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Abstract. In this paper we propose a Markov random field (MRF)
based method for joint registration and segmentation of cardiac per-
fusion images, specifically the left ventricle (LV). MRFs are suitable for
discrete labeling problems and the labels are defined as the joint occur-
rence of displacement vectors (for registration) and segmentation class.
The data penalty is a combination of gradient information and mutual
dependency of registration and segmentation information. The smooth-
ness cost is a function of the interaction between the defined labels.
Thus, the mutual dependency of registration and segmentation is cap-
tured in the objective function. Sub-pixel precision in registration and
segmentation and a reduction in computation time are achieved by using
a multiscale graph cut technique. The LV is first rigidly registered before
applying our method. The method was tested on multiple real patient
cardiac perfusion datasets having elastic deformations, intensity change,
and poor contrast between LV and the myocardium. Compared to MRF
based registration and graph cut segmentation, our method shows supe-
rior performance by including mutually beneficial registration and seg-
mentation information.

1 Introduction

Dynamic perfusion magnetic resonance (MR) images are characterized by rapid
intensity change over a region of interest, low spatial resolution, poor contrast
and noise. Therefore, registration or segmentation of the left ventricle (LV) in
cardiac perfusion datasets is a challenging task. However, there are certain char-
acteristics of perfusion images which make it appealing for joint registration
and segmentation. The LV is characterized by varying levels of intensity over
the image acquisition process. While the changing contrast makes registration
difficult, it also helps in segmentation. Clear identification of object boundaries
leads to greater accuracy in feature extraction and hence improved registration.
Motivated by this scenario and the need to implement a computationally effi-
cient method, we propose a Markov random field (MRF) framework for the joint
registration and segmentation of the LV in cardiac perfusion datasets.

The first work on joint registration and segmentation [1] used an active con-
tour framework to interleave level set segmentation with a feature based regis-
tration method. It successfully segmented and registered portal images to CT
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scans. Partial differential equations were used in [2] for joint registration and
segmentation while a statistical model was presented in [3]. Wyatt and Noble
in [4] combine MRFs and Bayesian estimation for joint registration and seg-
mentation where the use of MRFs is limited to segmentation. There are other
methods where registration plays an important role in segmentation and vice-
versa. In [5] an image is registered to an atlas or a clearly identified object using
level sets. Likewise, including shape information in active contours requires a
model of shape variation [6] involving accurate registration of training images.
In combining registration and segmentation, the major challenges are to ensure
convergence and prevent estimates of registration or segmentation parameters
adversely affecting each other. Equally important is to define appropriate energy
functions and include relevant information for both processes.

The important contribution of our work is in developing an MRF method
for the joint registration and segmentation of cardiac perfusion images. Previ-
ous methods are based on active contours which, being iterative, have a high
computation time, are likely to be trapped in local minima, and are sensitive to
initialization. On the other hand discrete optimization techniques for MRFs, like
graph cuts, can find a global or strong local optima in less time. We formulate
the joint registration and segmentation problem as one of labeling where each
label defines the joint occurrence of displacement field (for registration) and seg-
mentation class. The cost function is a combination of the mutual dependency of
registration and segmentation information at every label and a multiresolution
graph cut optimization reduces the computation time. The rest of the paper is
organized as follows: Section 2 gives details about joint registration and segmen-
tation and our MRF formulation. Section 3 presents our experiments and results
and we conclude with Section 4.

2 Theory

2.1 Joint Registration and Segmentation

In registration the objective is to match each pixel in the floating image to the
most similar pixel in the reference image and the similarity metric depends on
the type of images being used. The displacement field is regularized to give a
smooth deformation and the smoothness constraints depend upon the registra-
tion framework. For B-spline [7] and other curve based registration methods,
curve gradients are used as smoothness constraints. In [8], Shekhovstov et al.
used MRFs for non-rigid registration where smoothness depends upon the rela-
tive displacement between labels. Since the smoothness formulation is not based
on the boundary properties of the object being registered it may result in un-
expected deformations of the registered image, especially at object boundaries.
This shortcoming is overcome by smoothness criteria based on object features
which is integral to joint registration and segmentation.

To achieve joint registration and segmentation between a pair of images the
following points have to be kept in mind when formulating the energy func-
tion: 1) mutual dependency of registration and segmentation is considered; 2)
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registration and segmentation information contribute equally; and 3) estimate
of registration parameters does not adversely affect segmentation parameters or
vice-versa. The active contour framework in [1] was able to achieve joint registra-
tion and segmentation by defining a continuous valued mapping between refer-
ence and floating images. A major disadvantage of the active contour framework
is the multiple iterations needed for convergence. As with all energy minimiza-
tion techniques using gradient descent, there is the possibility of the curve being
trapped in local minima. The position of the initial curve also influences the final
solution. Although this can be overcome by employing a standard segmentation
technique to obtain an initial curve, the problems of multiple iterations and
getting trapped in local minima still persist. The number of iterations can be
greatly reduced by using graph cuts. Graph cuts is based on max flow approach
and is very effective in finding the global minima or a strong local minima of
discrete MRF energy formulations [9].

