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Abstract8

The application of generalized linear mixed models present some major challenges9

for both estimation, due to the intractable marginal likelihood, and model selection, as10

we usually want to jointly select over both fixed and random effects. We propose to11

overcome these challenges by combining penalized quasi-likelihood (PQL) estimation12

with sparsity inducing penalties on the fixed and random coefficients. The resulting13

approach, referred to as regularized PQL, is a computationally efficient method for14

performing joint selection in mixed models. A key aspect of regularized PQL involves15

the use of a group based penalty for the random effects: sparsity is induced such16
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that all the coefficients for a random effect are shrunk to zero simultaneously, which17

in turns leads to the random effect being removed from the model. Despite being a18

quasi-likelihood approach, we show that regularized PQL is selection consistent, i.e.19

it asymptotically selects the true set of fixed and random effects, in the setting where20

the cluster size grows with the number of clusters. Furthermore, we propose an infor-21

mation criterion for choosing the single tuning parameter and show that it facilitates22

selection consistency. Simulations demonstrate regularized PQL outperforms several23

currently employed methods for joint selection even if the cluster size is small com-24

pared to the number of clusters, while also offering dramatic reductions in computation25

time.26

Keywords: fixed effects, generalized linear mixed models, lasso, penalized likeli-27

hood, quasi-likelihood, variable selection28

1 Introduction29

Generalized linear mixed models (GLMMs) are a powerful class of models for analyzing30

correlated, non-normal data. Like all regression problems however, model selection is a31

difficult but critical part of inference. The problem is especially difficult for mixed models32

for two reasons: 1) fitting these models is computationally challenging, and 2) we often33

want to jointly select over both the fixed and random effects. Regarding the first problem,34

the marginal likelihood for a GLMM has no analytic form except with normal responses35

and the identity link, and so numerous estimation methods exist to overcome this diffi-36

culty. These range from approximation methods such as penalized quasi-likelihood (PQL,37

Breslow and Clayton, 1993), Laplace’s method (Tierney and Kadane, 1986), and numer-38

ical quadrature (Rabe-Hesketh et al., 2002), to exact methods such as the Expectation-39

Maximization algorithm (EM algorithm, McCulloch, 1997). Of these approaches, PQL40
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is the simplest to implement, as it effectively treats the random effects as “fixed” and es-41

timates them in a similar manner to other fixed effects as in a generalized linear model42

(GLM). Furthermore, when the cluster size grows with the number of clusters, PQL esti-43

mates have been shown to be estimation consistent (Vonesh et al., 2002).44

For jointly selecting fixed and random effects in GLMMs, proposed methods range45

from modifications of information criteria (e.g., Vaida and Blanchard, 2005) to more recent46

advances such as the fence (Jiang et al., 2008); see Müller et al. (2013) for an overview47

of model selection for LMMs specifically. These methods however are computationally48

burdensome to implement, especially since the number of candidate models in the GLMM49

context is considerably larger than the GLM context when performing joint selection. One50

appealing approach is to use penalized likelihood methods, although their application to51

mixed models has only recently been explored. For LMMs, Bondell et al. (2010) pro-52

posed adaptive lasso penalties for selecting the fixed and random effects, while Peng and53

Lu (2012) and Lin et al. (2013) proposed two-stage methods that separate out the fixed54

and random effect selection. For GLMMs, Ibrahim et al. (2011) proposed a modified ver-55

sion of the penalty in Bondell et al. (2010), and employed a Monte Carlo EM algorithm56

for estimation. This approach however is computationally intensive, with Ibrahim et al.57

(2011) limiting their simulations to LMMs only. Focusing solely on computational as-58

pects, Schelldorfer et al. (2014) and Groll and Tutz (2014) proposed algorithms for fixed59

effects selection only using the lasso penalty in high-dimensional GLMMs, while Pan and60

Huang (2014) investigated random effects selection only. The large sample properties of61

these algorithms however remain to be determined.62

In this article, we propose a new approach to joint selection in GLMMs using regular-63

ized PQL estimation, and a method to choose the associated tuning parameter. Rather than64

working with the marginal likelihood, we propose combining the PQL with adaptive lasso65
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and adaptive group lasso penalties to select the fixed and random effect coefficients re-66

spectively. The group lasso is used to exploit the grouped structure inherent in the random67

effects: for any random intercept or slope, the coefficients across all clusters are shrunk68

to zero at the same time, which leads to the corresponding row and column of the random69

effect covariance matrix being shrunk to zero. Such a group penalty approach to random70

effects selection has been used previously in linear mixed models by Fan and Li (2012), but71

this article is the first to apply it to GLMMs by regularizing the PQL. Another difference72

between this article and Fan and Li (2012) is that the latter separate the fixed and random73

effects selection into two stages, with different likelihoods and tuning parameters at each74

stage, whereas we perform fixed and random effects selection simultaneously using a sin-75

gle tuning parameter. Compared to the Monte Carlo EM method of Ibrahim et al. (2011),76

joint selection using regularized PQL is extremely fast: it can be viewed as a specific type77

of penalized GLM, and the full regularization path can be constructed without the need for78

integration.79

In the setting where the cluster size grows at a slower rate than the number of clusters,80

we show that the regularized PQL estimates are estimation and selection consistent. This is81

an important advance on Vonesh et al. (2002). For the critical choice of the tuning parame-82

ter, we propose a new information criterion which we show leads to selection consistency.83

This information criterion combines a BIC-type penalty for the fixed effects with an AIC-84

type penalty for the random effects. Over the past decade, numerous BIC-type criteria85

have been proposed for choosing the tuning parameter in penalized GLMs, particularly86

in the high-dimensional setting, with results establishing their selection consistency (e.g.,87

Zhang et al., 2010; Hui et al., 2015). Analogous results however do not exist for mixed88

models, with the exception of Ibrahim et al. (2011) whose proposed approach involves at89

least two tuning parameters. A key contribution of this article is showing that in the case90
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of regularized PQL, differential penalization of the fixed and random effects is needed to91

achieve selection consistency.92

For many applications where the cluster size is small, we propose a hybrid estimator to93

improve finite sample performance, i.e. regularized PQL is used for model selection only,94

and the final submodel is estimated using maximum likelihood. Simulations demonstrate95

that regularized PQL, in conjunction with the proposed information criterion, outperforms96

several currently available methods for joint selection in GLMMs, while offering dramatic97

reductions in computation time. We illustrate the application of regularized PQL estimation98

on a longitudinal dataset for determining the predictors of forest health over time.99

