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Abstract—In this paper, we jointly consider the resource allo-
cation and base-station assignment problems for the downlink in
CDMA networks that could carry heterogeneous data services. We
first study a joint power and rate allocation problem that attempts
to maximize the expected throughput of the system. This problem
is inherently difficult because it is in fact a nonconvex optimiza-
tion problem. To solve this problem, we develop a distributed algo-
rithm based on dynamic pricing. This algorithm provides a power
and rate allocation that is asymptotically optimal in the number of
mobiles. We also study the effect of various factors on the develop-
ment of efficient resource allocation strategies. Finally, using the
outcome of the power and rate allocation algorithm, we develop
a pricing-based base-station assignment algorithm that results in
an overall joint resource allocation and base-station assignment.
In this algorithm, a base-station is assigned to each mobile taking
into account the congestion level of the base-station as well as the
transmission environment of the mobile.

Index Terms—Base-station assignment, CDMA networks, non-
convex optimization, power and rate allocation, pricing.

I. INTRODUCTION

THE increasing demand for high data rate services in wire-
less networks and the scarcity of radio resources necessi-

tate the efficient use of radio resources. The time-varying system
environment, such as time and location dependent channel con-
ditions, and the demand to accommodate mobiles with diverse
service requirements are some of the main difficulties in ef-
ficiently using radio resources. Hence, it is necessary to de-
velop a resource allocation scheme that takes into account the
time-varying system environment and the service requirements
of mobiles. Moreover, if joint allocation of resources is consid-
ered, the performance of the system could be significantly im-
proved.

Recently, there have been a number of papers that have
studied joint resource allocation problems [1]–[7]. Oh and
Wasserman [1] consider a joint power and spreading gain
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allocation problem for the uplink of a single cell in code
division multiple access (CDMA) networks. They formulate
an optimization problem for a single class of mobiles with
a constraint on the maximum transmission power of each
mobile. In this work, they do not impose any constraint on the
minimum spreading gain (i.e., the maximum data rate). They
show that for the optimal solution, mobiles are selected for
transmission according to the channel condition, and if a mobile
is selected, it transmits at its maximum transmission power.
They generalize their algorithm to multi-cellular networks in
[2]. Their algorithm can be easily modified for the downlink
problem. In this case, the optimal strategy is selecting only
one mobile that is in the best transmission environment at a
time and allocating the maximum transmission power to that
mobile (i.e., the time division multiple access (TDMA) type of
strategy). Bedekar et al. [3] and Berggren et al. [4] consider
joint power and rate allocation for the downlink of the CDMA
system with a constraint on the maximum transmission power
for the base-station. However, their models do not consider that
each mobile could have a maximum data rate constraint. Their
results also show that, in this case, the TDMA type of strategy
is an optimal multiple access strategy. This strategy is used in
the IS-856 system [8], which is also known as high data rate
(HDR) [9], [10].

Joint power allocation and base-station assignment problems
for the uplink have been considered by Hanly [5] and Yates and
Huang [6]. In these papers, the minimum transmission power
satisfying the signal to interference and noise ratio (SINR)
threshold of each mobile is obtained via a strategy employing
both power allocation and base-station assignment. Saraydar et
al. [7] also consider a joint power allocation and base-station
assignment problem for the uplink. They model the problem
as an -person noncooperative power allocation game. Each
mobile selects the optimal power level and the base-station
that maximize its net utility, (i.e., utility minus cost) without
considering other mobiles. The performance of their algorithm
depends on the choice of the price. However, they do not
provide a strategy for determining the optimal price.

In this paper, we jointly study the resource allocation and
base-station assignment problems for the downlink in CDMA
networks. The resource allocation part of the problem includes
optimizing over both power and rate allocation. In this case, in
addition to allocating an appropriate power level, we also need
to determine an appropriate data rate for each mobile to improve
system efficiency. In this paper, we allow for constraints on the
maximum transmission power at the base-station and the max-
imum data rate for each mobile. It turns out that this problem
is a nonconvex optimization problem. In general, obtaining an
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optimal solution to a nonconvex optimization problem would re-
quire a very complex algorithm. Hence, in this paper, we focus
on developing a simple distributed power and rate allocation al-
gorithm. Even though this algorithm cannot guarantee to ob-
tain the optimal solution, we will later show that the perfor-
mance difference between our solution and the optimal solution
is bounded by the performance of one mobile. Hence, the nor-
malized error is , where is the number of mobiles
and, thus, this algorithm results in an asymptotically (in the
number of mobiles) optimal power and rate allocation.

We next consider the base-station assignment problem in a
multi-cellular system. In this work, a base-station is assigned
to a mobile taking into account the congestion level of the cell
as well as the transmission environment of the mobile. To mea-
sure the congestion level of the cell and the transmission envi-
ronment of the mobile, we use information from the joint power
and rate allocation algorithm developed in this paper. Unlike the
base-station assignment algorithms developed in [5]–[7] that are
based on the uplink, our algorithm is based on downlink perfor-
mance. In wireless networks, the downlink could be a bottleneck
link because of the asymmetric bandwidth demand between the
downlink and the uplink for data services [9]–[12]. Thus, it may
be more appropriate to do base-station assignment based on the
downlink performance. As shown in [13], for the joint power
allocation and base-station assignment problems, the algorithm
for the uplink cannot be easily modified for the use in the down-
link, which necessitates studying the downlink problem inde-
pendently.