2.2 Markov Random Fields

MRFs have been previously used with perfusion images for elastic registration
[10] and segmentation [11]. Its energy function takes the following form

E(f) =
∑

s∈P

Ds(fs) +
∑

(s,t)∈N

Vst(fs, ft), (1)

where P denotes the set of pixels, fs denotes the label of pixel s ∈ P in the
floating image and N is the set of neighboring pixel pairs. For joint registration
and segmentation fs gives both the displacement vector and the segmentation
class of pixel s, i.e., fs = {x1

s, x
2
s, Ls} with xs= {x1

s, x
2
s} denoting displacement

along the two axes and Ls denoting the segmentation class (Ls = 1 denotes
object and Ls = 0 denotes background). The labels of the entire set of pixels are
denoted by f . D(fs) = D1(xs) + D2(Ls, xs), is a unary data penalty function
derived from observed data and measures how well label fs fits pixel s. Vst is a
pairwise interaction potential that imposes smoothness and measures the cost
of assigning labels fs and ft to neighboring pixels s and t. The optimization
scheme for (1) using graph cuts is discussed later. Next, we discuss each term of
the energy function in detail.

Data Penalty Term: Ds assigns a penalty to a pixel s taking on a particular
label fs = {x1

s, x
2
s, Ls}. Ds is defined as the sum of two penalty terms. The first

term is a function of gradient information and by itself is suitable for registration.
The second term includes mutual dependency of registration and segmentation
in the penalty term. The following issues are considered in combining the two
penalty values: 1) the individual penalties have the same dynamic range, i.e., the
difference between their maximum and minimum values should be same; 2) the
individual terms are robust for their specific purposes; and 3) the combination of
the two terms truly captures the mutual dependency of registration and segmen-
tation. For greater accuracy and robustness a pixel block centered at the pixel is
used to calculate the data penalty. We refer to the block centered at pixel s as sb.
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Let If (sb, i) denote the intensity of the ith pixel of block sb in the floating image
If and Ir(sb, i) denote the corresponding pixel intensity in the reference image
Ir. The pixel block at s + xs is denoted as sb + xs and the intensity of its ith
pixel in Ir is given by Ir(sb + xs, i). The corresponding edge orientation angles
in the two images are given by βf (sb, i) and βr(sb + xs, i) and the correspond-
ing edge magnitudes are given by Mf(sb, i) and Mr(sb + xs, i). Note that the
data penalty is for each pixel but is calculated over a pixel block for robustness.
D1(xs) incorporates registration information in the objective function and is a
function of gradient orientation information. It is given by

D1(xs) =
1
2

[
1 −

∑
i Mr(sb + xs, i)Mf (sb, i) cos (Δβ(xs, sb, i))∑

i Mr(sb + xs, i)Mf (sb, i)

]
, (2)

where Δβ(xs, sb, i) = βr(sb + xs, i) − βf (sb, i). Edge information has been suc-
cessfully used to register contrast enhanced images [12] and is a robust feature
in the face of intensity changes. D1 is a normalized metric that gives values be-
tween 0 and 1 with 0 indicating a perfect match. Since D1 is a penalty, its value
is low for greater similarity between the pixel blocks.

The second penalty term, D2 is a function of the mutual dependency of seg-
mentation class and displacement vectors. The LV and myocardium are identified
in If by drawing masks around it and If is rigidly registered to Ir . The inten-
sities of pixels inside (outside) the mask are used to create Gaussian models of
object (background). Let pfo(s) denote the posterior probability of pixel If (s)
belonging to object and pfb(s) denote its probability of belonging to background.
The probability of pixel Ir(s + xs) belonging to object/background is given by
pro(s + xs)/prb(s + xs). Note here that by s we refer to the pixel at s. Similarly,
s + xs refers to the pixel at location s + xs. We do not use i because D2 is
calculated from individual pixel intensity values. Thus, D2 is given by

D2(Ls = 1, xs) = 1 − √
pfo(s) × pro(s + xs),

D2(Ls = 0, xs) = 1 − √
pfb(s) × prb(s + xs)

(3)

For registration and segmentation to jointly influence the penalty term, the
segmentation information from the reference and floating image are combined
as a function of displacement vectors. If pfo(s) and pro(s + xs) both have a
value greater than 0.5 the pixel is likely to belong to the object and the penalty
for Ls = 1 is low. The corresponding penalty for Ls = 0 is high. If pfb(s) and
prb(s + xs) have probability values greater than 0.5, indicating a background
pixel, the penalty for background class is low and the corresponding penalty for
object class is high. When there is ambiguity over the segmentation class, i.e.,
pfo(s) ≥ 0.5 and pro(s + xs) < 0.5 or pfb(s) ≥ 0.5 and prb(s + xs) < 0.5 then
the square root of the product of the probabilities ensures that both the floating
and reference image contribute to the penalty of each label.