To summarize, the main contributions of this article are as follows: 1) we propose a100

computationally efficient method of performing joint selection in GLMMs, which com-101

bines the PQL with adaptive (group) lasso penalties to regularize the fixed and random102

effect coefficients; 2) we develop an information criterion for choosing the tuning param-103

eter in regularized PQL estimation, that involves differing model complexity terms on the104

fixed and random effects; 3) we demonstrate estimation and selection consistency prop-105

erties for regularized PQL estimation, and show that the proposed information criterion106

asymptotically chooses a tuning parameter that leads to selection consistency; 4) we per-107

form simulations to demonstrate the computational speed and strong performance of regu-108

larized PQL, relative to other penalized likelihood methods, even when the cluster size is109

relatively small compared to the number of clusters.110

2 Generalized Linear Mixed Models111

We focus on the independent cluster model with random intercepts and slopes. Let yij112

denote the j th measurement for the ith cluster, where i = 1, . . . , n and j = 1, . . . ,mi.113
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Note that we allow for unequal cluster sizes. Let xij be a vector of pf covariates corre-114

sponding to fixed effects, and zij be a vector of pr covariates corresponding to random115

effects. Both xij and zij may contain an intercept term as their first element. We as-116

sume that pf and pr are fixed, with pr < mini(mi) where mini(·) denotes the minimum117

over i = 1, . . . , n. Conditional on the random effects bi, the responses yij are assumed to118

come from a distribution in the exponential family, with density function f(yij|β, bi, φ) =119

exp[{yijϑij − a(ϑij)}/φ + c(yij, φ)] for known functions a(·) and c(·) and dispersion pa-120

rameter φ. The mean, µij , is modeled as g(µij) = ηij = xTijβ + zTijbi, for a known link121

function g(·). For simplicity, we assume the canonical link is used, so g(µij) = ϑij = ηij122

and µij = a′(ηij). The random effects are normally distributed, bi ∼ Npr(0,D), where D123

is the random effect covariance matrix.124

For the ith cluster, we have an mi-vector yi = (yi1, . . . , yimi), a mi × pf matrix Xi =125

(xi1 . . .ximi)
T of fixed effect covariates, and a mi × pr matrix Zi = (zi1 . . . zimi)

T of126

random effect covariates. In turn, we can write g(µi) = ηi = XT
i β +ZT

i bi, where g(·) is127

applied component-wise, β = (β1, . . . , βpf ), bi = (bi1, . . . , bipr), µi = (µi1, . . . , µim) and128

similarly for ηi. Finally, let b = (bT1 , . . . , b
T
n )T be the npr-vector of all random effects, and129

Ψ = {βT , vech(D)T}T where vech(·) denotes the half-vectorization operator. Note that130

each bi is of fixed dimension pr, while dim(b) grows with linearly with n.131

For the GLMM above, the marginal log-likelihood is132

`(Ψ) = −n
2

log det(D) +
n∑
i=1

log

(∫
exp

(
mi∑
j=1

log f(yij|β, bi)−
1

2
bTi D

−bi

)
dbi

)
,

where det(D) is the determinant of D. Aside from linear mixed models, the integral in133

the marginal log-likelihood does not have an analytic form, and this complicates maximum134

likelihood estimation. A popular, alternative estimation method is PQL estimation, which135
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involves maximizing the quasi-likelihood function136

`PQL(Ψ, b) =
n∑
i=1

mi∑
j=1

log f(yij|β, bi)−
1

2

n∑
i=1

bTi D
−bi, (1)

whereD− denotes the Moore-Penrose generalized inverse ofD. The use of a generalized137

inverse here, as opposed to the standard matrix inverse, allows us to deal with cases where138

the covariance matrix is singular (see Breslow and Clayton, 1993). This is necessary when139

we establish asymptotic properties in Section 4, where the true random effects are assumed140

to be sparse.141

There is a close link between PQL estimation and Laplace’s method for GLMMs.142

Specifically, for a fixed Ψ, let b̃ = (b̃T1 , . . . , b̃
T
n )T denote the maximizer of (1). Then143

the Laplace approximated log-likelihood is defined as144

`LA(Ψ) =
n∑
i=1

mi∑
j=1

log f(yij|β, b̃i)−
1

2

n∑
i=1

b̃Ti D
−b̃i −

1

2

n∑
i=1

log det(ZT
i W̃iZiD + Ipr),

where W̃i is a mi ×mi diagonal weight matrix with elements W̃i,jj = a′′(η̃ij)/φ, η̃ij =145

xTijβ + zTij b̃i, and Ipr is an identity matrix of dimension pr. The key difference between146

PQL and the Laplace approximation lies in the last term, which is a non-linear function of147

β and b. By assuming the weights inWi vary slowly with the mean, Breslow and Clayton148

(1993) proposed ignoring this last term, from which the PQL follows. Note that when the149

minimum cluster size mini(mi), and hence all mi, are large, the estimates from PQL and150

Laplace’s method should be close to each other, since the last term in `LA(Ψ) is of a smaller151

order than the first term (see also Demidenko, 2013, Section 7.3). For normal responses,152

a′′(ηij) = 1, so the estimates of β based on `LA(Ψ, b) and `PQL(Ψ, b) coincide, noting that153

the Laplace approximation is exact for normal linear mixed models.154
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Compared to maximizing the marginal and Laplace approximated log-likelihoods, PQL155

estimation is straightforward: equation (1) resembles the log-likelihood for a GLM com-156

bined with a generalized ridge penalty, where b is also treated as a fixed effect vector,157

and so modifications of standard optimization routines such as iteratively reweighted least158

squares can be used for maximization. This in turn motivates us to consider using the PQL159

as a loss function for penalized joint selection in GLMMs.160

3 Regularized PQL Estimation161

We propose regularized PQL estimation to perform selection over both the fixed and ran-162

dom effects in GLMMs.163

Definition. For a given D, the regularized PQL estimates of the fixed and random effect164

coefficients are given by165

(β̂λ, b̂λ) = arg max
β,b

`p(Ψ, b) = arg max
β,b

`PQL(Ψ, b)− λ
pf∑
k=1

vk|βk| − λ
pr∑
l=1

wl‖b•l‖,

where vk and wk are adaptive weights based on preliminary estimates of βk andD respec-166

tively, b•l = (bil, . . . , bnl) denotes all the coefficients corresponding to the lth random effect,167

and ‖ · ‖ denotes its L2 norm.168

We use an adaptive lasso penalty with weights vk for the fixed effects, and an adaptive169

group lasso penalty with weights wl for the random effects, linked by one tuning parameter170

λ > 0. Specifically, let β̃ and D̃ denote the unpenalized, maximum likelihood estimates of171

the fixed effect coefficients and random effect covariance matrix respectively from fitting172

the full GLMM. This fitting could be performed, for example, by applying the EM algo-173

rithm, or via recent advances in maximum likelihood estimation for GLMMs such as data174
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cloning (Lele et al., 2010). Then we choose vk = |β̃k|−κ and wl = D̃−κll , where D̃ll is the175

lth diagonal element of D̃ and κ > 0 is a common power parameter. Note that while the176

penalty involves b, the adaptive weights for the random effects require only an initial esti-177

mate of D. Also, in the case where the fixed intercept term is included but not penalized,178

the adaptive lasso penalty is summed from k = 2 to pf .179

The adaptive weights mean that a single tuning parameter, as opposed to using different180