In this paper, we also investigate how power and rates can
be efficiently allocated in our system. As mentioned earlier, it
has been shown that, for the downlink in an idealized system
in which there is no constraint on the maximum data rate for
each mobile, the optimal multiple access strategy is a TDMA
type of strategy, i.e., selecting only one mobile at a time and
transmitting to it at the maximum transmission power. In addi-
tion, it can be easily shown that if all mobiles are homogeneous,
selecting a mobile in the best transmission environment is an
optimal mobile selection strategy. However, in practice, due to
either the physical limitation of the hardware or limits of the in-
dividual applications, the maximum data rate for each mobile
is bounded. Further, each mobile could have a different trans-
mission scheme (e.g., a different modulation or coding scheme)
that depends on the channel condition and the application [14].
This results in the mobiles being heterogeneous. In this paper,
we study the properties of efficient multiple access and mobile
selection strategies taking into account these two practically im-
portant generalizations (heterogeneity and maximum data rate
constraints) and show that a strategy that transmits to only one
mobile in the best transmission environment at a time may not
be optimal.

To develop a power and rate allocation algorithm, we will use
a few basic theoretical results from our previous papers [15],
[16], in which we focused on theoretically solving a nonconvex
optimization problem. However, compared to our previous
works [15], [16], this paper has the following distinguishing
features. First, in this paper, we study a joint power and rate
allocation problem in the system allowing for variable data
rates, while in [15] and [16], only a power allocation problem

with a fixed data rate was studied. This is important since
most next generation wireless systems are expected to support
variable data rates [14], [17]. Further, in this paper, we study
the effects of various factors (e.g., the maximum data rate,
the transmission scheme, and the transmission environment)
on the resource allocation strategies (e.g., the optimal data
rate, the multiple access strategy, and the mobile selection
strategy), which provide insight into the development of effi-
cient resource allocation strategies. Finally, in this paper, we
also study a base-station assignment problem that considers a
multi-cellular system, in contrast to the single cell system that
was studied in [15] and [16].

The rest of the paper is organized as follows. In Section II,
we describe the system model. We present the joint power and
rate allocation algorithm in Section III and study the proper-
ties of power and rate allocation in Section IV. In Section V,
the base-station assignment algorithm is presented. We provide
numerical results using computer simulation in Section VI and
conclude in Section VII.

II. SYSTEM MODEL

We focus on the downlink in a CDMA network. The network
consists of base-stations (cells) and mobiles. The system is
assumed to be time-slotted. A time slot in our system is an arbi-
trary interval of time and could consist of one or several packets.
We assume that the path gain, background noise, and intercell
interference for each mobile are fixed during the time slot [18].
At the beginning of each time slot, power and rate allocation
for each mobile in the current time slot is obtained by executing
the power and data rate allocation algorithm. Based on that, the
base-station for the next time slot is assigned to each mobile by
executing the base-station assignment algorithm. Each base-sta-
tion has a maximum power limit and each mobile commu-
nicates with one base-station. For a given mobile , is the
maximum rate at which it can receive data. Further, is a func-
tion for the probability of a successful packet transmission for
mobile , and is a function of (bit energy to inter-
ference density ratio). For a mobile that communicates with
base-station , we can express as [3], [4]

where
chip rate;
orthogonality factor;
set of mobiles that communicate with base-station

;
power allocation for mobile ;
data rate for mobile ;
power allocation vector for mobiles that communi-
cate with base-station ;
path gain from base-station to mobile ;
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Fig. 1. Probabilities of a successful packet transmission for BPSK, DPSK, and
FSK modulation schemes.

background noise and intercell interference to mo-
bile that communicates with base-station ;

transmission environment between
mobile and base-station .

The function for the probability of a successful packet trans-
mission, , depends on the various transmission (modulation
and coding) schemes being used. In this paper, we do not assume
that any specific transmission scheme is used for communica-
tion. However, we assume that has the following properties.

Assumptions:

(a) is an increasing function of .
(b) is twice continuously differentiable.
(c) .
(d)

has at most one solution for .
(e) If

has one solution at ,

for and
for .

Remark 1: By the assumptions above, if ,
then at the maximum data rate, , can be one of three
types: a sigmoidal-like function,1 a concave function, or a
convex function of its own power allocation (see Lemma 2 in
[15]). We will show in Proposition 1 that ,
if the system is operating at maximum throughput. In most
cases, the function for the probability of a successful packet
transmission at a fixed data rate can be characterized by one of
these three types of functions, as shown in Fig. 1. In this figure,
we provide examples for various modulation schemes such
as binary phase-shift keying (BPSK), differential phase-shift
keying (DPSK), and frequency-shift keying (FSK) [19]. We as-
sume that a packet consists of 800 bits without channel coding
and set , , , and .
In this figure, the function for the probability of a successful
packet transmission for each modulation scheme is represented
by a sigmoidal-like function of its power allocation.

1A sigmoidal-like function means a function f (x) that has one inflection
point, x and (d f (x)=dx ) > 0 for x < x and (d f (x)=dx ) < 0 for
x > x , i.e., f (x) is a convex function for x < x and a concave function for
x > x .

III. POWER AND RATE ALLOCATION

In this section, we study the power and data rate allocation
problem by focusing on one cell of the system. Hence, for nota-
tional convenience, in this section, we will omit the parameter
denoting the base-station. At the beginning of each time slot,
the power and rate allocation algorithm is executed to obtain the
power and rate allocation for that time slot. We focus on a time
slot assuming that the path gain, background noise, and intercell
interference for each mobile are fixed. We assume that mobiles
from 1 to communicate with the base-station. Each mobile

has a utility function, , which is defined to be its expected
throughput as

(1)

Then, the optimization problem for power and rate allocation
considered in this paper is given by

subject to

where and .
Therefore, our goal is to maximize the total expected system
throughput (the total system utility) with constraints on the max-
imum transmission power at the base-station and the maximum
data rate for each mobile.

A. Optimal Rate Allocation for a Given Power Allocation

To solve problem (A), we first calculate the optimal data rate
for a given power allocation. To this end, we provide the fol-
lowing proposition.

