
Joint Shape Segmentation with Linear Programming

Qixing Huang Vladlen Koltun Leonidas Guibas

Stanford University

Abstract

We present an approach to segmenting shapes in a heterogenous
shape database. Our approach segments the shapes jointly, utiliz-
ing features from multiple shapes to improve the segmentation of
each. The approach is entirely unsupervised and is based on an
integer quadratic programming formulation of the joint segmenta-
tion problem. The program optimizes over possible segmentations
of individual shapes as well as over possible correspondences be-
tween segments from multiple shapes. The integer quadratic pro-
gram is solved via a linear programming relaxation, using a block
coordinate descent procedure that makes the optimization feasi-
ble for large databases. We evaluate the presented approach on
the Princeton segmentation benchmark and show that joint shape
segmentation significantly outperforms single-shape segmentation
techniques.

CR Categories: I.3.5 [Computing Methodologies]: Computer
Graphics—Computational Geometry and Object Modeling;

Keywords: shape segmentation, shape correspondence, linear pro-
gramming

Links: DL PDF

1 Introduction

Shape segmentation is a fundamental problem in shape analysis.
Many shape processing and 3D modeling applications benefit from
automatic segmentation of shapes into components that appear nat-
ural [Shamir 2008; Chen et al. 2009; Chaudhuri et al. 2011]. Clas-
sical shape segmentation techniques analyze the geometric struc-
ture of individual shapes in order to detect parts or part bound-
aries. A variety of geometric features have been investigated, but
no single feature or collection of features is known to produce high-
quality results for all classes of shapes [Chen et al. 2009]. The
underlying difficulty is that a perceptually natural segmentation
of a shape is often the result of prior familiarity with other sim-
ilar shapes and their function. The surface geometry of an in-
dividual shape may lack sufficient cues to identify all parts that
would be perceived as meaningful to a human observer. Alter-
natively, a shape may contain strong geometric features within a
single perceived part. This can mislead algorithms that consider
individual shapes in isolation [Golovinskiy and Funkhouser 2009;
Kalogerakis et al. 2010].

single-shape segmentation joint shape segmentation

Figure 1: Comparison of single-shape segmentation (left) and joint
shape segmentation (right) on models from the Princeton segmen-
tation benchmark [Chen et al. 2009]. Each segmentation on the
left was produced by the top-performing algorithm in the bench-
mark for that shape. The segmentations on the right were produced
by our approach, which jointly optimized segmentations and corre-
spondences across the entire benchmark dataset. The new approach
was able to identify meaningful parts despite extraneous geometric
cues (top) and low saliency (middle, bottom).

In this paper, we present an approach to shape segmentation that
jointly analyzes a database of shapes. The approach optimizes seg-
mentations on all shapes together with segment-level correspon-
dences between similar shapes. By considering multiple shapes in
concert, our approach is able to identify meaningful parts despite
the lack of strong geometric cues on a particular shape. Likewise,
the approach is able to identify coherent single parts even when the
geometry of the individual shape suggests the presence of multi-
ple segments. This is illustrated in Figure 1. Some eyeglass mod-
els (top, left) contain extraneous geometric cues that lead to over-
segmentation by approaches that consider single shapes in isola-
tion; our approach correctly detects the presence of a single logical
part (the temple) due to counterpart segments in similar shapes in
the database. In Figure 1 (middle), the ears of some of the teddy

http://doi.acm.org/10.1145/2024156.2024159
http://portal.acm.org/ft_gateway.cfm?id=2024159&type=pdf

Figure 2: Overview of our approach. In the first stage, we produce a set of initial segments for each shape. In the second stage, each pair of
shapes is jointly segmented in order to identify similar shapes. In the third stage, a global optimization is performed over segmentations of
all shapes together with correspondences between similar shapes.

models have low saliency and are missed by single-shape segmen-
tation; our approach (middle, right) identifies these parts due to cor-
responding salient parts on other shapes. In Figure 1 (bottom), hu-
man shapes with straight limbs have insufficient geometric cues to
identify the upper and lower limbs; our approach (bottom, right) is
able to recognize these parts due their prominence in other poses of
the same or related shapes.