λ’s for the fixed and random effects, is able to achieve consistency of the regularized PQL181

estimates. In Section 3.2, we discuss how to select the tuning parameter. Of course, having182

to select over multiple λ’s also presents a considerable computational challenge (see for183

instance, Garcia et al., 2014). Note that due to the concavity of both `PQL(Ψ, b) and the184

lasso penalties, if there exists a maximizer to `p(Ψ, b) then it is also the unique, regularized185

PQL estimate (see also Lemma 2.1, Jiang et al., 2001).186

Regularized PQL performs joint selection of the fixed and random effects in mixed187

models. The adaptive group lasso penalizes random slopes across clusters, thereby utiliz-188

ing the grouped structure inherent in the random effects. For a sufficiently large value of λ,189

maximizing the regularized PQL shrinks ‖b•l‖ = 0, that is, all the coefficients correspond-190

ing to the lth random slope (or the random intercept) are shrunk to zero. This implies that191

the lth row and column ofD are also set to zero (see Section 3.1). This method of penaliz-192

ing the coefficients b explicitly differs from the random effects penalties that shrink one or193

more elements of D or a decomposition of D to zero (Bondell et al., 2010; Ibrahim et al.,194

2011). In fact, the potential to penalize b arises precisely because the PQL is a function of195

the b’s.196

Since `p(Ψ, b) does not require integrating over the random effects, the solution path197

for the regularized PQL estimates is easily constructed. Conditional onD and b, estimates198

of the fixed effects β are obtained by fitting a GLM with the adaptive lasso penalty across199
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all clusters, with zTijbi as an offset. Then conditional onD and β, estimates of the random200

effects b are obtained by fitting a GLM with an adaptive elastic net penalty, with xTijβi as201

an offset. In the simulations and application, we used a local quadratic approximation (Fan202

and Li, 2001) to calculate the regularized PQL estimates, and this was already consider-203

ably faster than methods involving the marginal likelihood. Utilizing more sophisticated204

methods for estimation (e.g., coordinate descent, Friedman et al., 2010) will further reduce205

computation time.206

3.1 Estimation of the Covariance Matrix207

For a given D, regularized PQL provides estimates of the fixed and random effect coeffi-208

cients (β̂Tλ , b̂
T
λ )T . With these estimates, we can update the random effect covariance matrix209

in a number of ways (e.g., Breslow and Clayton, 1993; Vonesh et al., 2002). We propose210

substituting (β̂Tλ , b̂
T
λ )T back into `LA(Ψ), and then maximizing to obtain an estimate ofD.211

Straightforward algebra (see Appendix A) shows that an estimate of the covariance matrix212

can be obtained via the following iterative equation: At the tth iteration,213

D̂
(t)
λ =

1

n

n∑
i=1

{(
ZT
i ŴλiZi + (D̂

(t−1)
λ )−

)−1
+ b̂λib̂

T
λi

}
, (2)

where b̂Tλ = (b̂Tλ1, . . . , b̂
T
λn)T and Ŵλi is the weight matrix for subject i evaluated at214

(β̂Tλ , b̂
T
λi)

T . Note that when ‖b•l‖ is shrunk to zero, it makes sense to set the lth row and215

column ofD to zero, reflecting the removal of this covariate from the random effects com-216

ponent of the model. In such a case, the iterative formula above is applied only to the217

submatrix of D with non-zero rows and columns. Finally, we point out that this update218

of the covariance matrix is only used in the context of regularized PQL estimation; as we219

discuss in Section 3.3, we propose using a hybrid estimator to calculate the final parameter220
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estimates.221

3.2 Tuning Parameter Selection222

As with all penalized likelihood methods, both the finite sample and asymptotic perfor-223

mance of regularized PQL depend critically on being able to choose an appropriate value224

of the tuning parameter. For the GLM framework, there has been considerable research225

into choosing λ using, most commonly, cross validation or information criteria (e.g., Zhang226

et al., 2010), and we focus on the latter method. Specifically, we consider tuning parameters227

within the range [λmin, λmax], where λmin leads to the full model containing all the candi-228

date fixed and random effects, and λmax is the smallest λ that leads to the null model. A229

solution path is constructed by considering a sequence of λ’s over this range, and selecting230

the value of λ (hence the best submodel) by minimizing the information criterion231

IC(λ) = − 2

N
`PQL(Ψ̂λ, b̂λ) +

log(n)

N
dim(β̂λ) +

2

N
dim(b̂λ), (3)

where dim(β̂λ) and dim(b̂λ) are the number of non-zero estimated fixed and random effect232

coefficients respectively and, importantly, dim(b̂λ) = n dim(b̂λ1). Note that division by233

total sample size N is often used when studying information criteria for tuning parameter234

selection (e.g., Zhang et al., 2010).235

A key feature of IC(λ), which sets it apart from standard information criteria used for236

tuning parameter selection in other penalties for mixed models (e.g., Ibrahim et al., 2011;237

Lin et al., 2013), is its use of different model complexity penalties. Specifically, a BIC-type238

penalty of ‘log(n)’ is used for the fixed effects, and an AIC-type penalty of ‘2’ is used for239

the random effects. The latter arises because the model complexity is already taken into240

account by dim(b̂λ), which grows linearly with n regardless of the number of random ef-241
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fects in the model. Put another way, overfitting of the b̂λ’s is inherently prevented by the242

information criterion, since the removal of one random effect from the model amounts to243

the removal of n coefficients in regularized PQL by the group sparsity of ‖b̂λ•l‖. By con-244

trast, dim(β̂λ) is always of order Op(1), and so the BIC-type penalty of log(n) is necessary245

to properly account for model complexity in the fixed effects and prevent overfitting (see246

Shao, 1997, for related work on the use of differing model complexities in the linear re-247

gression context). In Section 4.1, we show that using IC(λ) to choose the tuning parameter248

selection leads to selection consistency in regularized PQL.249

3.3 Hybrid Estimation Approach250

In real finite sample settings, regularized PQL can produce biased estimates of the fixed251

effects and the random effect covariance matrix. The bias is related to the well known finite252

sample bias for unpenalized PQL estimation when the cluster sizes are not large compared253

to the number of clusters (Lin and Breslow, 1996). Moreover, as shown in Theorem 1, we254

establish consistency of the regularized PQL estimates where the convergence rate depends255

on the rate of growth of the cluster sizes mi. Thus compared to the unpenalized maximum256

likelihood estimates, which are n1/2-consistent, the regularized PQL estimates are not as257

efficient if all the mi’s are smaller than n, which is typically the case with longitudinal258

studies.259

To improve finite sample performance, we propose a hybrid estimation approach in260

which we use regularized PQL only for joint selection of the fixed and random effects, and261

use maximum likelihood estimation of the selected submodel to obtain the final estimates262