Proposition 1: A necessary condition to achieve maximum
system throughput is that the base-station must transmit at its
maximum power level .

Proof: See Appendix I.
Hence, from now on, we will assume that .

This allows us to rewrite as a function of only and
as shown below.

Hence, we can rewrite the expected throughput of mobile de-
fined in (1) as

(2)
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i.e., without dependence on the power allocation for the other
mobiles. Therefore, as given by the following proposition, each
mobile can determine the optimal data rate for a given
power allocation without considering the other mobiles.

Proposition 2: If , then for a given power
allocation , the optimal rate for mobile , , is obtained
as

if

otherwise

where .
Proof: See Appendix II.

Hence, the optimal rate of a mobile can be represented as a
function of its power allocation. Using (2) and Proposition 2,
the expected throughput of mobile (at the optimal data rate
allocation for a given power allocation, ) is expressed as2

if

otherwise

(3)

and by using it, we now introduce a new optimization problem
(B):

subject to

In problem (B), the original power and rate allocation problem is
reduced to a power allocation problem. Hence, we can assume
that each mobile has its utility function instead of
the original utility function . Even though problems
(A) and (B) are different from each other: one is a joint power
and rate allocation problem and the other is a power alloca-
tion problem, we can obtain joint power and rate allocation that
solves problem (A) by solving problem (B) and using Proposi-
tion 2. To this end, we first solve problem (B) with ,

and obtain the appropriate power allocation for each mobile.
Then, the optimal transmission data rate for each mobile can be
obtained via Proposition 2 based on the power allocation.

Remark 2: In (3), is a convex function for
and the

shape of follows the shape of at for
. There-

fore, is a convex function, or a sigmoidal-like function

2A mobile with the fixed data rate R can be easily accommodated in this
problem, if we assume that R (P ) = R for 0 � P � P .

of , since by the assumptions, is either a convex function,
a concave function, or a sigmoidal-like function of at .

Remark 3: Since we assume that the base-station transmits
at its maximum power level , problem (B) should have

instead of in the constraint.
However, because the sum of the power allocation must be
at the optimal solution to problem (B), it makes no difference
to write the constraint as an inequality. Moreover, this allows
us to use the algorithm that has been developed in [15] and [16]
to obtain the appropriate power allocation.

Since could be a sigmoidal-like function, which is the
more interesting case, in general, it is not easy to obtain an op-
timal solution for problem (B). However, it turns out that the
structure of problem (B) is similar to that of the problem studied
in [15] and [16]. In [15] and [16], an algorithm was developed
to obtain an asymptotically optimal power allocation when the
number of mobiles is large (i.e., ). We can hence ex-
ploit the power allocation strategy in [15] and [16] to obtain
an asymptotically optimal power allocation solution and then,
obtain the optimal data rate for this power allocation by using
Proposition 2. In the following, we briefly describe the power
allocation algorithm. We refer readers to [15] and [16] for im-
plementation and convergence issues of the algorithm.

B. Power Allocation

The power allocation algorithm is a pricing-based algorithm
that is executed by each mobile and the base-station iteratively
and in a distributed way. The basic idea of the algorithm is as
follows. Based on the price at iteration , each mobile
requests a power allocation (from the base-station) that
maximizes its net utility, i.e.,

(4)

Further, based on power requests from mobiles at iteration ,
the base-station updates the price for the next iteration to find
an appropriate price that provides an efficient power allocation.
However, due to the nonconcavity of the utility function, it is
not easy to find the price with a simple algorithm. Hence, the
algorithm is divided into two stages: the mobile selection stage
and the power allocation stage.

At the mobile selection stage, the base-station selects mobiles
to which nonzero power are allocated. We next define a param-
eter that plays an important role in the mobile selection as

We call the maximum willingness to pay of mobile , since
for and for . Each

mobile can calculate as

if is a sigmoidal-like
function and exists

otherwise

(5)
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where is a unique solution of the following equation [15],
[16]:

and is the inflection point of . Without loss of gen-
erality, we assume that . After cal-
culating its maximum willingness to pay, each mobile reports it
to the base-station. Then, the base-station broadcasts the prices,

, one by one in a decreasing order of to select mobiles
from 1 to satisfying

(6)

Therefore, mobiles are selected in a decreasing order of their
maximum willingness to pay.

At the power allocation stage, only those mobiles selected
during the mobile selection stage solve (4) and request power
based on the price from the base-station. Further, the base-sta-
tion updates and broadcasts the price based on the power re-
quests from the selected mobiles attempting to find an equilib-
rium price that satisfies

(7)

Note that there always exists such a unique and it can
be obtained easily [15], [16]. Hence, power is allocated to
the selected mobiles as . This power
allocation is an optimal power allocation for the selected set
of mobiles. However, since power is allocated to all mobiles
as , it may not be an optimal
power allocation for all mobiles. We can show that if the
condition

and (8)

is not satisfied, the power allocation is an optimal power alloca-
tion for all mobiles, but if it is satisfied, we cannot guarantee that
it is an optimal power allocation [16]. Nonetheless, the differ-
ence of the total system utilities between our power allocation
and the upper bound on the optimal power allocation is bounded
by the utility of one mobile [16]. Hence, the normalized error is

and, thus, we can guarantee that it is always an asymp-
totically optimal power allocation for all mobiles in the sense
that if as , then

as

where and
are optimal power and rate allocation, and

and are our power
and rate allocation. In [16], we have compared the performance
of our power allocation and the upper bound when the number

of mobiles is 10 and in most cases, our power allocation
provides very close performance to the upper bound. Thus,
the power allocation will be very close to the optimal power
allocation for any realistic scenario when there are no highly
asymmetrical mobiles.

