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Abstract
This paper focuses on the problem of pitch tracking in noisy
conditions. A method using harmonic information in the resid-
ual signal is presented. The proposed criterion is used both for
pitch estimation, as well as for determining the voicing seg-
ments of speech. In the experiments, the method is compared
to six state-of-the-art pitch trackers on the Keele and CSTR
databases. The proposed technique is shown to be particularly
robust to additive noise, leading to a significant improvement in
adverse conditions.
Index Terms: fundamental frequency, pitch tracking, pitch es-
timation, voicing decisions

1. Introduction
Pitch tracking refers to the task of estimating the contours of the
fundamental frequency F0 for voiced segments. Such a system
is of particular interest in several applications of speech process-
ing, such as speech coding, analysis, synthesis or recognition.
While most current pitch trackers perform well in clean condi-
tions, their performance rapidly degrades in noisy environments
and the development of accurate and robust algorithms still re-
mains a challeging open problem.

Techniques estimating F0 from speech signals can be clas-
sified according to the features they rely on [1]. Some methods
use properties in the time domain, others focus on the periodic-
ity of speech as manifested in the spectral domain, while a last
category exploits both spaces. Besides, this information can be
processed in a deterministic way, or using a statistical approach
[1]. This paper proposes a pitch tracking method exploiting the
harmonics contained in the spectrum of the residual signal. The
idea of using a summation of harmonics for detecting the fun-
damental frequency is not new. In [2], Hermes proposed the
use of a subharmonic summation so as to account for the phe-
nomenon of virtual pitch. In [3], Sun suggested the use of the
Subharmonic-to-Harmonic Ratio for estimating the pitch fre-
quency and for voice quality analysis. The method proposed in
this paper is different in several points. First, the spectrum of
the residual signal (and not of the speech signal) is inspected.
As in the Simplified Inverse Filter Tracking (SIFT) algorithm
(which relies on the autocorrelation function computed on the
residual signal, [4]), flattening the amplitude spectrum allows
to minimize the effects of both the vocal tract resonances and
of the noise. Secondly, the harmonic-based criterion used for
the pitch estimation is different from those employed in the two
aforementioned approaches. Besides the proposed criterion is
also used for discriminating between voiced and unvoiced re-
gions of speech. Note that harmonic-based Voice Activity De-
tection (VAD) has also been exploited in [5].

The structure of the paper is the following. Section 2 de-
scribes the principle of the proposed technique. An extensive
quantitative assessment of its performance in comparison with
other state-of-the-art techniques is given in Section 3, focus-
ing particularly on noise robustness. Section 3.1 presents the
adopted experimental protocol. The implementation details of
the proposed method are discussed in Section 3.2. Methods
compared in this work are presented in Section 3.3 and results
of the evaluation are provided in Section 3.4.

2. Pitch tracking based on residual
harmonics

The proposed method relies on the analysis of the residual sig-
nal. Unlike SIFT [4] which is based on the autocorrelation func-
tion, this technique focuses on the residual harmonicity. Also,
the proposed harmonic criterion is different from other compa-
rable approaches, which makes the method efficient in adverse
conditions both for voicing detection and pitch estimation.

For this, an auto-regressive modeling of the spectral enve-
lope is first estimated from the speech signal s(t) and the resid-
ual signal e(t) is obtained by inverse filtering. This whiten-
ing process has the advantage of removing the main contri-
butions of both the noise and the vocal tract resonances. For
each Hanning-windowed frame, covering several cycles of the
resulting residual signal e(t), the amplitude spectrum E(f) is
computed. E(f) has a relatively flat envelope and, for voiced
segments of speech, presents peaks at the harmonics of the fun-
damental frequency F0. From this spectrum, and for each fre-
quency in the range [F0,min, F0,max], the Summation of Resid-
ual Harmonics (SRH) is computed as:

SRH(f) = E(f)+

Nharm∑

k=2

[E(k · f)− E((k −
1

2
) · f)]. (1)

Considering only the term E(k · f) in the summation, this
equation takes the contribution of the first Nharm harmonics
into account. It could then be expected that this expression
reaches a maximum for f = F0. However, this is also true
for the harmonics present in the range [F0,min, F0,max]. For
this reason, the substraction by E((k− 1

2
) ·f) allows to signifi-

cantly reduce the relative importance of the maxima of SRH at
the even harmonics. The estimated pitch value F ∗

0 for a given
residual frame is thus the frequency maximizing SRH(f) at
that time.