β and vech(D), as well as to construct predictions of the random effects based on posterior263

modes (for instance). Hybrid estimation approaches have been used previously (e.g., Hui264

et al., 2015), although the purpose there was to reduce the bias introduced by penalization,265
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while we use the hybrid approach to address both the relative lack of efficiency and finite266

sample bias of the regularized PQL estimates. Of course, since the hybrid approach is267

applied on the submodel chosen by regularized PQL estimation, it also inherits the selection268

consistency property encapsulated in the second part of Theorem 1. In the simulations269

in Section 5, we empirically evaluate the performance of the hybrid estimation approach270

compared to just using the estimates from regularized PQL.271

4 Asymptotic Properties272

We study the large sample properties of regularized PQL estimation in the setting where the273

cluster sizes grow with the number of clusters. Without loss of generality, suppose that the274

clusters are labeled such that the first cluster grows at the slowest rate, and the last cluster275

grows at the largest rate. That is, m1 = O(mk) for all k = 2, . . . , n, and ml = O(mn) for276

all l = 1, . . . , n1, so the rates of growth of the cluster sizes are bounded below by the order277

of m1 and above by the order of mn. Note this includes the case where all cluster sizes278

are constrained to grow at the same rate. It is also worth pointing out that no restriction279

is made directly on whether the cluster sizes are balanced or not; Instead, the assumptions280

made concern the rate of growth of the cluster sizes. We assume that mn/n→ 0, such that281

all cluster sizes grow at a smaller rate than number of clusters. This setting arises commonly282

in longitudinal studies in epidemiology (for instance), where the number of measurements283

recorded for each cluster increases slowly as more subjects are recruited into the study.284

To aid our theoretical development, write the random effect covariance matrix as D =285

ΓΓT , where Γ = QΛ1/2 with Q the orthogonal matrix of normalized eigenvectors and Λ286

the diagonal matrix whose entries are the eigenvalues ofD. Note if the lth row of Γ is equal287

to zero, then it implies that both the lth row and column of D are zero. Consequently, for288
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the remainder of this section, we redefine the parameter vector as Ψ = {βT , vec(Γ)T}T ∈289

<pf+p2r , replacing vech(D) by vec(Γ). This parameterization is used only in the theoretical290

development, as it avoids the true parameter point being on the boundary of the parameter291

space (see Condition C4 below) and is not employed in the estimation process.292

Let Ψ0 = {βT0 , vec(ΓT
0 )}T be the true parameter point and, without loss of generality,293

write β0 = (βT01,β
T
02 = 0T )T and vec(Γ0) = (vec(ΓT

01), vec(ΓT
02) = 0T )T . Let p0f =294

dim(β01) denote the number of truly non-zero fixed effects, and p0r the number of rows295

in Γ01. Also, for i = 1, . . . , n, let b0i denote a realization from the true random effects296

distribution; the first p0r elements of b0i are drawn from a multivariate normal distribution297

with mean zero and covariance matrixD01 = Γ01Γ
T
01, and b0il = 0 for l = p0r + 1, . . . , pr.298

Finally, let N =
n∑
i=1

mi be the total number of observations. The following regularity299

conditions are required.300

(C1) The function a(η) is three times continuously differentiable in its domain, with301

a′′(η) ≥ c0 > 0 for some sufficiently small constant c0.302

(C2) For every i = 1, . . . , n and j = 1, . . . ,mi, there exists a sufficiently large constant303

C such that ‖xij‖∞ < C and ‖zij‖∞ < C where ‖ · ‖∞ is the maximum norm.304

Furthermore, the matrices m−1i X
T
i Xi and m−1i Z

T
i Zi are positive definite with min-305

imum and maximum eigenvalues bounded from above and below by 1/c1 and c1306

respectively, where c1 is some positive constant.307

(C3) Let `1(β, b) =
n∑
i=1

mi∑
j=1

log f(yij|β, bi), andH(β, b) = −N−1∇2`1(β, b). Then there308

exists a ε > 0 such that for n and all mi sufficiently large, the minimum eigenvalue309

ofH(β, b) is bounded away from zero for all ‖(βT , bT )T − (βT0 , b
T
0 )T‖∞ ≤ ε.310

(C4) Ψ0 is a interior point in the compact set Ω ∈ <pf+p2r .311
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(C5) The tuning parameter λ satisfies (a) λm1/2
1 /N → 0 and (b) λm1/2

1 nκ/2/N → ∞,312

where mn/n→ 0.313

Conditions (C1) and (C2) ensure the observed information matrices based on `PQL(Ψ, b)314

are positive definite, and imply that the expectations Eb{a′′(η)} and Eb{a′′′(η)}, where the315

expectations are with respect to the true random effects distribution, are finite. Condition316

(C3) extends this to a small neighborhood around the true parameters. Along with the317

independence of the responses yi for each cluster, conditions (C1)-(C4) are sufficient to318

ensure the maximum likelihood estimate of Ψ, i.e. the maximizer `(Ψ), exists and is n1/2-319

consistent (Lehmann, 1983). Condition (C5) imposes restriction on the rate at which the320

tuning parameter can grow.321

We now present a result on the large sample consistency of the regularized PQL esti-322

mates.323

Theorem 1. Under conditions (C1)-(C5a), as n,mi → ∞ for all i and mn/n → 0,324

the regularized PQL estimator satisfies ‖β̂λ − β0‖ = Op(m
−1/2
1 ) and ‖b̂λi − b0i‖ =325

Op(m
−1/2
1 ) for all i = 1, . . . , n. If condition (C5b) is also satisfied, then P (β̂λ02 =326

0)→ 1 and P (‖b̂λ•l‖ = 0)→ 1 for all l = p0r+1, . . . , pr, where b̂λ•l = (b̂λ1l, . . . , b̂λnl)327

denotes all the estimated coefficients corresponding to the lth random effect.328

Note that even though pr is fixed, each b̂λ•l is growing at the same rate as the number329

of clusters, n, so the proof of Theorem 1 has to be developed in a high-dimensional set-330

ting. Outlines of the proofs of all theorems are given in Appendix B, with detailed proofs331

provided in the Supplementary Material.332

The m1/2
1 -consistency of the fixed effects agrees with the result of Vonesh et al. (2002),333

who showed β̂λ − β0 = Op

(
max{m−1/2, n−1/2}

)
in the case where all cluster sizes were334

equal to m, and n → ∞ and m → ∞. The m1/2
1 -consistency for each b̂λi is also reason-335
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able, since regularized PQL treats the b as fixed effects and the estimation of bλi depends336

only on the mi observations within the ith cluster. Estimation consistency for all random337

effect coefficients is thus governed by the smallest rate of growth of the cluster sizes, m1.338

The second part of Theorem 1 states that the regularized PQL estimators asymptotically339

select only the truly non-zero fixed and random effects in the GLMM. Together with its340

computational simplicity, this presents a strong argument for the use of regularized PQL341

for joint selection.342

4.1 Consistency of IC(λ)343

In this section, we show that using the tuning parameter chosen by minimizing IC(λ)344

asymptotically identifies the true model. For any value of λ ∈ [λmin, λmax], let α denote345

the submodel (subset of fixed and random effects) selected by regularized PQL estima-346

tion. Clearly α depends on λ, but for ease of notation we have suppressed this dependence.347