IV. STUDY OF THE PROPOSED POWER AND RATE ALLOCATION

In this section, we study the properties of the mobile selection
strategy, the multiple access strategy, and the data rate allocation
for the selected mobiles, which will provide insight into the de-
velopment of overall efficient resource allocation strategies.

A. Study of the Mobile Selection Strategy

We first study the properties of the mobile selection strategy.
Recall that is defined by , (where is the background
noise and intercell interference to mobile , and is the path
gain from the base-station to mobile ), is the function for the
probability of a successful packet transmission for mobile , and

is the maximum data rate for mobile . Thus, represents
the degree of “goodness” of the transmission environment from
the base-station to mobile . That is a smaller value of implies
a better transmission environment.

We first define the efficiency of the mobile.
Definition 1: Mobile is said to be more efficient than mobile

if for .
The next proposition shows the relationship between the mo-

bile selection strategy and the efficiency of the mobile. Further,
following the proposition are corollaries that show the relation-
ship between the mobile selection strategy and the parameters
of mobiles such as the maximum data rate, the transmission
scheme, and the transmission environment.

Proposition 3: If mobile is more efficient than mobile ,
then .

Proof: See Appendix III.
Proposition 3 asserts that if mobile is more efficient than

mobile , mobile has a greater chance to be selected by the
algorithm than mobile . This is the case because in the mobile
selection algorithm, mobiles are selected in a decreasing order
of .

Corollary 1: Suppose and . Then, if
, .

Proof: See Appendix IV.
Corollary 1 implies that if the other conditions are same, the

mobile with a higher maximum data rate has a higher priority
to be selected than the mobile with a lower maximum data rate.
Corollaries 2 and 3 can be proved in much the same way as
Corollary 1.

Corollary 2: Suppose and . Then, if
for all , .

In Corollary 2, implies that mobile can
achieve a higher probability of a successful packet transmis-
sion than mobile with the same value of , i.e., mobile
has a more efficient transmission scheme than mobile . Hence,
Corollary 2 implies that if the other conditions are same, the
mobile with a more efficient transmission scheme has a higher
priority to be selected than the mobile with a less efficient trans-
mission scheme.
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Corollary 3: Suppose and .
Then, if , .

Since implies that mobile is in a better transmis-
sion environment than mobile , if the other conditions are the
same, Corollary 3 implies that a mobile in a better transmis-
sion environment has a higher priority to be selected than a mo-
bile in a worse transmission environment. This also implies that
if all mobiles are homogeneous, then mobiles are selected ac-
cording to the transmission environment of each mobile, which
is a well-known optimal mobile selection strategy for homoge-
neous mobiles [1].

It can easily be shown that the results in this subsection can
be applied to the optimal power and rate allocation. Therefore,
in the system with heterogeneous mobiles, the mobile selection
strategy depends not only on the transmission environment of
the mobiles but also on the other parameters such as the max-
imum data rate and the transmission scheme of mobiles. This
implies that, in general situations in which several conditions
are mixed, it is not easy to determine which mobiles must be
selected for the optimal solution. However, our mobile selec-
tion provides a simple and unified strategy of mobile selection
among heterogeneous mobiles, while providing a good approx-
imation of the optimal solution by giving a higher priority to be
selected to a more efficient mobile.

B. Study of the Multiple Access Strategy

In this subsection, we study the optimality conditions of a
TDMA type of multiple access that transmits to only one mo-
bile at a time and a CDMA type of multiple access that trans-
mits to all mobiles simultaneously. The next proposition gives
us optimality conditions for both these types of multiple access
schemes.

Proposition 4:

(a) If , where
, then a TDMA type of multiple access is an op-

timal strategy.
(b) If , where

, then a CDMA type of multiple access is an op-
timal strategy.

Proof: See Appendix V.
Corollary 4: If for all mobiles then

a TDMA type of multiple access is optimal.
Proof: See Appendix VI.

Corollary 4 implies that if mobiles have a high enough max-
imum data rate or experience a poor transmission environment
due to high interference or high channel loss, a TDMA type
of multiple access is optimal. This also implies that if there is
no constraint on the maximum data rate for mobiles, then the
TDMA type of multiple access is always optimal, regardless
of the transmission environment of mobiles as shown in [3],
[4]. However, note that in general, the optimality conditions in
Proposition 4 and Corollary 4 depend not only on system param-
eters that are constant, but also on the transmission environment
of each mobile (time varying and location dependent), and the
maximum data rate and the transmission scheme of each mo-
bile (also time varying from the point of view of the system).

Moreover, selecting a subset of mobiles at a time and transmit-
ting only to them can be an optimal strategy depending on the
system status. This suggests that a static strategy for multiple ac-
cess could be inefficient in some cases and to obtain high system
efficiency, we need a strategy that can be adapted to the dynamic
characteristics of the system, such as the scheme developed in
this paper.

C. Study of the Data Rate Allocation for the Selected Mobiles

In this subsection, we study the data rate allocation for the
selected mobiles.

Proposition 5: Suppose that mobile is selected by the mo-
bile selection algorithm, then the transmission data rate for mo-
bile , , is given by

if

otherwise.

Proof: See Appendix VII.
In Proposition 5, does not depend on the individual power

level . This is true even though the optimal data rate of a mo-
bile is a function of the level of the power allocation, as shown
in Proposition 2. The reason is that, from the proof of Proposi-
tion 5, if mobile is selected, it is always allocated its maximum
data rate, or the total transmission power, . With this
property, the next corollary follows immediately.

Corollary 5: If multiple mobiles are selected simultaneously
for transmission, each selected mobile is allocated its maximum
data rate.

