction

performance [10,11] but are only designed to process one 3D

data cube and do not account for higher dimensions. This pa-

per propose a unifying solution that covers all these scenarios.

To restore multidimensional images, the proposed ap-

proach is based on the minimization of a convex function

based on a Poisson likelihood and two regularization terms.

Akin to [11], the proposed method exploits multi-resolution

information in both regularizing terms, which improve the

algorithm’s reconstruction properties. The first convex term

generalizes [7] by using a non-local total variation (TV)

regularization term for reflectivity. The second term uses

a collaborative sparse prior to reduce the number of active

sub-blocs inside the data cube [12, 13]. In both terms we

consider correlations between dimensions while assuming a

slight movement of the target for different wavelengths or

temporal frames. The resulting formulation is minimized us-

ing an alternating direction method of multipliers (ADMM)

algorithm [10,14–16]. The proposed approach is validated on

real multi-temporal Lidar data acquired through a dense fog.

The paper is organized as follows. Section 2 intro-

duces the considered statistical model. Section 3 presents

our restoration approach and estimation algorithm. Results

and conclusions are finally reported in Sections 4 and 5.

2. OBSERVATION MODEL

3D images can be obtained using a Lidar system by sending

light pulses and detecting the reflected photons and their time



of flight (TOF) from the target for each spatial location/pixel.

The data is then represented in three dimensional cube with

two spatial dimensions and one dimension representing his-

togram of photon counts with respect to their TOF. In this

paper, we consider a more general case in which the data

is acquired on several wavelengths, as in multispectral 3D

imaging, or at successive time instants for 3D videos. For

both cases, the acquired data can be represented in a four di-

mensional cube with 3 spatial dimensions and one dimension

related to wavelength or time frame. Let yn,t,d be the Li-

dar observation for the for dth dimension (wavelength, time

frame or other) which denotes the number of observed pho-

ton counts within the tth TOF bin of the nth pixel, where

n ∈ {1, · · · , N}. According to [17, 18], we assume the ob-

served photon counts yn,t,d are drawn from Poisson distribu-

tion P (.) as follow

yn,t,d ∼ P (sn,t,d) (1)

where

sn,t,d =

Mn
∑

m=1

[rn,m,d gd (t− kn,m,dT )] + bn,d (2)

with Mn denoting the number depth layers in the nth pixel

(to cover the case of imaging through camouflage or semi-

transparent surfaces), kn,m,d ≥ 0 and rn,m,d ≥ 0 are the mth

object range’s position and reflectivity , respectively, bn,d ≥ 0
denotes the background and dark counts of the detector, and

gd is the system impulse response (SIR) assumed to be known

from a calibration step. It should be noted that the target pa-

rameters (reflectivities and depths) depend on the dth dimen-

sion to account for the target, system and environment vari-

ations between successive images. Similarly, we allow the

system impulse response to vary with respect to d as for the

case of multi-wavelength imaging. In its discrete version, Eq.

(2) can be expressed as a linear system given by [1]

sn,d = Gdxn,d (3)

where shifted impulse responses are gathered in the K×(K+
1) matrix Gd =

[

g1
d, · · · , g

K
d ,1K×1

]

, K being the number of

time bins, 1i×j denotes the (i× j) matrix of 1, gid = [gd(T −
iT ), gd(2T − iT ), · · · , gd(KT − iT )]⊤ is a (K × 1) vector

representing the dth discrete impulse response centered at iT
and xn,d is a (K +1)× 1 vector whose value are zero except

for xn,d(kn,m,d) = rn,m,d, ∀m, and xn,d(K + 1) = bn,d.

Combining (3) and data Poisson statistics, the negative-log-

likelihood associated with the discrete observations yn,k,d ∼

P
[

(Gdxn,d)k
]

can be evaluated as follows

Ln,d (xn,d) = Hn,d (Gdxn,d) (4)

where Hn,d : R
K → R ∪ {−∞,+∞} is given by

Hn,d (z) =
K
∑

k=1

{

zk − yn,k log
[

z
(+)
k

]

+ iR+
(zk)

}

(5)

where z
(+)
k = max {0, zk} and iR+

(x) is the indicator func-

tion that imposes non-negativity (iR+
(x) = 0 if x ≥ 0 and

+∞ otherwise).

Let Y , X be the N×K×D matrices gathering all obser-

vations of yn,k,d and yn,k,d, respectively, and Y d, Xd those

associated with the dth dimension. The joint negative joint

likelihood is obtained by assuming yn conditionally indepen-

dent given X , as follows

L (X) = − log [P (Y |X)] =
∑

n,d

Ln,d (xn,d). (6)

The goal is then to estimate the sparse matrices Xd, ∀d, while

considering that the same target is observed by the different

dimensions d ∈ {1, · · · , D}.