Pairwise Interaction Term: This term is used to regularize the solution and
combines smoothness constraints due to displacement vector and segmentation
class. It is defined as
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Vst(fs, ft) = λst

⎧
⎨

⎩

0.002, (Ls = Lt) and |xs − xt| ≤
√

2,
0.002, (Ls �= Lt) and |xs − xt| ≤ 3,
∞, otherwise.

(4)

λst is a spatially varying weight that depends upon the intensity difference be-
tween the neighboring pixels of the floating image and is given by

λst = exp
{
− [If (s) − If (t)]2

}
. (5)

When neighboring pixels have the same segmentation class (Ls = Lt), they are
likely to have similar displacements because pixels on the same object tend to
move together. Thus we constrain the maximum relative displacement between
the pixels to be

√
2 pixels. If neighboring pixels have different segmentation class

(Ls �= Lt), then they can have different displacements since pixels on different
objects may move differently. Therefore we allow relative displacement between
such pixels to be up to 3 pixels.

Optimization using Graph Cuts: The energy function is optimized using
graph cuts [9] which is suitable for discrete MRF labeling problems. Its ability to
enforce piecewise coherence makes it especially suitable for vision applications.
We represent pixels as nodes Vp in a graph G which also consists of a set of
directed edges E that connect nodes. For l labels, l terminal nodes are created.
First, ±6 displacement positions along x and y axis are defined with a step
of 1 pixel between two consecutive positions. For every position there are two
segmentation classes. The total number of labels are 2 × (2 × 6 + 1)2 = 338. In
the second stage ±4 displacements along each axis with a step of 0.5 pixel is
defined and the total number of labels is 162. Pixel blocks of size 5×5 were used
for determining the penalty values.

3 Experiments and Results

Registration Results: Cardiac images were acquired on Siemens Sonata MR
scanners following bolus injection of Gd-DTPA contrast agent. The pixel spac-
ing ranges from (1.5× 1.5)− (2.8× 2.8)mm2. Contrast agent flows into the right
ventricle (RV), then into the LV and finally into the myocardium. The acquired
datasets were all in 2D and a total of 10 datasets were used to test our method.
Each dataset had 60 frames. In some of the datasets, the images before contrast
enhancement did not show the LV and were discarded. The total number of
test images were 538 with one reference image from each dataset. The LV nad
myocardium was identified in each image by drawing masks and then rigidly reg-
istered before applying our method. We compared the registration performance
of our method (JRS) and an MRF method that does not use segmentation
information, i.e.,

E(f) =
∑

s∈P

D1(fs) +
∑

(s,t)∈N

Vst(fs, ft), (6)
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where fs = xs = {x1
s, x

2
s} and Vst is given by

Vst(fs, ft) =
{

0.002, |fs − ft| ≤
√

2,
∞, otherwise.

(7)

The reference image (Fig. 1 (a)) and floating image (Fig. 1 (b)) pair was chosen
such that there is intensity change between them as well as noticeable deforma-
tions. The deformations are highlighted by the difference image in Fig. 1 (c).
Dark areas in the difference image are the ones with negative intensity differ-
ence and bright areas correspond to positive intensity difference values. Areas in
grey have zero intensity difference. The difference image after registration using
only MRFs (Fig. 1 (d)), does not register all the deformations especially at the
boundaries of the RV. The difference image obtained after registration using
JRS (Fig. 1 (e)) shows noticeable improvement in registration performance and
inclusion of segmentation information plays a crucial role in it.

The epicardium and endocardium were manually identified in the reference
image and all floating images. From the obtained deformation field we register
the LV and myocardium in the floating image and calculate the error between
the registered contours and those in the reference image. The measured error
is the average distance between each point on the registered contour and the
nearest point on the reference contour. We also show the outline of the registered
contours (in red) on the reference image using JRS (Fig. 1 (f)) and MRFs
(Fig. 1 (g)). The contours are better registered using JRS as is evident from the
distance between the registered epicardium and endocardium. The quantitative
error measures before and after registration using JRS and MRFs are shown in
Table 1. While the average registration error after using MRFs is greater than
1 mm, in case of JRS it is well below 1 mm. In fact the maximum registration
error for JRS hardly goes above 1 mm, with only a few datasets exhibitng that.

