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ABSTRACT

In recent years, continuous space models have proven to be
highly effective at language processing tasks ranging from
paraphrase detection to language modeling. These mod-
els are distinctive in their ability to achieve generalization
through continuous space representations, and composition-
ality through arithmetic operations on those representations.
Examples of such models include feed-forward and recur-
rent neural network language models. Recursive neural net-
works (RecNNs) extend this framework by providing an
elegant mechanism for incorporating both discrete syntactic
structure and continuous-space word and phrase represen-
tations into a powerful compositional model. In this paper,
we show that RecNNs can be used to perform the core spo-
ken language understanding (SLU) tasks in a spoken dialog
system, more specifically domain and intent determination,
concurrently with slot filling, in one jointly trained model.
We find that a very simple RecNN model achieves competi-
tive performance on the benchmark ATIS task, as well as on
a Microsoft Cortana conversational understanding task.

Index Terms— Recursive Neural Networks, Dialog Sys-
tems, Domain Classification, Intent Determination, Slot Fill-
ing

1. INTRODUCTION

Recursive neural networks (RecNNs) have had a long history
of application, being a natural and effective way of merging
recursively structured inputs and continuous space represen-
tations [1, 2, 3, 4, 5, 6, 7]. These models operate on the parse
structure of a sentence, and associate a continuous space vec-
tor with each leaf or word in the parse tree, and with each
internal node. Such a vector can be thought of as encapsu-
lating a semantic representation of the subtree rooted beneath
it. The vectors are recursively computed from the leaves up,
using a simple function to combine the vectors of child nodes
into the vector for a root node. The model is trained so that the
internal vectors are effective at semantic classification tasks,
such as determining the polarity of the sentiment expressed by
the words in a subtree, or in our case, to predict user intent.

The basic structure is illustrated in Figure 1. A parse tree
is shown on top of a sentence, with the internal nodes labeled

by their syntactic types, and the continuous-space vector as-
sociated with each node shown above the syntactic type. The
details of this model are discussed in Section 3. Recently, re-
cursive neural network models have demonstrated outstand-
ing performance in tasks such as sentiment classification and
paraphrase detection [7, 6], and even image analysis [5].

Fig. 1. Basic RecNN Structure. Internal vectors are repre-
sented with small boxes, e.g. 3 dimensional vectors in this
case.

Motivated by the inherent ability of recursive neural net-
works to fuse discrete syntactic information with continuous
space representations, in this paper we show how to ap-
ply them to spoken dialog processing, and in particular, we
present a recursive network model to jointly perform the
SLU tasks of domain detection, intent determination, and slot
filling. The main contributions of this paper are:

• Adaptation of the recursive neural network to perform
slot filling;

• The joint training of the recursive neural network for
domain detection, intent determination, and slot filling;
and

• An analysis of the appropriate level of syntactic tying
for these tasks.



Table 1. ATIS utterance example
Domain: Airline Travel

Intent: Flight Information
Sentence Slot label

show O
flights O
from O

boston B-fromloc.city name
to O

new B-toloc.city name
york I-toloc.city name
today B-date

The remainder of the paper is organized as follows. Section
2 provides background on the spoken dialog tasks. Section
3 describes the recursive neural network model in detail, and
our modifications to make it work for these tasks. Section 4
contains experimental results. Finally we make concluding
remarks in Section 5.

2. SEMANTIC UTTERANCE CLASSIFICATION AND
SLOT FILLING

Spoken language understanding in human/machine spoken
dialog systems aims to automatically identify the domain
and intent of the user as expressed in natural language (se-
mantic utterance classification), and to extract associated
arguments (slot filling). An example is shown in Table 1,
which uses the IOB representation, where an initial “B” in a
label indicates the beginning of a slot and an “I” indicates an
extension of it. “O” is the null label. Once intent and slots
are identified, the system can then decide on the next proper
action to take according to the domain specific semantic
template.

While these tasks are intimately related, traditionally do-
main/intent determination and slot filling have been done sep-
arately. Domain detection and intent determination tasks aim
to classify a given speech utterance x into one of M semantic
classes, ĉi, based on the contents of the utterance:

ĉi = argmax
i∈M

p(ci|x) (1)

To this end, a number of standard classifiers can be used,
such as support vector machines and boosting [8, 9].

Slot filling, on the other hand, is usually framed as a se-
quence classification task. Formally, the task is to find most
probable slot assignments ŷ given utterance x:

ŷ = argmax
y∈Y(x)

p(y|x) (2)

where Y(x) is the entire search space of slot assignments of
x. For slot filling, conditional random field (CRF) [10] is

a proven technique and has been used extensively [11], but
recently recurrent neural networks (RNNs) have also shown
excellent performance [12, 13, 14].