Figure 1 displays the typical evolution of SRH for a seg-
ment of female voice. The pitch track (around 200 Hz) clearly
emerges. Moreover, no particularly high value of SRH is ob-
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served during the unvoiced regions of speech. Therefore, SRH

can also be used to provide voicing decisions by a simple lo-
cal thresholding. More precisely, a frame is determined to be
voiced if SRH(F ∗

0 ) is greater than a fixed threshold θ. Note
that for the comparison with θ, the residual spectrum E(f)
needs to be normalized in energy for each frame.

Frame Index

Fr
eq

ue
nc

y 
(H

z)

0 200 400 600 800 1000

50

100

150

200

250

300

350

400 −0.1

−0.05

0

0.05

0.1

0.15

0.2

Figure 1: Evolution of SRH for a segment of clean speech
uttered by a female speaker.

It is worth noting that, in Equation 1, the risk of ambiguity
with odd harmonics is not addressed. This may be problem-
atic for low-pitched voices for which the third harmonic may be
present in the initial range [F0,min, F0,max]. Albeit we made
several attempts to incorporate a correction in Equation 1 by
substracting a term in E((k ± 1

3
) · f), no improvement was

observed (this was especially true in noisy conditions). For
this reason, the proposed algorithm works in two steps. In
the first step, the described process is performed using the full
range [F0,min, F0,max], from which the mean pitch frequency
F0,mean of the considered speaker is estimated. In the second
step, the final pitch tracking is obtained by applying the same
process but in the range [0.5 · F0,mean; 2 · F0,mean]. It can
be indeed assumed that a normal speaker will not exceed these
limits. Note that this idea of restricting the range of F0 for a
given speaker is similar to what has been proposed in [6] (for
the choice of the window length).

Figure 2 illustrates the proposed method for a segment of
female speech, both in clean conditions, and with a Jet noise at
0dB of Signal-to-Noise Ratio (SNR). In the top plot, the pitch
ground truth and the estimated fundamental frequency F ∗

0 are
displayed. A close agreement between the estimates and the ref-
erence can be noticed during voiced speech. Interestingly, this
is true for both clean and noisy speech (except on a short period
of 5 frames where F ∗

0 is half the actual fundamental frequency).
It is worth noting that no post-correction of the pitch estima-
tion, using for example dynamic programing, was applied. In
the bottom plot, the values of SRH(F ∗

0 ), together with the
ideal voiced-unvoiced decisions, are exhibited since they are
used for determining the voicing boundaries. It is observed
that SRH(F ∗

0 ) conveys a high amount of information about
the voicing decisions. However, in adverse conditions, since
the relative importance of harmonics becomes weaker with the
presence of noise, the values of SRH(F ∗

0 ) are smaller during
voiced regions, making consequently the decisions more diffi-
cult.

3. Experiments
3.1. Experimental Protocol

The experimental protocol is divided into two steps: training
and testing. The goal of the training phase is to optimize the
several parameters used by the proposed algorithm described in
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Figure 2: Illustration of the proposed method in clean and noisy
speech (using a jet noise with a SNR of 0 dB). Top plot : The
pitch ground truth and the estimates F ∗

0 . Bottom plot : The ideal
voicing decisions and the values of SRH(F ∗

0 ).

Section 2. During the testing, the proposed method is compared
to other state-of-the-art methods of pitch tracking, both in clean
and noisy conditions. For assessing the performance of a given
method, the four following measures are used [7]:

The Voicing Decision Error (VDE) is the proportion of
frames for which an error of the voicing decision is made.

The Gross Pitch Error (GPE) is the proportion of frames,
where the decisions of both the pitch tracker and the ground
truth are voiced, for which the relative error of F0 is higher than
a threshold of 20%.

The Fine Pitch Error (FPE) is defined as the standard de-
viation (in %) of the distribution of the relative error of F0 for
which this error is below a threshold of 20%.

The F0 Frame Error (FFE) is the proportion of frames
for which an error (either according to the GPE or the VDE
criterion) is made. FFE can be seen as a single measure for
assessing the overall performance of a pitch tracker.

The noisy conditions are simulated by adding to the original
speech signal a noise at 0 dB of SNR. The noise signals were
taken from the Noisex-92 database [8]. Since the main scope of
this paper is the study of the robustness of pitch trackers, sev-
eral types of noise were considered: speech babble, car interior,
factory, jet cockpit, and white noise.

During the training phase, the APLAWD database [9] is
used. It consists of ten repetitions of five phonetically balanced
English sentences spoken by each of five male and five female
talkers, with a total duration of about 20 minutes. The pitch
ground truth was extracted by using the autocorrelation function
on the parallel electroglottographic recordings.