Corollary 5 implies that if the system is in the condition that
multiple mobiles can be selected simultaneously for transmis-
sion (i.e., the optimality condition for the TDMA type of mul-
tiple access is not satisfied), all selected mobiles are always allo-
cated their maximum data rate, even though they have variable
data rates. A similar result can be shown for the optimal power
and rate allocation.

Proposition 6: At the optimal power and rate allocation, at
most one mobile among the selected mobiles for transmission
is allocated the data rate that is less than its maximum data rate.

Proof: See Appendix VIII.
Hence, if the system is in the condition that multiple mobiles

can be selected simultaneously for transmission in most cases,
we may assume that each mobile has its maximum data rate as
a fixed data rate, which makes resource allocation simple while
preserving high system efficiency.

V. BASE-STATION ASSIGNMENT

In the previous sections, we considered the joint power and
rate allocation problem by focusing on one cell of the system. In
this section, we now consider a multi-cellular system that brings
with it two additional problems that were not considered in the
previous sections. One is the total transmission power allocation
problem for each base-station and the other is the base-station
assignment problem for each mobile.

To maximize system performance, the resource allocation
in a multi-cellular system must consider the status of each cell
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and the channel condition of each mobile. But, in practice, this
would require a highly complex resource allocation algorithm,
since it needs cooperation among base-stations. In addition,
each base-station may require information not only from mo-
biles in its cell, but also from mobiles in other cells, resulting
in a significant amount of signaling cost. For instance, Oh et
al. extend their power control and spreading gain allocation
algorithm for a single cell system [1] to a multi-cellular system
[2]. To execute the algorithm, each base-station needs to know
the information of the status of the mobiles in adjacent cells as
well as its own cell. However, even with this significant amount
of information, the algorithm is not guaranteed to converge to
the optimal allocation and requires much longer convergence
time than the algorithm for the single cell system.

In this paper, we adopt a strategy that each base-station tries to
maximize its total system utility without considering the status
of other cells. Using this strategy, each base-station executes
the power and rate allocation algorithm in the previous section
by independently transmitting at its maximum power level, thus
making the algorithm simple. This is typically called a nonco-
operative situation and results in a Nash equilibrium operating
point, which could be inefficient. If the load of each cell is un-
balanced, the inefficiency might be large. To cope with this situ-
ation, we develop a base-station assignment algorithm. By reas-
signing some of the mobiles in the heavily loaded cells to lightly
loaded cells, we expect to improve the total system utility by bal-
ancing the load among the base-stations. We next describe the
base-station assignment algorithm.

At the beginning of each time slot, the base-stations indepen-
dently execute the power and rate allocation algorithm in the
previous section. For the base-station assignment part, we use
the results of the power and rate allocation algorithm, which is
a pricing-based algorithm. Thus, we call our base-station assign-
ment the pricing-based base-station assignment. We first define
the following variables:

• : maximum willingness to pay per unit power of
mobile for base-station at time slot ;

• : equilibrium price per unit power at base-station
at time slot ;

• : transmission environment between base-station
and mobile at time slot ;

• : base-station that is assigned to mobile a time slot .
Assume that mobile is communicating to base-station , i.e.,

at time slot . If mobile is selected for transmission
by base-station , it continues to communicate to base-station
during the next time slot, i.e., . But, if mobile is
not selected for transmission by base-station , during the next
time slot, it selects and connects to some base-station
that satisfies

(9)

where is a set of candidate base-stations that can be as-
signed to the mobile during the next time slot. Note that
may not be the set of all base-stations. For example,
could be the set of base-stations adjacent to base-station or
the set of base-stations from which mobile receives pilot signal
with enough strength at time slot .

We can explain the intuition of the algorithm using two inter-
pretations. First, from the point of view of pricing,
can be interpreted as the maximum value per unit power of mo-
bile at base-station at time slot and can be inter-
preted as the current price per unit power at base-station at
time slot . This implies that the value of
can be interpreted as the profit per unit power that mobile can
obtain if it is selected by base-station at time slot . Therefore,
by solving (9), the mobile selects the base-station that may give
it the highest profit per unit power in the next time slot based on
information in the current time slot.

Another interpretation follows from the next two propositions.
Proposition 7: If , then

.
Proof: See Appendix IX.

By the definition of ,
implies that the transmission environment between base-station

and mobile is better than the transmission environment
between base-station and mobile at time slot . Hence,

is an indicator of the transmission environment
between base-station and mobile at time slot .

Proposition 8: Suppose that mobile is selected by
base-station and mobile is selected by base-station
at time slot . Further suppose that , ,
and . Then, if ,

.
Proof: See Appendix X.

Proposition 8 indicates that the base-station with a lower equi-
librium price has less demand for power than the base-station
with a higher equilibrium price, since a mobile is allocated more
power from the former than the latter. Thus, we can interpret

as being the congestion level at base-station at time
slot . Hence, the value of in (9) can be in-
terpreted as the relative “goodness” of the transmission environ-
ment between mobile and base-station at time slot , taking
into account the congestion within the cell. From this interpre-
tation, by solving (9), mobile is reassigned to that base-station

in the next time slot, which may have the relatively
best transmission environment (after considering the congestion
within of the cell) in the next time slot among the candidate
base-stations based on the information in the current time slot.

For the base-station assignment algorithm in (9), mobile
must calculate and know for base-station

. Mobile can calculate , if it knows
and , and can be measured at mobile .

Hence, the information that mobile needs for the algorithm are
and for and these parameters must be

transmitted from each base-station. They are base-station-spe-
cific parameters not mobile-specific parameters and they can be
broadcasted by each base-station without requiring significant
additional signaling cost for base-station assignment.