Recently, there has been some initial work on joint intent
and slot determination. One approach used triangular CRF
[15], which coupled an additional random variable for intent
on top of a standard CRF. Mairesse et al. [16] used SVM clas-
sifiers to parse inputs, and apply semantic labels the interior
nodes, resulting in both slot and intent labels. Another ap-
proach improved the model by using a convolutional neural
network combined with a CRF [17]. In this paper, we extend
this line of research with recursive neural networks.

3. RECURSIVE NEURAL NETWORKS FOR DIALOG
SYSTEMS

Recursive neural networks extend traditional neural networks,
enabling them to apply to structured tree inputs. This is done
by repeatedly applying a neural network at each node of the
tree to combine the output vectors of its children to form
the node’s own output vector. Recurrent Neural Networks
(RNNs) can be thought of as a limiting case of recursive neu-
ral networks, where RNNs repeatedly apply a neural network
to a degenerate tree (a chain) that has no notion of syntactic
types. In previous work, RecNNs have been used for parsing
natural language sentences [4, 5], as well as sentiment de-
tection [7], and paraphrase detection [6]. Compared to other
models that have been applied to these tasks, RecNNs are
able to naturally take advantage of the syntactic tree struc-
ture in the input, augmented with vectors for compositional
semantic information. Despite the success, RecNNs, unlike
recurrent neural networks, have not been used for SLU tasks.

In this work, we present an adaptation of RecNNs to en-
able joint domain, intent and slot classification. As shown
in Figure 1, the basic model structure goes as follows. We
assume that each utterance is associated with a constituency
parse tree, where the leaves of the tree correspond to the
words of the sentence. Every word is associated with a word
vector, and these vectors are given as input to the bottom of
the network. Then the network propagates the information
upwards by repeatedly applying a neural network at each
node until the root node outputs a single vector. This vector is
then used as the input to a semantic classifier, and the network
is trained via backpropagation to maximize the performance
of this classifier. Because the same neural network is recur-
sively applied, the dimensions of the outputs of all the nodes
must match.

3.1. Dialog-Specific Specializations

To tackle the tasks described in Section 2, several extensions
and modifications are necessary.



Fig. 2. The intent classifier

3.1.1. Domain and Intent Classification

Since the intents are domain specific, predicting the labels of
domains and intents can be viewed as a single classification
problem. Instead of training two separate models, we apply
our RecNNs model to intent classification directly. The do-
main is then implied by the resulting intent. The setting we
choose is similar to the standard multi-class maximum en-
tropy model. The dot product of the output vector at the root
of the tree and a vector for every possible intent is first com-
puted. Then the posterior over the intent labels is derived by
taking the softmax function of these dot products. This pro-
cess is schematically illustrated in Figure 2.

3.1.2. Modeling Context for Slot Classification

If the slots of the sentences were to match up exactly with the
span of subtrees in the parse tree, then a natural fit would be to
put a classifier at every node in the tree, predicting the slot la-
bel of the subtrees. However, this is not the case for over 10%
of the data, which consists of cases where the smallest subtree
that spans a slot either contains another slot or contains many
more words that are not part of the slot. Therefore, we take
the traditional approach of token-wise classification for each
individual word.

In order to bring more context information into the slot
classifier, we also take advantage of the tree structure by
adding tree-derived features. To do this, we take the output
vectors of the nodes along the path up from the leaf to the
root, and multiply each by a weight vector that is associated
with the syntactic type of the node, and sum them up to get a
path vector:

z = w(t1) ∗ x1 + w(t2) ∗ x2 + ...+ w(tk) ∗ xk (3)

where ∗ is element-wise multiplication. Conceptually, Eq. (3)
captures the contextual information that spans up to the whole
sentence by aggregating these path vectors associated with
every leaf node. To include more contextual information,
we concatenate the previous and the next path vectors with
the current path vector to form a tri-path vector (Figure 3).

Fig. 3. Tri-path Features. The slot classifier is applied to
each word in turn. The small circles are the aggregated path
vectors.

Each tri-path vector is used as input to a multi-class maxi-
mum entropy classifier to predict the IOB slot label of the
corresponding word. During training, the error signal is back-
propagated, and used to adjust all matrices and atomic word
representations involved.

3.2. Other Modifications

Apart from the SLU specific changes, we have also incorpo-
rated a few other general modifications to improve the model.