For the testing, both the Keele and CSTR databases were
used, for comparison purpose with other studies. The Keele
database [10] contains speech from 10 speakers with five males
and five females, with a bit more of 30 seconds per speaker. As
for the CSTR database [11], it contains five minutes of speech
from one male and one female speaker. For all datasets, record-
ings sampled at 16kHz were considered, and the provided pitch
references were used as a ground truth.

3.2. Parameter Optimization for the Proposed Method

In this training step, each parameter is optimized so as to
minimize the overall FFE, averaged over all speakers of the
APLAWD database, and for both clean and noisy conditions.
According to this objective framework, the optimal parame-
ter values are the following. The LPC order for obtaining the
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residual signal by inverse filtering is set to 12, although it was
observed not to have a critical impact in the range between 10
and 18. A too high order tends to overfit the spectral envelope,
which may be detrimental in noisy conditions, while a too low
value does not sufficiently remove the contributions of both the
vocal tract and the noise. The optimal length for framing the
residual signal is chosen to be 100 ms (while the frame shift is
fixed to 10 ms). To illustrate this, Figure 3 shows the impact of
the window length on the FFE for clean and noisy conditions.
It turns out that a length of 100 ms makes a good compromise
for being efficient in any environment. This means that our al-
gorithm requires a large contextual information for performing
well. Note that we observed that this does not affect the ca-
pabilities of the proposed method to track rapidly-varying pitch
contours, maintaining low values of both GPE and FPE. The op-
timal number of harmonics used in Equation 1 is Nharm = 5.
Considering more harmonics is detrimental in adverse condi-
tions, as the noise affects strongly the periodicity of the speech
signal, and only the few first harmonic peaks emerge in the
spectrum. Finally, the optimal threshold θ used for the voic-
ing decisions is 0.07, as it gave the best tradeoff between false
positive and false negative decisions.
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Figure 3: Influence of the window length on FFE, averaged in
clean and noisy conditions.

3.3. Methods compared in this work

In the following, the proposed technique (SRH) is compared to
the seven following methods of pitch estimation and tracking:

Get F0: Included in the ESPS package, this method
is an implementation of the RAPT algorithm [12]. In
this work, we used the version available in Wavesurfer
<http://www.speech.kth.se/wavesurfer/>.

SHRP: This spectral technique is based on the
Subharmonic to Harmonic Ratio, as proposed in [3].
For our tests, we used the implementation available in
<http://mel.speech.nwu.edu/sunxj/pda.htm>.

TEMPO: This technique is based on a fixed point analysis
[13] and is available in the STRAIGHT toolkit <http://www.
wakayama-u.ac.jp/˜kawahara/PSSws/>.

AC: This method relies on an accurate autocorrela-
tion function and is implemented in the Praat toolbox
<http://www.praat.org>. It was shown to outperform the orig-
inal autocorrelation based and the cepstrum-based techniques
[14].

CC: This approach makes use of the crosscorrelation func-
tion [15] and is also implemented in the Praat toolbox.

YIN: This algorithm is one of the most popular and
most efficient method of pitch estimation. It is based
on the autocorrelation technique with several modifica-
tions that combine to prevent errors [16]. Since YIN
only provides F0 estimates, it is here coupled with the
voiced-unvoiced decisions taken by our proposed SRH ap-

proach. The YIN implementation can be freely found at
<http://www.auditory.org/postings/2002/26.html>.

SSH: The Summation of Speech Harmonics technique is
given for comparison purpose as the proposed approach applied
this time on the speech signal, and not on its residual as done in
SRH. The contribution of the spectral envelope mainly due to
the vocal tract is therefore not removed. Note that for SSH the
optimal value of the threshold θ is 0.18.

All methods were used with their default parameter values
for which they were optimized. The frame shift is fixed to 10
ms, and the range of F0 set to [50 Hz,400 Hz]. Note that we
also made experiments with the AMDF and SIFT techniques,
but these results are not included here due to space limitations,
and since they provided among the worst performance in noisy
environments.