Next, let (Ψ̃T
α , b̃

T
α)T denote the unregularized PQL estimator for this submodel, obtained348

by maximizing the PQL in (1) along with the iterative update of the covariance matrix in349

(2). Finally, let λ0 be a sequence of tuning parameters that satisfy condition (C5) and hence350

selects the true model, which we denote here as α0.351

For the development below, we require an additional condition. Let ‘⊃’ denote the352

proper superset relation.353

(C6) There exists a constant c2 such that E {`o(Ψ0)− `o(Ψ∗α)} ≥ c2 > 0 for all mod-354

els α 6⊃ α0, where `o(Ψ) denotes the marginal log-likelihood of a GLMM for a355

single observation, and Ψ∗α denotes the pseudo-true parameters for model α which356

minimize E {−`o(Ψ∗α)}.357

Conditions like (C6) are imposed in theoretical developments on selection consistency e.g.,358
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see condition (viii) in Müller and Welsh (2009) for robust selection on GLMs, and condi-359

tion (C4) in Zhang et al. (2010) in the setting of penalized GLMs. It amounts to requiring360

that the Kullback-Leibler distance between any underfitted GLMM, with pseudo-true pa-361

rameters Ψ∗α, and the true GLMM is positive; see the Supplementary Material and White362

(1982) for further discussion of pseudo-true parameters.363

We now define a proxy information criterion based on these unregularized PQL esti-364

mates,365

ICproxy(α) = − 2

N

n∑
i=1

mi∑
j=1

log f(yij|β̃α, b̃αi) +
log(n)

N
dim(β̃α) +

2

N
dim(b̃α).

Note the loss function for this proxy criterion involves only the first part of the PQL. The366

reason for introducing this proxy criterion is to simplify the theoretical development: since367

ICproxy(α) does not involve penalized estimates, we can focus on establishing its asymptotic368

behavior when α represents an underfitted or overfitted model without having to deal with369

the effects of λ. We then have the following result.370

Lemma 1. Under conditions (C1)-(C4) and (C6), and as n,mi →∞ for all i andmn/n→371

0, the proxy information criterion satisfies P {minα 6=α0 ICproxy(α) > ICproxy(α0)} → 1.372

Lemma 1 guarantees that asymptotically, all underfitted (at least one truly non-zero373

coefficient is missing from the model) and overfitted (all truly non-zero coefficients and one374

or more zero coefficient are included in the model) models estimated using unregularized375

PQL will have values of ICproxy(α) greater than the value attained at the true model α0.376

From these results, we are able to infer the large sample properties of IC(λ) for choosing377

the tuning parameter.378

Theorem 2. Let α̂ be the model chosen by minimizing IC(λ) defined in (3). Then under379

conditions (C1)-(C4) and (C6), and as n,m1 →∞, it holds that P (α̂ = α0)→ 1.380
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The above guarantees that the model chosen by minimizing IC(λ) is asymptotically381

equal to the model chosen by λ0. Since λ0 satisfies condition (C5) and selects the true382

model, it follows immediately that choosing the tuning parameter based on IC(λ) leads to383

consistent model selection using regularized PQL.384

5 Simulation Study385

We performed an empirical study to assess the performance of regularized PQL estima-386

tion and IC(λ) for three commonly applied forms of GLMMs, namely the linear mixed387

model, Bernoulli, and Poisson GLMMs. For brevity, we only present the first two sets388

of results here; the Poisson GLMM results are presented in the Supplementary Material.389

For simplicity, we restrict our simulations to cases where the cluster sizes are the same,390

m1 = . . . = mn = m. In all three settings, 200 datasets were generated for each combina-391

tion of n and m. We focused on settings where m is small compared to n, to test the scope392

of the theory in Section 4. For all simulations, the power parameter was fixed at κ = 2,393

while the hybrid estimator was obtained by refitting the selected submodel using adaptive394

quadrature via the R package lme4 (Bates et al., 2015).395

For each setting, performance was assessed by the percentage of correctly chosen over-396

all models, fixed effects, and random effects, as well as several measures of fit. Let Ψ̂method397

and b̂method generically denote the parameter estimates and predicted random effects ob-398

tained directly from regularized PQL or the hybrid estimation approach discussed in Sec-399

tion 3.3. Then for both estimation methods we calculated the following four quantities:400

mean absolute bias of the estimates E
(
‖Ψ̂method −Ψ0‖1

)
where ‖·‖1 denotes the L1 norm,401

total variance of the estimates
dim(Ψ)∑
l=1

Var(Ψ̂method,l), mean squared prediction error for ran-402

dom effects E(‖b̂method − b0‖2), and the mean predicted log-likelihood E{`pred(Ψ̂method)}403
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evaluated using a validation dataset. For all four quantities, the expectations and variances404

were calculated empirically across the simulated datasets. Afterwards, for each quantity405

we constructed a ratio comparing the hybrid estimation approach to estimates directly from406

regularized PQL, such that ratios less than one imply the hybrid estimator has lower ab-407

solute bias/total variance/prediction error/predicted log-likelihood relative to regularized408

PQL.409

5.1 Normal Responses410

We replicated the design of Bondell et al. (2010), which was subsequently used by Fan411

and Li (2012) and Lin et al. (2013), so we can compare our method with other recently412

proposed penalized likelihood methods for linear mixed models. Datasets were generated413

based on the true model yij ∼ N(xTijβ + zTijbi, σ
2), where pf = 9 fixed effects with414

fixed intercept, pr = 4 random effects including a random intercept, and σ2 = 1. The415

vector of true fixed effects parameters was set to β0 = (1, 1, 0, . . . , 0), while the true 4× 4416

random effect covariance matrix is given by vech(D0) = (9, 4.8, 0.6, 0, 4, 1, 0, 1, 0, 0). In417

other words, there were seven uninformative fixed effects and one uninformative random418

effect. All the elements of xij and the last three elements zij were generated from the419

uniform distribution U [−2, 2], with the first element of zij set equal to one. Four penalized420

likelihood methods were compared: 1) regularized PQL estimation (rPQL), 2) the SCAD-P421

approach of Fan and Li (2012) using the SCAD penalty, 3) the M-ALASSO approach of422

Bondell et al. (2010) using an adaptive lasso, and 4) the two-stage ALASSO approach of423

Lin et al. (2013). The results for methods 2 to 4 were taken from their respective papers.424

Regularized PQL performed strongly overall; it was the best at selecting both the cor-425

rect overall model and fixed effects in the small sample case, while in the large sample case426

there was little difference between it and SCAD-P, which correctly identified the best model427

19



Table 1: Results from simulation Setting 1 for linear mixed models. The methods are: reg-
ularized PQL (rPQL), SCAD-P (Fan and Li, 2012), M-ALASSO (Bondell et al., 2010), and
ALASSO (Lin et al., 2013). Performance was assessed in terms of percentage datasets with
correctly chosen overall models (%C), fixed effects (%CF), and random effects (%CR), as
well as the ratios of mean absolute bias (Bias) and total variance (Var) of the estimates,
mean squared prediction error (PSE), and predicted log-likelihood (PL).