3. REGULARIZED PROBLEM

It is necessary to introduce prior knowledge or some regu-

larization terms to the ill-posed problem associated with the

estimation of matrix X by minimizing L (X). Such regu-

larization will be related to the target depths and reflectivities

leading to a new cost function given by

C (X) = L (X) + iR+
(X) + τ1φ1 (X) + τ2φ2 (X) (7)

where τ1 > 0, τ2 > 0 are two positive constants, iR+
(X) =

∑

n,k,d iR+
(xn,k,d) and φ1, φ2 are two regularization func-

tions enforcing our prior knowledge on depth and reflectivity,

respectively. In the following sections and for clarity pur-

poses, we present at first φ1, φ2 assuming only one dimen-

sion, then, we generalize the two functions to account for

multiple dimensions.

3.1. Depth regularization: priors on data support

The data cube contains photon returns from both the back-

ground and the observed targets. As shown in (2), the back-

ground returns are spread over the full cube while those of a

target are generally clustered. This is a key observation that

will be used to define the prior for the support. Note also

that in the photon starved regime, the cube is too sparse and

better signal to background ratio can be achieved by using

downsampled histograms [11]. By combining these observa-

tions, we assume group-sparsity of the denoised data cube on

a down-sampled image. This means that the returns associ-

ated with a target tend to be clustered and sparse. This effect

is promoted in this paper by considering an ℓ2,1 mixed norm

[12, 13] which enforces sparsity on small cubes obtained by

grouping local pixels and depth bins, as follows

φ1 (Xd) = ||diag(v)KFXd(:)||2,1 (8)

where Xd(:) ∈ R
(K+1)N×1 denotes the vectorization of

the matrix Xd, F ∈ RKN×(K+1)N is an operator that dis-

cards the last background row of X to only select its first

K rows, K : RKN×1 → R
Sb×NB is a linear operator



that splits the data cubes into NB small blocs each of size

Sb = (rb × cb × tb), and v ∈ RNB×1 contains weights for

each bloc. One can also express φ1 (X) as follows

φ1 (X) =

NB
∑

i=1

vi

√

√

√

√

√





∑

(t,n)∈νi

x2
n,t



 (9)

where νi gathers the location information of the ith bloc, i.e.,

pixel and time-bin indices .

3.2. Regularized intensity: priors on the counts

The photon counts associated with target are restored by ac-

counting for non-local spatial correlation between pixels, as

for most state-of-the-art algorithms [19–21]. These correla-

tions should be enforced on informative photons associated

with target thus the need for a strategy to separate signal from

background counts. As highlighted in [7, 11], low-pass fil-

tered histograms is a good solution as it improves the separa-

tion between target and background counts, and it allows to

deal with the photon starved regime for which the data cube

is too sparse. Therefore, we apply a non-local TV regular-

ization on low-pass filtered image, where each pixel gathers

weighted information from similar pixels in the image to im-

prove its estimate, i.e.,

φ2 (Xd) = ||HwDhFXd(:)||
2
F (10)

where Dh ∈ R
KhN×KN is performing a range downsam-

pling by summing each #h successive time bins, Kh repre-

sents the number of resulting blocs given by the integer part of

the division K/h, Hw ∈ RndKhN×KhN computes weighted

differences between each pixel and other nd pixels located

in a fixed field (e.g., this is a block-circulant-circulant-block

matrix useful for fast computations). More precisely, the op-

erator Hw : RKhN → R
ndKhN performs the following op-

eration

||Hwz||
2
F =

N
∑

n=1

nd
∑

i=1

Kh
∑

ℓ=1

w2
i,n

(

HDiff
i zℓ

)2
∣

∣

∣

n
(11)

where Z = [z1, ..., zKh
] ∈ RN×Kh is built from z ∈ RKhN

and zℓ ∈ R
N denotes its ℓth column. For each pixel, we

consider nd predefined directions, for which we associate the

weights w2
i,n for the nth pixel and ith direction, and the oper-

ator HDiff
i ∈ RN×N computing the difference between each

pixel and that located at the ith direction. For simplicity, we

treat the matrices HDiff
i with periodic boundary conditions as

cyclic convolutions.

3.3. Generalization to multidimensional data

Each dimension can be processed independently, however,

joint processing will account for complementary information

between dimensions to improve performance. We assume that

the multidimensional data corresponds to the same scene with

a slight movement of the observed object or the camera as

considered in many studies [22, 23]. Under this assumption,

we might assume that the support of the downsampled images

is almost the same leading to

Φ1 (X) =

NB
∑

i=1

vi

√

√

√

√

√





D
∑

d=1

∑

(t,n)∈ψi

x2
n,d,t



. (12)

Similarly, the intensity regularization can be defined as

Φ2 (X) =
D
∑

d=1

||HwDhFXd(:)||
2
F . (13)

Note that spatial correlation is promoted between the pix-

els belonging to the same dimension, as different dimensions

might have different intensity responses (e.g. multispectral

imaging). Also note that this term introduces correlation be-

tween dimensions as we assume the same weights w (that

can obtained using all dimensions) for all of them. However,

the independent case can be easily obtained by associating a

different vector wd with each dimension.