The key idea of our approach is to jointly optimize over segmenta-
tions of individual shapes and correspondences between segments
on different shapes. This is difficult due to the exponential number
of possible segmentations and correspondences. In order to make
the joint segmentation problem computationally feasible, we first
formulate it as an integer quadratic program. We then linearize the
objective so as to obtain a linear programming relaxation. The re-
sulting linear program is still computationally impractical for large
databases. We thus present a block coordinate descent procedure
that decomposes the program into a large number of small linear
programs defined over individual shapes and pairs of shapes.

We evaluate the presented approach on the complete Princeton
shape benchmark [Chen et al. 2009] and compare it to leading
single-shape segmentation algorithms, as well as to the supervised
approach of Kalogerakis et al. [2010]. Our results demonstrate that
joint analysis produces better segmentations than the single-shape
algorithms and is able to achieve comparable performance to the su-
pervised approach, without requiring manually segmented training
data.

1.1 Background

A survey of shape segmentation techniques is provided by Shamir
[2008]. A large number of approaches have been developed
for decomposing a single shape into parts [Shapira et al. 2008;
Golovinskiy and Funkhouser 2008; Simari et al. 2009]. Such ap-
proaches suffer when the individual shape does not provide suffi-
cient geometric cues to distinguish its meaningful parts, or when
strong extraneous geometric features are present. In a recent eval-
uation, no segmentation algorithm performed well across all tested
datasets [Chen et al. 2009].

To overcome the limitations inherent in single-shape analysis, re-
searchers have turned to data-driven techniques that utilize infor-
mation from multiple shapes in order to segment a given shape.
Data-driven techniques are well-established in image processing:
top-performing image segmentation algorithms all utilize manually
segmented training sets [Shotton et al. 2009]. This supervised ap-
proach to segmentation has recently been extended to 3D shapes
by Kalogerakis et al. [2010], who demonstrated significant im-
provement over single-shape segmentation algorithms. However,
supervised approaches require a substantial number of manually
segmented training shapes, in order to observe multiple examples
for many kinds of recognizable shapes. Our approach does not re-
quire such training data.

A related line of work in shape segmentation aims to produce
consistent segmentations of multiple shapes, for applica-
tions such as part-based 3D modeling [Kraevoy et al. 2007;
Golovinskiy and Funkhouser 2009; Shapira et al. 2010;
Xu et al. 2010]. Existing approaches to consistent segmenta-
tion either make restrictive assumptions on the set of shapes or
ensure consistency by means of shape alignment. While Golovin-
skiy and Funkhouser [2009] observe that consistent segmentation
can produce better individual segmentations, existing algorithms
are limited both computationally and in their ability to treat
heterogenous shape libraries. Our approach is designed to treat
large shape libraries without prior correspondences or alignments.

In an independent work published in this issue, Sidi et al. [2011]
describe an unsupervised co-segmentation algorithm that segments
a set of shapes from a given shape class, obtaining a consistent seg-
mentation throughout. However, this technique does not deal with
heterogenous shape libraries.

2 Overview

Our joint shape segmentation pipeline proceeds in three stages, il-
lustrated in Figure 2. In the first stage, we compute a set of initial
segments for each input shape. Subsets of these initial segments
form possible segmentations of each shape. In the second stage,
we perform joint segmentation of each pair of input shapes in or-
der to identify similar shapes. The third stage performs multiway
joint segmentation by optimizing segmentations of all shapes and
mappings between segmentations of similar shapes.