(n,m) Method %C % CF % CR Bias/Var/PSE/PL

(30, 5)

rPQL 88 98 88 0.84/1.02/0.88/0.97
SCAD-P - 90 86 -

M-ALASSO 71 73 79 -
ALASSO 79 81 96 -

(60, 10)

rPQL 98 99 98 0.99/1.03/0.97/0.95
SCAD-P 100 100 100 -

M-ALASSO 83 83 89 -
ALASSO 95 96 99 -

in all simulated datasets (Table 1). The fact that the performance of regularized PQL was428

closer to SCAD-P than the other two penalized methods was not surprising, as regularized429

PQL and SCAD-P adopt a similar approach to group penalizing the random effect coeffi-430

cients, while M-ALASSO and ALASSO instead penalize the Cholesky decomposition of431

the random effect covariance matrix.432

All the ratios were relatively close to one, suggesting that there was no substantial dif-433

ferences between the hybrid estimation approach compared to regularized PQL. This was434

not surprising, given that for linear mixed models, PQL estimation does produce asymp-435

totically unbiased and consistent estimators even in the setting where m is fixed (Breslow436

and Clayton, 1993). On computation time, regularized PQL took an average of 26 and 59437

seconds to fit the (n = 30,m = 5) and (n = 60,m = 10) settings respectively. We believe438

these times are competitive, while acknowledging that further reductions could have been439

made if we had used more sophisticated methods of optimization.440
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5.2 Bernoulli Responses441

We simulated datasets from a Bernoulli GLMM using a logit link, with pf = pr = 9 covari-442

ates, both including an intercept term. For i = 1, . . . , n, vectors of fixed effect covariates443

xij were constructed with a one in the first term and the remaining terms generated from444

a multivariate normal distribution N8(0,Σ) with Σrs = 0.5|r−s|. The random effect co-445

variates zij were set equal to xij . The vector of true fixed effects parameters was set to446

β0 = (−0.1, 1,−1, 1,−1, 0, . . . , 0), while the true random effect covariance matrix was a447

9×9 diagonal matrix with the first three diagonal elements set to (3, 2, 1) and the remaining448

diagonal entries zero.449

We are not aware of any available software for penalized joint selection in GLMMs. For450

comparison then, we write our own code to implement the following two penalized likeli-451

hood methods: 1) extending the M-ALASSO penalty of Bondell et al. (2010) to the case of452

non-Gaussian responses, with the tuning parameter chosen using their recommended BIC,453

2) the adaptive lasso penalty of Ibrahim et al. (2011), with the tuning parameters chosen454

using their proposed ICQ criterion. Estimation for both methods was performed using a pe-455

nalized Monte-Carlo EM algorithm and, due to their heavy computational load, considered456

a sequence (grid) of 100 values (combinations) of the tuning parameter. Aside from these457

two penalties, we also applied the glmmLasso package (Groll and Tutz, 2014), which458

performs fixed effects selection only in GLMMs using the unweighted lasso penalty. Since459

glmmLasso only performs fixed effects selection, we assumed that the random effects460

component was known, i.e. only the first three elements of zij were included in the random461

effects structure. As recommended by Groll and Tutz (2014), BIC was used to select the462

tuning parameter in glmmLasso.463

Finally, as an alternative to penalized likelihood, we included for comparison a two464

stage, forward selection method using BIC(α) = −2`(Ψ̃α) + log(N) dim(Ψ̃α), where Ψ̃α465
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denotes the maximum likelihood estimates for for submodel α. At the first stage, a saturated466

fixed effects structure was assumed and forward selection performed on the random effects.467

At the second stage, all random effects chosen in the first stage were entered into the model468

as fixed effects also, and forward selection was used on the remaining covariates to select469

them as fixed effects only. Compared to all subsets selection, the two stage approach is470

not only computationally more efficient, but also preserves the hierarchy of the covariates471

present in longitudinal GLMMs (Hui et al., 2016).472

Regularized PQL performed best at selecting both fixed and random effects, with per-473

formance improving with m and n (Table 2). Comparing the hybrid and regularized PQL474

estimation methods, we see that the hybrid estimator produces considerably less biased but475

more variable estimates. This is consistent with the effects of penalization, that is, shrink-476

age of the fixed and random effects will reduce the variability of the estimates at the expense477

of increased bias. On the other hand, both the ratios for mean squared error prediction and478

predictive log-likelihood are less than one, particularly when m is small compared to n,479

suggesting that the hybrid estimator did have improved predictive performance compared480

to directly using the regularized PQL estimates. The M-ALASSO penalty, glmmlasso,481

and forward selection using BIC all performed slightly poorer than regularized PQL at482

selecting the fixed effects, while on random effects selection M-ALASSO and forward se-483

lection using BIC had a tendency to overfit. Finally, the penalty of Ibrahim et al. (2011)484

performed poorly in this simulation, with subsequent investigation revealing that ICQ al-485

most always chose the smallest possible set of tuning parameters (leading to the saturated486

model being selected). It also tended to behave erratically e.g., the loss function compo-487

nent of ICQ did not vary monotonically with model complexity. It should be noted that ICQ488

criterion was, in fact, not recommended for use by the authors in an earlier paper (Ibrahim489

et al., 2008).490
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Table 2: Results from simulation Setting 2 for Bernoulli GLMMs. The methods are: regu-
larized PQL (rPQL), M-ALASSO (Bondell et al., 2010), I-ALASSO (Ibrahim et al., 2011),
glmmLasso (Groll and Tutz, 2014), and forward selection (Forward Sel.) using BIC(α).
Performance was assessed in terms of the percentage of datasets with correctly chosen
overall models (%C), fixed effects (%CF), and random effects (%CR), as well as ratios of
mean absolute bias (Bias) and total variance (Var) of the estimates, mean squared predic-
tion error (PSE), and predicted log-likelihood (PL). Finally, the mean computation time for
each method was also recorded, with standard deviations in parentheses.