Note that our base-station assignment algorithm may not con-
verge to the optimal base-station assignment. To obtain the op-
timal solution, we may need a complex algorithm that requires
much more coordination between base-stations and mobiles.
Hence, instead, we have developed a simple and distributed
algorithm in which the base-station is assigned to the mobile
based on pricing that reflects the congestion level of the base-
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Fig. 2. Cellular network model.

TABLE I
PARAMETERS FOR THE SYSTEM

station as well as the transmission environment of the mobile.
Even though our algorithm may not be optimal, as we will show
in the next section, it provides more efficient base-station assign-
ment than the conventional SINR-based algorithm in which the
base-station is assigned to the mobile only based on the trans-
mission environment of the mobile without considering the con-
gestion level of the base-station.

VI. NUMERICAL RESULTS

In this section, we provide numerical results demonstrating
the effectiveness of our power and rate allocation algorithm, and
base-station assignment algorithm. We consider a cellular net-
work with nine square cells as shown in Fig. 2. We assume that
a base-station is located at the center of each cell. We model the
path gain from base-station to mobile , , as

(10)

where is the distance from the base-station to mobile ,
is a distance loss exponent, and is the log-normally dis-
tributed random variable with mean 0 and variance (dB),
which represents shadowing [20]. The parameters for the system
are summarized in Table I. For the simulation, we use a sigmoid
function to represent , which is expressed as

(11)

Fig. 3. Sigmoid functions with different a (b = 5).

Fig. 4. Sigmoid functions with different b (a = 3).

where we set and for
the normalization. The sigmoid utility functions with different
values for and are provided in Figs. 3 and 4, respectively.

A. Power and Rate Allocation

We first present the performance of the power and rate allo-
cation algorithm without considering base-station assignment.
We focus on the cell at the center of the system and assume that
all base-stations transmit at the maximum power limit. We also
compare the performance of our algorithm with that of a TDMA
type of multiple access, which is an optimal strategy when there
is no constraint on the maximum data rate for each mobile [3],
[4]. Such a strategy is also adopted in the IS-856 system (i.e.,
HDR) [8]–[10]. In this system, the downlink transmissions are
time multiplexed and in each time slot, the base-station trans-
mits to only one mobile. In the following, we call this scheme
simply TDMA. To try to maximize the throughput of TDMA,
we assume that the base-station transmits to a mobile that can
achieve the highest expected throughput.
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TABLE II
COMPARISON OF PERFORMANCES OF OUR POWER AND RATE ALLOCATION AND

TDMA: TWO CLASSES WITH DIFFERENT MAXIMUM DATA RATES

(a = a = 3, b = b = 3:5, AND R = 6250)

TABLE III
COMPARISON OF PERFORMANCES OF OUR POWER AND RATE ALLOCATION

AND TDMA: TWO CLASSES WITH DIFFERENT FUNCTIONS FOR THE

PROBABILITY OF A SUCCESSFUL PACKET TRANSMISSION (a = a = 3,
b = 3:5, AND R = R = 6250)

In Tables II and III, we assume that there are two classes of
mobiles and set . A total of 10 mobiles are located inde-
pendently according to a uniform distribution in the center cell
and mobiles in each class are generated with probability 0.5.

In Table II, each class is assumed to have the same function
for the probability of a successful packet transmission but a dif-
ferent maximum data rate. First, the selection ratio of mobiles
for each class, which is defined as the ratio of the number of se-
lected mobiles in the class to the number of mobiles in the class,
is provided. The results indicate that the class with the higher
maximum data rate has a higher selection ratio of mobiles than
the class with the lower maximum data rate, as proved in Corol-
lary 1. We also provide the ratio of the total system utility by
our algorithm to that by TDMA. When , these
two schemes give almost the same total system utility, because
if there exist mobiles with high maximum data rates, TDMA
is an optimal strategy, as shown in Corollary 4. However, when

is not too high, our power and rate allocation outperforms
TDMA. This implies that, if is not too high, the optimal
strategy is to select multiple mobiles and transmit to them si-
multaneously and, thus, TDMA is optimized only for high data
rate services. However, our algorithm can be used in any of the
cases and results in high efficiency.

In Table III, each class has the same maximum data rate but
a different function for the probability of a successful packet
transmission (i.e., a different ). As shown in Fig. 4, a mobile
with the lower value of has a more efficient transmission
scheme than a mobile with the higher value of , since the
former has a higher probability of a successful packet trans-
mission than the latter at the same . Hence, the former has a
higher priority to be selected than the latter, as proved in Corol-
lary 2. The results also show that as the value of decreases,
the performance difference between our power and rate alloca-
tion and TDMA gets larger. This implies that, as mobiles use
more efficient transmission schemes, the base-station can select
more mobiles and transmit to them simultaneously improving
the system throughput.

In Table IV, we assume that each class has the same max-
imum data rate and the same function for the probability of a
successful packet transmission. But we divide the cell into two
regions: an inner region that is a square at the center of the cell

TABLE IV
COMPARISON OF PERFORMANCES OF OUR POWER AND RATE ALLOCATION AND

TDMA: TWO CLASSES WITH DIFFERENT TRANSMISSION ENVIRONMENTS

(R = R = 6250, a = a = 3, AND b = b = 3:5)

TABLE V
COMPARISON OF PERFORMANCES OF OUR POWER AND RATE ALLOCATION

AND TDMA: SINGLE CLASS VARYING THE ORTHOGONALITY FACTOR

(R = R = 25000, a = a = 3, AND b = b = 3:5)

whose length of the side is a half of that of the cell and an outer
region that is the remaining region of the cell. We say that mo-
biles in the inner region belong to class 1 and mobiles in the
outer region belong to class 2. Thus, in general, a mobile in
class 1 is in a better transmission environment than a mobile
in class 2. We set and generate a total of 10 mobiles.
We provide the results varying the ratio of the number of each
class. As we studied in Corollary 3, the comparison of the selec-
tion ratio suggests that mobiles in a better transmission environ-
ment have a higher priority to be selected. The results also show
that as the number of mobiles in a better transmission environ-
ment increases, the performance improvement of our scheme
over TDMA also increases. Hence, as the number of mobiles
in a better transmission environment increases, the base-station
can transmit to more mobiles simultaneously, hence improving
system efficiency.