3.2.1. Multi-way Branches

The parse trees that most parsers output do not have a fixed
branching factor or arity. In the simple case that the parse tree
is a binary tree, then the neural network to be applied at each
node can be defined as [4]:

y = tanh(W [x1;x2] + b) (4)

where y, x1, x2, b ∈ Rn×1, [x1;x2] ∈ R2n×1 is the con-
catenation of the two output vectors from the children, and
W ∈ Rn×2n. The tanh applies the hyperbolic tangent func-
tion element-wise. Alternatively, this can also be defined as

y = tanh(W1x1 +W2x2 + b) (5)

where W1,W2 ∈ Rn×n, and W = [W1,W2] is the concate-
nation side by side. Using this formulation, we can extend the
model to handle variable arity trees, by applying a position-
dependent W to each child. This extension, also used in
[18] is much more natural than turning them into binary trees,
which results in unnatural splits as well as artificially deeper
trees.



Fig. 4. Trigram Leaves

3.2.2. Syntactic Tying

To further use the syntactic information at each node of the
tree, instead of using the same neural network at every node,
or position-dependent variants, we can have a different neural
network for every syntactic type i.e. a (W (t), b(t)) for each
syntactic type t (e.g. NP, PP, etc . . . ):

y = tanh(W (t)x1 +W (t)x2 + · · ·+W (t)xk + b(t)) (6)

So child vectors are combined differently depending on the
syntactic type of the current node. This technique has been
previous explored in [4, 19], which significantly improved the
results.

3.2.3. Low-Rank Matrix Approximations

To speed up training and testing time, as well as a form of
regularization, we use low-rank approximations to the W (t)

matrices: W (t) = U (t)V (t) + D(t) where U (t) ∈ Rn×r,
V (t) ∈ Rr×n, and D(t) ∈ Rn×n is diagonal, and r is the
rank. We picked r = 1 for our model.

3.2.4. Trigram Leaves

Traditional neural networks can be extended to take n-grams
as input, improving performance due to more contextual in-
formation. Our RecNN can also be modified to naturally in-
corporate n-gram inputs. At the leaves of the tree, the word
vectors for the preceding and proceeding words can be con-
catenated together to form a trigram, to be propagated up
(Figure 4). In this case, the dimension of the vectors in the
tree are three times the dimension of the word vectors.

3.3. Training

We use the sum of the cross-entropy error of the softmax
classifiers as the objective function. We use mini-batches of
size 50, and RMSProp to train the RecNN models [20]. RM-
SProp scales the individual weight updates by an estimate of
the root-mean-square value of the recent gradient values. We
found it beneficial to gradually reduce the overall learning rate
by 0.9995 at each update. We use L2 regularization to help
prevent over-fitting. All parameters except for the biases (the
b’s) are randomly initialized (including the word vectors). We
took out 15% of the training data to use as hold-out data to

determine the L2 regularization and which iteration for early
stopping. After optimizing for these hyper-parameters, we
then train the model on all of the training data.

3.4. Viterbi Sequence Optimization for Slot Filling

One big advantage of CRF models to RecNNs is that, it is per-
forming global sequence optimization using tag level features
followed by the well-known Viterbi optimization. In order
to approximate this behavior, and optimize the sentence level
tag sequence, we explicitly applied the Viterbi algorithm after
fully training the RecNN model. To this end, a second order
Markov model has been formed, using the slot tags, ti ∈ T
as states, where the state transition probabilities, P (ti|tj) are
obtained using a trigram tag language model (LM). The tag
level posterior probabilities obtained from the RecNN model
are used when computing the state observation likelihoods.

T̂ = argmax
T

P (T |W ) ∼ argmax
T

PLM (T )W × P (W |T )

∼ argmax
T

PLM (T )W × (
∏
i

PRecNN (ti|wi)/P (ti))

As is often done in the speech community, when combin-
ing probabilistic models of different types, it is advantageous
to weigh the contribution of the language model. We do so by
introducing a tunable model combination weight (W ), whose
value is optimized on held-out data. For computation, we
used the SRILM toolkit1.

4. EXPERIMENTAL RESULTS

We evaluated the RecNN models on the ATIS database [21,
22]. We also include previous results of intent classification
and slot labeling for comparison. The ATIS data consists of
sentences of people making flight reservations. The there are
4978 training sentences, and 893 test sentences. The number
of distinct intent labels is 18, and the number of distinct slot
labels is 127, including the null label.

The ATIS dataset also has extra features termed “named-
entity features,” that give semantic labels for words in slots
that nearly determine the slot label. We chose not to use these
extra features as they are hand-crafted features that are not
generally available. We have not included results from mod-
els that use these hand-crafted features. Instead, our models
use only the words in a sentence as the input.

As can be seen from Table 2, RecNN performs compara-
bly in intent classification to other state-of-the-art models. As
for slot filling, RecNN (with Viterbi) most notably achieves
better results than the popular CRF approach, and rivals the
recurrent neural network (RNN) and the CNN+TriCRF2.

1http://www.speech.sri.com/projects/srilm/
2The CNN+TriCRF model does do joint intent and slot filling, however

they only have results for a different variation of the ATIS data, and their ac-



Table 2. Comparison to previous approaches. The 95% sig-
nificance level for intent classification is ±1.4%; and ±0.8%
for slot filling.