(n,m) Method %C % CF % CR Comp. time Bias/Var/PSE/PL

(50, 10)

rPQL 67 93 67 238(65) 0.21/18.28/0.73/0.71
M-ALASSO 12 56 17 ≈ 104 -
I-ALASSO 0 0 0 7309(884) -
glmmLasso - 73 - 908(109) -
Forward Sel. 9 94 10 192(67) -

(50, 20)

rPQL 86 94 90 256(33) 0.27/4.70/0.63/0.85
M-ALASSO 37 86 44 ≈ 104 -
I-ALASSO 0 10 0 8748(1115) -
glmmLasso - 89 - 1301(162) -
Forward Sel. 74 98 76 1686(391) -

(100, 10)

rPQL 78 96 81 390(73) 0.08/6.34/0.69/0.76
M-ALASSO 12 83 17 ≈ 204 -
I-ALASSO 0 1 0 ≈ 104 -
glmmLasso - 78 - 3226(231) -
Forward Sel. 33 93 36 1614(326) -

(100, 20)

rPQL 95 97 98 501(98) 0.21/4.07/0.70/0.86
M-ALASSO 43 92 45 ≈ 204 -
I-ALASSO 0 18 0 ≈ 104 -
glmmLasso - 94 - 5738(264) -
Forward Sel. 95 97 98 6493(1031) -
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Except for (n = 50,m = 10) where forward selection using BIC was slightly faster,491

regularized PQL was also the fastest method at performing joint selection, with compu-492

tation time typically an order of magnitude smaller than the four competing approaches493

(Table 2). The long computation times of M-ALASSO and the penalty of Ibrahim et al.494

(2011) could be attributed to the need for a penalized Monte-Carlo EM algorithm, in con-495

trast to regularized PQL which does not involve any integration. Finally, computation times496

for forward selection using BIC scaled the worst with n and m e.g., doubling the cluster497

size from m = 10 to 20 led to at least four-fold increase in estimation time.498

Simulation results for the Poisson GLMMs are presented in the Supplementary Mate-499

rial, and present similar trends to those seen in the Bernoulli GLMM design above. That500

is, regularized PQL performed competitively in jointly selecting the fixed and random ef-501

fects, while taking much less time to fit the solution path than competing methods. Also502

presented in the Supplementary Material are results based on using forward selection with503

other types of information criteria, which performed worse than BIC(α) shown above, as504

well as simulation designs where m explicitly grows as a function of n, which empirically505

confirmed the estimation and selection consistency established in Section 4.506

6 Application to Forest Health Monitoring507

We applied regularized PQL estimation to a longitudinal dataset on the health status of508

beech trees at plots located across northern Bavaria, Germany. The aim of the analysis was509

to uncover important baseline and time varying covariates influencing the probability of a510

tree experiencing defoliation.511
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Table 3: Nine baseline (time independent) and two time varying covariates available for
selection in the forest health dataset.

Covariates Brief description

Baseline covariates
Alkali Proportion of base alkali ions; categorical (very low, low, high, very high)
Canopy Forest canopy density; continuous (%)
Elevation Elevation above sea level; continuous (meters)
Fertilization Fertilization applied; binary (yes, no)
Humus Humus layer thickness; ordinal (five levels)
Inclination Slope inclination; continuous (%)
Moisture Soil moisture level; categorical (moderately dry, moderately moist, moist)
Soil Soil layer depth; continuous (centimeters)
Stand Stand type; categorical (deciduous, mixed)

Time varying covariates
Age Age of observation stands; continuous (years)
pH Soil pH at 0–2 centimeters; continuous (centimeters)

Different versions of the data, i.e. with differing predictors and response type, have512

been considered previously by Kneib et al. (2009), who focused on the spatial effects, and513

Groll and Tutz (2014), who examined this data to illustrate high-dimensional GLMMs. In514

particular, Groll and Tutz (2014) also had the goal of identifying important predictors of515

tree defoliation, and we will compare our results with theirs. The version of the dataset we516

used is the ForestHealth dataset in the R2BayesX package (Belitz et al., 2015). The517

dataset consists of n = 78 trees with m = 22 measurements for all trees, with a binary518

response yij = 1 indicating that defoliation exceeding 12.5% and yij = 0 otherwise. As519

displayed in Table 3, nine baseline and two time varying covariates were recorded. All520

continuous covariates were standardized prior to analysis, while dummy variables were521

created for the categorical variables.522

We fitted a Bernoulli GLMM with all covariates included as fixed effects. Furthermore,523

to account for any potential non-linear relationship between age and the probability of524
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defoliation on the logit scale, we included polynomial terms for age as fixed effects up to525

the fourth power, similar to Groll and Tutz (2014). For the random effects, we included a526

random intercept to account for heterogeneity in the overall health of the trees at baseline,527

and random slopes for age and pH to capture the variability between trees in their response528

to these covariates over time. We chose not to include any polynomial terms as random529

effects for ease of interpretation. We first fitted a saturated model to construct adaptive530

lasso weights. Then we used regularized PQL with the IC(λ) in (3) to perform model531

selection, where IC(λ) was used to select both λ and κ, the latter chosen from the range532

{1, 2}. This resulted in the model533

logit(µij) = 0.528 + 0.364Ageij − 1.235Canopyi − 0.101pHij

+ b0i + b1iAgeij + b2ipHij; i = 1, . . . , 78, j = 1, . . . , 22

Ĉov(bi) =


5.042 2.822 1.024

− 3.427 0.928

− − 0.839

 .

Not surprisingly, older trees, increased soil acidity (lower pH), and denser forest canopy534

cover were all associated with increased probability of defoliation. There was substantial535

heterogeneity in the baseline status of the trees (remembering the continuous covariates536

were standardized), as well as in their responses to age and pH. Regularized PQL shrunk537

all the polynomial terms of age to zero, suggesting that perhaps any truly non-linear effect538

of age was masked by the large variability between trees in their linear responses and/or that539

the non-linear effects were comparatively small compared to the between-tree variability.540

To confirm this, we fitted the selected submodel in the R package lme4 using Laplace’s541

approximation, and compared it to a GLMM that included polynomial terms for age up the542

26



fourth power. The resulting bootstrap likelihood ratio test confirmed that these polynomial543

fixed effects for age were indeed not significant (P-value = 0.11). Finally, all the off-544

diagonal terms in the estimated random effect covariance matrix were positive, indicating545

that large effects for one predictor tended to occur with large effects in the other predictors,546

e.g., the higher the baseline probability of defoliation, the worse the effect of increasing547

age and soil acidity on the the tree’s health.548

The results obtained here differ from those in Groll and Tutz (2014), who applied the549

glmmLasso package to a very similar version of this dataset, in some important ways:550

1) Groll and Tutz (2014) did not have pH as a predictor in their analysis, whereas we551

found that, based on regularized PQL, pH was both an important fixed and random effect;552

2) the method of Groll and Tutz (2014) identified an important fixed, quadratic effect of553

age, although the magnitude of the coefficient was very close to zero; 3) regularized PQL554

identified canopy cover as an important predictor, whereas Groll and Tutz (2014) identi-555

fied stand type as important. Perhaps the driving reason behind these differences was that556

glmmLasso selects only fixed effects, and Groll and Tutz (2014) only included a random557

intercept in the model. By contrast, regularized PQL performs joint selection so we could558

include and select on Age and pH as random slopes, and indeed both these covariates were559

identified as being significant effects.560

7 Discussion561

Joint selection of fixed and random effects in mixed models is a challenging problem, due to562

both the intractability of the marginal likelihood and the large number of candidate models.563