In Table V, we assume that a single class of mobiles are in the
cell and provide the results varying , the orthogonality factor of
the system. As we have a smaller orthogonality factor, mobiles
have less intracell interference and the base-station can transmit
to more mobiles simultaneously. This is indicated by the result
that our scheme more outperforms TDMA, as the orthogonality
factor gets smaller.

From the results thus far, we can infer that TDMA is an op-
timal multiple access strategy only for limited situations, while
our algorithm can adapt to different situations providing high
system efficiency.

B. Base-Station Assignment

We now present the performance of our base-station assign-
ment algorithm. Recall that in our base-station assignment al-
gorithm, power and rate are allocated using our power and rate
allocation in the previous section. We call this Algorithm A. We
also compare it with two other algorithms. One is called Algo-
rithm B, in which power and rate are allocated using our power
and rate allocation, but each mobile is assigned to the base-sta-
tion that satisfies

(12)

Hence, the mobile selects the base-station from which it can
receive the highest SINR and we call this base-station assign-
ment the SINR-based base-station assignment. This base-sta-
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Fig. 5. System utility (M = 1).

Fig. 6. System utility (M = 2).

tion assignment strategy is used in many practical systems in-
cluding the IS-856 (HDR) system. The comparison of these two
algorithms shows us the performance gain of the pricing-based
base-station assignment algorithm over the SINR-based base-
station assignment algorithm. The other algorithm is called Al-
gorithm C, in which TDMA is used and each mobile is assigned
to the base-station using (12). Hence, the multiple access and
the base-station assignment schemes in Algorithm C are similar
to those of the IS-856 (HDR) system. The comparison of Algo-
rithm C and the other algorithms shows us that we can signif-
icantly improve system efficiency, if we take into account sev-
eral resources jointly when developing resource allocation algo-
rithms.

We assume that there are two classes of mobiles and set
, , , and .

Mobiles in class 1 are generated with probability 0.2 and mo-
biles in class 2 with probability 0.8. For the simulation, we
model a hot-spot situation as follows. Up to mobiles,
each mobile is generated in the system one by one in each cell
in a sequential order, while trying to preserve a balanced load
for each cell. After that, mobiles are generated in the center cell,
while making a hot-spot situation. Hence, at the same number
of mobiles, a smaller value of indicates a higher degree of
“unbalancedness” of the system. In addition, we assume that

in (10), which implies that at the SINR-based base-sta-
tion assignment, each mobile is assigned to the closest base-sta-
tion from it.

Fig. 7. System utility (M = 3).

Fig. 8. Ratio of utility of Algorithm A to that of Algorithm B.

In Figs. 5–7, we compare the system utility achieved by each
algorithm while varying . In the way we generate mobiles, if
the number of mobiles is less than or equal to 9, each base-sta-
tion has at most one mobile, and, thus, all three algorithms pro-
vide the same results. The results show that Algorithm A out-
performs Algorithm B during the hot-spot period. This implies
that the pricing-based base-station assignment outperforms the
SINR-based base-station assignment at the hot-spot situation,
since the former can maintain load balancing among the base-
stations by reassigning the mobiles in the more congested base-
station to less congested base-stations. As shown in the single
cell results, Algorithm B outperforms Algorithm C, and, thus, so
does Algorithm A. In Fig. 8, we provide the ratio of the system
utility achieved by Algorithm A to that achieved by Algorithm B
for , respectively. Since, as the “unbalancedness”
of the system increases (i.e., as decreases), more mobiles in
the hot-spot cell can be reassigned to the other cells, the perfor-
mance gain of Algorithm A over Algorithm B also increases. The
results also imply that balancing the load of each cell by con-
necting mobiles to the base-station considering the load of each
cell and the channel condition is more beneficial in increasing
the system utility than connecting the mobiles to the base-sta-
tion with the best channel condition.

We compare the increment of the system utility during the
hot-spot period in Figs. 9–11. In these figures, the increment in
system utility is defined as the system utility achieved by all mo-
biles minus the system utility when only mobiles exist.
The number of mobiles during the hot-spot period, , means
that the number of mobiles added at the center cell during the
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Fig. 9. System utility increment during the hot-spot period (M = 1).

Fig. 10. System utility increment during the hot-spot period (M = 2).

Fig. 11. System utility increment during the hot-spot period (M = 3).

hot-spot period. As shown in the figures, Algorithm A gives the
highest performance while Algorithm C gives the lowest perfor-
mance.

In Fig. 12, the ratio of the increment in the utility of Algorithm
A to that of Algorithm B is provided varying , the degree of
“unbalancedness” of the system. When is small, the perfor-
mance gain of Algorithm A over Algorithm B increases, as
increases. In such a case, the hot-spot cell with a smaller is
less congested and, thus, it has smaller performance gain. How-
ever, when the hot-spot cell is congested (i.e., is large), the
performance gain depends on the congestion level of adjacent

Fig. 12. Ratio of utility increment of Algorithm A to that of Algorithm B
during the hot-spot period.

cells. As adjacent cells are less congested (i.e., smaller ),
the number of mobiles that can be reassigned to adjacent cells
increases and, thus, the performance gain increases. Thus, the
results tell us that the performance gain of our base-station as-
signment algorithm over the SINR-based base-station assign-
ment depends not only on the congestion level of the cell itself
but also on the difference between the congestion levels among
cells.