Model Intent Slot (F1)
SVM [11] – 89.76
CRF [23] – 91.09
RNN [12] – 94.11

CNN+TriCRF [17] – 94.35
Boosting [21] 95.72 –

Boosting + Simplified sentences [22] 96.98 –
RecNN (this work) 95.40 93.22

RecNN+Viterbi (this work) 95.40 93.96

Table 3. Performance of different syntactic tying schemes
Type Current (our model) Same Current+Child
Intent 95.40 94.28 90.02
Slot 93.22 92.98 93.28

4.1. Syntactic Tying

An alternative to having a different matrix W (t) for each syn-
tactic type as mentioned in Section 3.2.2, is to use a different
matrix for each syntactic type of both the current node and the
child node:

y = tanh(W (t,t1)x1 + · · ·+W (t,tk)xk + b(t)) (7)

where t is the syntactic type of the current node and ti is the
syntactic type of child i. Or, alternatively, to just use the same
matrix for all syntactic types. It is not obvious which variant is
best. However, experiments show that using just the syntactic
type of the current node gives the best performance (Table
3). This suggests that the syntactic tree structure does help
performance, and we expect that with additional training data,
conditioning on the joint parent-child type would help further
(there are over 300 different distinct pairs that occur, while
there are only about 60 syntactic types).

4.2. Low-Rank Matrix Approximation

We found that using low rank matrices, coupled with high
dimensional word vectors resulted in the best performance,
both in terms of speed and accuracy (Table 4). In particular
a rank of 1 along with a dimension of 300 (word vectors are
dimension 100 due to usage of trigrams). The reason appears
to be that a higher rank is much more prone to over-fitting,
and a low-rank acts as a very good regularizer.

curacy numbers are averaged over 10-fold cross validation, so it was omitted
from the comparison.

Table 4. Performance of different low-rank approximations
Rank 1 (our model) 3 10
Intent 95.40 93.83 93.49
Slot 93.22 93.21 92.46

Table 5. Joint learning
Model Intent Slot

RecNN intent only 95.17 –
RecNN slot only – 93.48

RecNN joint (this work) 95.40 93.22

4.3. Joint Learning

Using one model to do both intent determination and slot fill-
ing simplifies the whole process. Instead of training and tun-
ing two separate models, only one model needs to be trained.
It also means that only one model is needed at testing time,
again simplifying the system. The performance of the joint
model is comparable to doing each task independently (Table
5), so there is no significant loss to not having two specialized
models (and even a small gain for intent determination).

4.4. Cortana Data

We also evaluated our model on a real-world data set derived
from Microsoft’s personal assistant, Cortana. The Cortana
data consists of user utterances from 3 domains: calendar,
communication and weather, each having 10-20 intents, for a
total of 55 intents. The utterances also have slot annotations,
with a total of 83 slot labels (including the null label). There
are 73653 training sentences and 8260 testing sentences. The
data is roughly evenly split between the three domains. The
baseline models only use trigrams as features.

Table 6 presents results for this data set. Overall, RecNN
is close to the boosting baseline for intent classification. For
domain classification, a boosting baseline got 98.65%, and
RecNN achieved 98.23%. The domain classification result for
RecNN was computed from the intent determination results
on the 3 domains combined data set, which shows that even
though some intents were incorrectly classified, the domain
for those intents were more often correct. As for slot filling,
the performance is a small improvement for 2 of the domains,
as well as for the 3 domains combined data set.

Table 6. Cortana performance
Domain Boosting CRF RecNN+Viterbi

Intent Slot Intent Slot
Calendar 92.51 85.74 91.52 86.37

Communication 94.41 88.27 93.07 89.33
Weather 95.13 92.65 94.40 91.81

All 3 93.13 87.26 92.28 87.86



5. CONCLUSION AND FUTURE WORK

We have introduced recursive neural networks for joint se-
mantic utterance classification and slot filling, and developed
adaptations to specifically tackle these tasks (especially for
slot filling). Performing intent determination and slot filling
together in one model simplifies a dialog system, since only
one model needs to be trained and tuned, and only one model
needs to be used for prediction. Our model produces a per-
formance level on par with other recently developed models,
using purely lexical features and the parse tree. The syntactic
tying experiments show that using the syntactic type of the
nodes in the parse tree improves performance over ignoring
that information, suggesting that exploring other methods of
using that syntactic structure is worthwhile.

In future work we plan to incorporate explicit sequenc-
ing information into the model, by adding CRF dependencies
between the slot labels. We also plan to explore the use of
semantic parsers based on Abstract Meaning Representation
[24], which may improve the correspondence between parse
subtrees and slots.
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