In this article, we proposed regularized PQL estimation to overcome these problems. By564

combining the PQL with adaptive lasso penalties for selecting the fixed and random effects,565
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regularized PQL offers a attractive method of computing the solution path. We showed566

that regularized PQL is selection consistent. This is an important result given PQL was567

originally motivated by Breslow and Clayton (1993) as a fast but approximate method of568

estimating GLMMs. With regularized PQL, we have a computationally fast approach of569

joint selection that asymptotically selects the true set of fixed and random effects. We570

proposed an information criterion for choosing the tuning parameter in regularized PQL571

which leads to selection consistency. The criterion combines a BIC-type model complexity572

penalty for the fixed effects with a AIC-type penalty for the random effects. This is a573

reflection of the differing degrees of model complexity needed for the fixed coefficients,574

which grows at rate O(1), versus the random coefficients, which grows at rate O(n). In the575

linear regression and penalized GLM contexts respectively, Shao (1997) and Zhang et al.576

(2010) investigated the impacts of differing degrees of model complexity, and our criterion577

can be regarded as an extension of such results to the GLMM context using regularized578

PQL estimation.579

Simulations demonstrate the selection consistency of regularized PQL in conjunction580

with the proposed information criterion, showing that it can outperform other methods of581

joint selection while offering considerable reductions in computation time. The use of a582

hybrid estimation method further helps to reduce finite sample bias and improve predic-583

tion. Indeed, using regularized PQL for fast model selection only mirrors other works in584

the GLM context, where penalized likelihood approaches have been proposed purely as585

a means of computationally efficient model selection (e.g., Schelldorfer et al., 2014; Hui586

et al., 2015). Of course, we acknowledge further simulations are required to fully assess587

the robustness of regularized PQL selection e.g., how it performs when the truly non-zero588

coefficients and hence signal to noise ratio is small, and that there are other methods of joint589

selection in GLMMs which were not included in our study e.g., the predictive shrinkage590
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selection method of Hu et al. (2015) designed specifically for Poisson mixture models in591

the context of network analysis.592

One obvious extension to make to regularized PQL estimation is to high-dimensional593

GLMMs, where the number of fixed and random effects grows with the number of clusters594

and/or cluster size; see for example the recent works of Fan and Li (2012) and Groll and595

Tutz (2014). For the case where pr remains fixed but pf is permitted to grow, we believe596

the estimation and selection consistency results established in this article will continue to597

hold, provided the conditions on the tuning parameter are altered slightly. In a more general598

setting where pr grows withm1 and n, some of the results established for high-dimensional599

penalized GLMs (see the overview by Fan and Lv, 2010) may in principle be adapted to600

GLMMs, especially since the PQL treats the random effects as if they are fixed coefficients.601

Another possible extension which is especially useful for longitudinal studies is to modify602

rPQL so that the penalties select covariates in a hierarchical manner, such that all covariates603

in the model are chosen as either fixed effects only or composite (fixed and random) effects604

(see for instance, Hui et al., 2016). This reflects the notion that covariates in longitudinal605

GLMMs should not be included in the model as random slopes only.606
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A Derivation of Covariance Matrix update in equation (2)692

Consider the Laplace approximation log-likelihood `LA(Ψ) given in Section 2 of the main693

text. Substituting in the regularized PQL estimates β̂λ and b̂λ, we obtain694

`(D) = −n
2

log det(D)− 1

2

n∑
i=1

log det(ZT
i ŴλiZi +D−) +

n∑
i=1

mi∑
j=1

log f(yij|β̂λ, b̂λi)

− 1

2

n∑
i=1

b̂TλiD
−b̂λi,

where for i = 1, . . . , n, b̂λi are the regularized PQL estimates of the random effects and695

Ŵλi,jj = (Var(yij)g′(µ̂λij)2)−. Differentiating `(D) with respect toD, we have696

∂`(D)

∂vech(D)
= −n

2
vech(D−) +

1

2

n∑
i=1

(D− ⊗D−)vech{(ZT
i ŴλiZi +D−)−1}

+
1

2

n∑
i=1

(D− ⊗D−)vech(b̂λib̂
T
λi)

= 0

It follows that n(D−⊗D−)−vech(D−) = n vech(D) =
n∑
i=1

vech{(ZT
i ŴλiZi+D

−)−1+697

b̂λib̂
T
λi}, from which the formula in (2) of the main text follows.698

B Outlines of Proofs699

Full derivations are found in the Supplementary Material; here we provide an outline for700

each of these proofs.701

Proof of Theorem 1: We consider the objective function `p(β,Γ, b) = `PQL(β,Γ, b) −702

λ
pf∑
k=1

vk|βk| − λ
pr∑
l=1

wl‖b•l‖ and define703
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∆ = n−1 {`p(β0 + αmu1,Γ, b0 + αmu2)− `p(β0,Γ, b0)} for a vector u of appropriate704

length and αm = m
−1/2
1 . Under conditions (C1)-(C2), (C4) and (C5a), we show that this705

difference is asymptotically dominated by a quadratic term of form−(α2
m/2)uT {−n−1∇2`1(β, b)}u,706

which is negative. This implies that with probability tending to one there exists a local max-707

imum at (β0, b0), which we then show to be a global maximum.708

Given them1/2
1 -consistency from the first part of the theorem, to prove selection consis-709

tency of the regularized PQL estimates we need only show that for truly zero fixed and ran-710

dom effects, the signs of the score equations ∂`p(Ψ, b)/∂βk|Ψ̂λ,b̂λ
and ∂`p(Ψ, b)/∂bil|Ψ̂λ,b̂λ

711

depend asymptotically only on the sign of the estimated coefficients. This is proved by ex-712

panding the score equations about the true parameter values and, in particular, using con-713

dition (C5b) to show that the derivative of the adaptive (group) lasso penalty dominates all714

the terms in the score equations.715

Proof of Lemma 1: We consider separately the cases of underfitted and overfitted mod-716

els. In the first case, we utilize condition (C6) to show that the difference in the loss function717

−2
n∑
i=1

mi∑
j=1

log f(yij|β̃α, b̃αi) between any underfitted model and the true model is positive718

and asymptotically dominates all differences in the model complexity. In the second case,719

Condition (C3) is utilized to show that the difference in the loss function between any over-720

fitted model and the true model is asymptotically dominated by the difference in the model721

complexity penalties log(n) dim(β̃α) + 2n dim(b̃αi), which by definition is greater than722

zero when overfitting.723

Proof of Theorem 2: Under conditions (C1)-(C2), (C4), we prove the resultN−1`PQL(Ψ̂λ0 , b̂λ0) =724

N−1`1(β̃α0 , b̃α0) + op(1). We then show for any tuning parameter λ producing an under-725

fitted or overfitted model α, it holds that {IC(λ)− IC(λ0)} ≥ {ICproxy(α)− ICproxy(α0)}.726

Since the right hand side is positive with probability tending to one by Lemma 1, the result727

follows.728
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