3.4. Results

Figures 4 and 5 show a comparison of the FFE (as it is an over-
all measure for assessing the performance of a pitch tracker) for
all methods and in all conditions, respectively for female and
male speakers. In clean speech, it is seen that the proposed SSH
and SRHmethods give a performance comparable to other tech-
niques, while Get F0 outperforms all other approaches for both
male and female speakers. On the opposite, the advantage of
SRH is clearly noticed for adverse conditions. In 9 out of the 10
noisy cases (5 noise types and 2 genders), SRH provides better
results than existing methods, showing generally an apprecia-
ble robustness improvement. The only unfavourable case is the
estimation with a Babble noise for male speakers. This may be
explained by the fact that this noise highly degrades the speech
spectral contents at low frequencies. The five first residual har-
monics used by SRH may then be strongly altered, leading to
a degradation of performance. Inspecting the performance of
SSH, it turns out that it exhibits among the worst results for fe-
male speakers in noisy environments, but is almost as efficient
as SRH for male voices. This might be explained by the fact
that for female voices, the firstNharm harmonics cover a larger
frequency width, on which the noise may have a more dramatic
impact. This effect is reduced with SRH, since inverse filtering
alleviates the noise influence.
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Figure 4: F0 Frame Error (%) for female speakers and for all
methods in six conditions: clean speech and noisy speech at
0dB of SNR with five types of noise.

Table 1 presents the detailed results of pitch tracking for
clean speech, and for noisy conditions (averaged over all noise
types at 0dB of SNR). On clean recordings, Get F0 provides the
best results in terms of VDE and FFE on both genders, while the
best GPE is obtained by the proposed method SRH for female
voices, and by TEMPO for male speakers. Regarding its effi-
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Clean conditions Noisy conditions
Female Male Female Male

VDE GPE FPE FFE VDE GPE FPE FFE VDE GPE FPE FFE VDE GPE FPE FFE
Get F0 3.74 2.78 2.95 4.92 5.34 1.79 3.06 6.11 20.8 14.8 2.4 24.9 27.7 2.7 2.7 28.3
SHRP 7.01 2.03 2.52 7.83 10.2 2.74 3.17 11.4 27.0 11.5 1.9 29.3 30.1 6.8 2.8 31.5
TEMPO 5.38 1.51 3.05 6.01 9.28 0.93 3.13 9.66 25.2 4.4 3.9 25.8 36.8 16.7 3.8 37.6
AC 6.81 1.50 2.68 7.41 8.02 1.40 2.77 8.59 20.5 14.2 2.4 24.3 28.2 5.9 2.4 29.6
CC 8.41 1.76 2.77 9.15 9.25 2.23 3.44 10.2 21.1 18.0 2.7 26.1 27.8 7.9 3.0 29.8
YIN 7.29 1.88 2.95 8.06 8.34 2.47 2.93 9.38 15.1 19.0 3.0 21.2 22.1 11.9 2.8 25.2
SSH 5.81 4.67 2.76 7.49 8.87 2.45 3.31 9.88 24.2 39.1 1.9 32.1 23.3 6.3 2.8 25.1
SRH 7.29 1.29 3.10 7.81 8.34 1.95 3.46 9.15 15.1 2.7 2.6 16.0 22.1 4.0 2.7 23.1

Table 1: Detailed pitch tracking results in clean and noisy conditions (averaged over all noise types at 0 dB of SNR), for both male and
female speakers.
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Figure 5: F0 Frame Error (%) for male speakers and for all
methods in six conditions: clean speech and noisy speech at
0dB of SNR with five types of noise.

ciency in terms of FPE, albeit having the slightly largest values,
SRH has a performance sensibly comparable to the state-of-the-
art, confirming its ability to also capture the pitch contour de-
tails. On noisy speech, SRH clearly outperforms all other ap-
proaches, especially for female speakers where the FFE is re-
duced of at least 8.5% (except for YIN which uses the proposed
VAD from SRH). This gain is also substantial for male voices
with regard to existing approaches (consequently leaving out of
comparison the SSH and the modified YIN techniques), with a
decrease of 5.3% of FFE, and of 5.7% regarding the errors on
the voicing decisions. It is worth noting the remarkably good
performance of SRH for female voices in noisy environments,
providing very low values of VDE and GPE (and thus FFE). All
methods (except SSH in adverse conditions) are also observed
to give better results for female speakers than for male voices.
Finally, it is interesting to emphasize that, while relying on the
same voicing decisions, YIN leads in all conditions to a greater
GPE than SRH, especially for noisy recordings. This confirms
the quality of SRH both as a VAD and for pitch contour estima-
tion.

4. Conclusion
This paper described a simple method of pitch tracking by fo-
cusing on the spectrum of the residual signal. A criterion based
on the Summation of Residual Harmonics (SRH) is proposed
both for pitch estimation and for the determination of voicing
boundaries. A comparison with six state-of-the-art pitch track-
ers is performed in both clean and noisy conditions. A clear
advantage of the proposed approach is its robustness to addi-
tive noise. In 9 out of the 10 noisy experiments, SRH is shown

to lead to a significant improvement, while its performance is
comparable to other techniques in clean conditions.
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