The deformed grids obtained from MRFs and JRS are shown, respectively,
in Figs. 1 (h) and (i). The deformation field obtained from MRFs and JRS are
smooth. Even though segmentation information has been incorporated into the
cost function, the smoothness constraint has been appropriately formulated to
avoid folding. The registration errors given in Table 1 show the greater accuracy
obtained for JRS. While MRFs, without any segmentation information, have
higher registration error, they do not result in folding of deformation field. The
relative displacement threshold in Vst (

√
2 in our case) plays an important role

in influencing the smoothness of the deformation field. An increase in threshold
leads to a disparate displacement field, i.e., neighboring pixels do not have coher-
ent motion. To avoid such issues, the relative displacement between neighboring
pixels is constrained to be within

√
2 pixels, which is the maximum distance

between neighbors. Such an arrangement is necessary for discrete valued cost
functions.

Segmentation Results: The LV and myocardium in each floating image are
also separately segmented using graph cuts [11]. Figures 2 (a) and (b) show re-
spectively the outline of segmented mask using graph cuts and JRS on the same
floating image. By segmentation results using JRS we refer to the segmentation
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Fig. 1. Registration results for cardiac perfusion images. (a) Reference image; (b) float-
ing image; difference image (c) before registration; (d) after registration using MRFs
and (e) after registration using JRS. Superimposed outline of registered contours using
(f) JRS and (g) MRFs. Deformed grids obtained from (h) JRS and (i) MRFs.

(a) (b) (c) (d) (e)

Fig. 2. Segmentation results for cardiac perfusion images. Outline of segmented mask
in green using (a) graph cuts; and (b) JRS; (c)-(e) show the outline of the deformed
mask in three floating images. In each floating image, the deformed mask was obtained
by deforming the segmented mask of the reference image according to the corresponding
displacement field.

class from the labels of each pixel in the floating image. JRS results in greater
segmentation accuracy than graph cuts for images with poor contrast between
LV and myocardium. The segmented mask from the reference image is deformed
using the deformation field of different frames of the sequence. This deformed
mask is then superimposed on the corresponding floating image as shown in
Figs. 2 (c)-(e). These results show that registration and segmentation mutually
benefit each other, i.e., the epicardium and endocardium are not only segmented
accurately but also registered to the reference image. Table 1 also shows the
different error measures for segmentation. The average Dice Metric (DM) and
Root Mean Square (RMS) values for each dataset are shown in Fig. 3. JRS con-
sistently shows higher DM and lower RMS values than graph cuts. The average
RMS value for each dataset is close to 1 pixel and the average DM is above 90%
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Fig. 3. Quantitative segmentation results for 10 datasets. (a) average DM values; (b)
average RMS value. Brown bars show results for JRS and blue bars show results for
graph cuts.

Table 1. Summary of registration and segmentation performance on cardiac perfusion
datasets. The values indicate average and standard deviations for all datasets.

Registration Error (mm) Segmentation Result
Before After Registration Graph Cuts JRS
Registration MRFs JRS RMS (mm) DM (%) RMS (mm) DM (%)

Epicardium 2.2±1.2 1.0±0.2 0.7±0.4 1.45±0.43 88.6±1.6 1.13±0.32 92.1±1.1

Endocardium 2.8±1.0 1.1±0.3 0.6±0.3 1.65±0.31 89.2±0.9 1.11±0.39 92.7±0.8

Overall 2.6±1.1 1.1±0.2 0.5±0.2 1.52±0.34 88.93±1.2 1.11±0.34 92.5±0.9

(values above 80% indicate excellent agreement with manual segmentation). For
graph cuts DM values less than 90% are attributed mainly to the poor contrast
between LV and myocardium in many images.

4 Conclusion

We have proposed a novel MRF based method for the joint segmentation and
non-linear registration of the LV in perfusion cardiac images. Our method is
different from previous works using active contours, and MRFs ensure less com-
putation time and high accuracy. The problem was formulated as one of finding
the appropriate labels. The labels give the displacement vector and segmenta-
tion class for each pixel. The cost function depends on contrast invariant edge
information, segmentation class, and mutual dependency of registration and seg-
mentation. The final labels are obtained by minimizing the cost function in a
multiresolution graph cut implementation. The coarse to fine graph cut imple-
mentation gives sub-pixel accuracy for registration and segmentation. The per-
formance of our method was compared with an MRF based registration method
using only gradient information and a graph cut based segmentation method.
Quantitative and visual results are shown for the registration of the epicardium
and endocardium. For comparing segmentation performance, Dice Metric and
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RMS errors between segmented LV and reference manual segmentation are cal-
culated. All sets of results show the superior performance of our method com-
pared to separate registration and segmentation method. In future work we aim
to extend our method for 3D datasets and other imaging modalities, and also
optimize it for less computation time.
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