3.4. Choice of the algorithm parameters

The weights w,v should reflect our prior knowledge about

possible spatial correlations and target’s depths and can be

fixed using complimentary imaging modalities of the same

scene leading to a fusion task. In this work, these weights

have been fixed using only the Lidar data as described in [24].

The regularization parameters τ1, τ2 can be estimated using a

Bayesian approach or automated algorithms [25]. In this pa-

per, a grid search is performed and those parameters providing

best performance are considered.

3.5. Estimation algorithm

Several strategies can applied to minimize the resulting con-

vex cost function in (7), where most of them are based on

dividing the problem into simpler sub-problems [26]. The

ADMM algorithm described in [27] is considered in this work

as it showed good results in several applications [10,28]. The

algorithm is not described here for brevity and we invite the

reader to consult [26, 27] for more details.

4. RESULTS ON REAL MULTITEMPORAL DATA

ACQUIRED THROUGH OBSCURANTS

4.1. Data description

This section evaluates the proposed algorithm on real data

when imaging through obscurants, i.e., in presence of a high



Fig. 1. Picture of the mannequin target: (left) in air, (right) in

presence of fog.

background level. The scene considered, consists of a life-

sized polystyrene head as shown in Fig. 1, and was set in a

fog chamber (of dimensions 26×2.5×2.3 meters ) located in

an indoor facility at the French-German Research Institute of

Saint-Louis (ISL). The target was located at a distance of 21.5

m from the sensor, and 5 m inside the fog chamber. To study

the effect of different fog levels, the chamber was filled with

water fog with a high density, then a succession of 3D images

were taken as the fog density decreased. The data were ac-

quired every 60 s, where each image contains 92 × 67 pixels

and 400 time bins, and was acquired during 30 seconds (i.e., 3

ms acquisition time per pixel). This provides successive data

cubes with decreasing fog level, i.e., background level.

4.2. Algorithms

The proposed algorithm, denoted Multidimensional-Nonlocal

Restoration of 3D (M-NR3D) images or just NR3D when ap-

plied to a independent data cube, is run using (rb, cb, tb, h) =
(4, 4, 50, 5). The NR3D regularization parameters are man-

ually selected to provide best qualitative performance when

testing the following intervals τ1 = (1, 10, 100) and τ2 =
(0.01, 0.1, 1). The algorithm is compared to:

• The classical algorithm that computes maximum likeli-

hood estimates of the depth and reflectivity maps while

assuming the presence of one peak per pixel and no

background noise

• RDI-TV algorithm [10] computes maximum-a-posteriori

estimates while considering a TV regularization term

and no background noise. It is assumed that the posi-

tion of missing pixels is known and that there is only

one peak per pixel

• TV-ℓ21 algorithm [7] which generalizes RDI-TV by

accounting for the presence of multiple peaks and is

designed to reconstruct scenes presenting objects well

separated in the depth dimension, as for the proposed

mannequin face target.

Except M-NR3D, all described algorithms process the cubes

independently.

4.3. Discussion

Fig. 2 show the point clouds obtained using different algo-

rithms for three time instants, where the fog density decreases

from T1 to T3. Note that depth is represented by the point

locations and reflectivity is colour coded. All algorithms per-

form well in presence of a low fog density, as shows for T3.

However, the advantage of both TV-ℓ21 and NR3D with re-

spect to Classical and RDI-TV becomes clear in presence of

a dense fog (see T1) since they better exploit the spatial cor-

relation of the histograms. Thanks to its joint processing of

the three datasets (T1, T2 and T3), M-NR3D performs the best

and the mannequin face is reconstructed even for the extreme

case T1. This highlights the importance of the joint process-

ing of multidimensional data.

5. CONCLUSIONS

A new optimization based algorithm is presented to restore

single-photon 3D images under challenging scenarios. The

algorithm allows the restoration of data acquired in the pho-

ton starved regime or in presence of a high background noise

due to obscurants. A generalization for the joint processing

of high-dimensional data is presented and was shown to im-

prove reconstruction performance. Future work includes the

consideration of other simulation scenarios to highlight the

algorithm capabilities (e.g., multiple peaks per pixel). Set-

ting the weights using other imaging modalities is also very

interesting and will be investigated in the future to perform

multi-modality data fusion.
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