VII. CONCLUSION

In this paper, we have provided a concrete framework for
developing efficient joint power and rate control schemes for
CDMA networks. In particular, this framework clearly demon-
strates the single-user scheduling with the best channel condi-
tion per time-slot, which is viewed as optimal currently, is only
optimal in the absence of rate constraints and in the homogenous
case. When there are rate constraints, single-user schemes can
be sub-optimal and multiple-users must be served for system ef-
ficiency. This optimization framework furthermore provides the
appropriate parameters for selecting the mobiles to be served in
a time-slot, when users are heterogeneous.

The second issue that this paper addresses is the issue of base-
station assignment. We have shown that the outcomes of our
power and rate allocation algorithm can be used as measures of
the channel condition as well as congestion at a base-station.
This allows us to perform base-station assignment based both
on channel conditions as well as congestion. We have shown
that such a scheme outperforms one that is based on channel
conditions alone and the performance of our algorithm improves
as the loads on base-stations becomes more asymmetric.

APPENDIX I
PROOF OF PROPOSITION 1

Let be a power allocation vector such
that . Then, it suffices to show that there exists
another power allocation such that

that improves the total system throughput.
If , then there exists an such that
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We define for , then

Therefore, for all ,
since (i.e., ) is an increasing function of .

APPENDIX II
PROOF OF PROPOSITION 2

First, suppose that , i.e., .
Then, by Proposition 1 in [1]

where . In this paper, we have
a constraint on the maximum data rate, . Therefore, con-
sidering the constraint

if

otherwise

and the equation above is equivalent to

if

otherwise.

APPENDIX III
PROOF OF PROPOSITION 3

Let us define

and

Then, , since we assume that mobile is more

efficient than mobile , i.e., for
. Further, by the definition of

Hence

since we must have by the definition of and
is a nonincreasing function of .

APPENDIX IV
PROOF OF COROLLARY 1

Since , and

Therefore, mobile is more efficient than mobile and by
Proposition 3, the proof is completed.

APPENDIX V
PROOF OF PROPOSITION 4

We first prove Proposition 4(a). If , the con-
dition in (8) is not satisfied and, thus, the power allocation is an
optimal power allocation. Further, at the power allocation, by
(6), only mobile 1 is selected, and by (7), the total transmission
power is allocated to mobile 1.

Now, we prove Proposition 4(b). If ,
the condition in (8) is not satisfied and, thus, the power allo-
cation is an optimal power allocation. Further, at the power al-
location, by (6), all mobiles are selected, and by (7), the total
transmission power is allocated to all mobiles.

APPENDIX VI
PROOF OF COROLLARY 4

If for all mobiles, by a simple calcula-
tion, we can show that for each mobile ,

and by (3), is a convex function.
Hence, for each mobile , by (5), and
by (4), . This satisfies the condition in Proposi-
tion 4(a).

APPENDIX VII
PROOF OF PROPOSITION 5

Since we assume that mobile selected, , where
is an equilibrium price. Suppose ,

then

(13)

and by (3), is a convex function for . By
(5), mobile has and it has
for and for . Since

, mobile is allocated power level . Hence, by Proposition 2
and (13), and . Now, suppose

, then

(14)
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In this case, is a convex function or a sigmoidal-link
function for . If is a convex function,
mobile is allocated power level . Hence, by Proposition
2 and (14), . If is a sigmoidal-like
function, mobile is allocated power level that forces

to be in the concave region, since
that forces to be in the convex region does
not satisfy the second order necessary condition for the so-
lution of (4), . This implies that

, since
is a convex function for

by (3). Therefore, by Proposition 2,
.

APPENDIX VIII
PROOF OF PROPOSITION 6

In the next lemma, we first show that at the optimal power and
rate allocation, the marginal utilities of the selected mobiles are
same.

Lemma 1: If is an optimal power allo-
cation and is the set of the selected mobiles for transmission,
then for all ,

.
Proof: We will prove this by using contradiction. Sup-

pose that is an optimal power allo-
cation, , , and

. Thus, we can find such that

for all
and . Hence

This implies that

and utilities for all other mobiles are unchanged, which gives
the contradiction.

Now, we will prove Proposition 6. We first show by contra-
diction that at the optimal power allocation, at most one mobile
among the selected mobiles for transmission achieves a utility
value in the convex region of the utility function. Suppose that

is an optimal power allocation, ,

, and and are in the convex region.
Since and are optimal allocation, by Lemma 1

and we can find such that and

are still in the convex region. Hence

since and are increasing func-
tions of and , respectively. This implies that

and utilities for all other mobiles are unchanged, which is con-
tradiction. Hence, at most one mobile among the selected mo-
biles for transmission achieves utility value in the convex region
of the utility function.

From Proposition 2 and (3), only if utility value is in the
convex region of the utility function, the mobile is allocated the
data rate that is less than its maximum data rate. Therefore, at
the optimal power and rate allocation, at most one mobile among
the selected mobiles for transmission is allocated the data rate
that is less than its maximum data rate, since at most one mo-
bile among the selected mobiles for transmission achieves utility
value in the convex region of the utility function.

APPENDIX IX
PROOF OF PROPOSITION 7

This is equivalent to the situation when there exist two
mobiles, mobile and mobile , in the same cell. Mo-
bile has , , , and . Mobile
has , , , and . By Corollary 3, if

, then . How-
ever, , since if ,

, which is contradiction to the as-
sumption. Therefore, .

APPENDIX X
PROOF OF PROPOSITION 8

Since mobiles and are in the same condition,
. From (4), is nonincreasing as is

increasing. Therefore, , since
.
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