Initial segments. To generate initial segments, we first de-
compose each shape into patches. This decomposition is in-
spired by the computation of superpixels for image segmentation
[Ren and Malik 2003]. Initial segments are generated by collect-
ing distinct segments formed by randomized clustering of patches
[Golovinskiy and Funkhouser 2008]. For efficiency in later steps,
we prune redundant initial segments based on a popularity measure
over the dataset.

Pairwise joint segmentation. In the second stage, we perform
pairwise joint segmentation of each pair of shapes in the database.
The main goal of this step is to identify pairs of similar shapes, so
as to alleviate the computational burden on the third stage of the ap-
proach by identifying shapes in the database that should exchange
information. To derive an algorithm for pairwise joint segmenta-
tion, we define an objective that optimizes segmentation quality on
each shape alongside correspondence strength between the shapes.
We then formulate an integer quadratic program that optimizes this
objective over the initial segments for each shape and over possible
correspondences between pairs of initial segments. This program is
then relaxed to a linear program by relaxing the domains of the vari-
ables and linearizing the objective. The resulting linear program is
sparse and can be solved with standard optimization packages.

Figure 3: Initial segment generation. First, each shape is parti-
tioned into patches. Next, a large number of potential segments are
generated by performing randomized cuts. The most promising of
these are collected to form the set of initial segments.

Multiway joint segmentation. In the third stage, we perform a
global optimization over the entire shape dataset. The objective at
this stage integrates individual segmentation quality with consis-
tency of segmentations across pairs of similar shapes. We again
formulate the optimization as an integer program that is solved via
a linear programming relaxation. The resulting linear program is
infeasible for large datasets due to its size. We thus present a block
coordinate descent procedure that decomposes the program into
a large number of small linear programs defined over individual
shapes and individual pairs of similar shapes.

In summary, we show how the context provided by a library of
unsegmented shapes allows improved segmentations of individual
shapes in the library through a novel optimization that jointly ex-
tracts consistent part structure across the collection.

3 Segment Generation

Our joint segmentation pipeline begins by generating a set of initial
segments for each shape in the database. The goal of this stage is to
produce an overcomplete set of initial segments. The final segmen-
tation of each shape will be given by a subset of these segments,
identified by the optimization procedure described in Section 5.

Initial segments are generated in three steps, illustrated in Fig-
ure 3. First, we partition each shape into patches. These
patches, which serve as building blocks for initial segments and
for the final segmentation, are used to balance segmentation qual-
ity and computational cost. Second, we run randomized cuts
[Golovinskiy and Funkhouser 2008] on these patches to form a
large number of potential initial segments, which are connected
subsets of patches. Third, for efficiency in later steps, we weigh
each potential segment and prune segments with low weight. The
remainder of this section describes each of these three steps in de-
tail.

Patches. Each database shape Wi is independently parti-
tioned into a set of patches Pi by performing normalized cuts
[Shi and Malik 2000; Golovinskiy and Funkhouser 2008]. To fur-
ther align patch boundaries with concave shape features, we use
fuzzy cuts [Katz and Tal 2003]. We generate a set of 50 patches per
shape, which we have found to be sufficient for the datasets used in
our experiments.

Initial segments. Given a set of patches, we generate a large su-
perset of potential initial segments. This is done by generating a
large number of randomized segmentations on the patches. We let
the target number of segments k vary from 2 to 10. For each k,
we perform 100 randomized segmentations using randomized cuts
over patches [Golovinskiy and Funkhouser 2008]. Consider the set
Īi of distinct segments generated by this process for the shape Wi.

The optimization problems derived in Sections 4 and 5 will be de-
fined over a subset of these potential initial segments, Ii ⊂ Īi.
Due to the computational demands of the optimization procedure,
we are interested in minimizing the size of Ii by identifying the
most “promising” potential initial segments to be passed on to the
optimization procedure for consideration. This is done by ranking
all segments in Īi and retaining only the most highly ranked.

For each segment s, let r(s) denote the number of times this seg-
ment has been generated, across all randomized segmentations for
the shape Wi. A natural approach would be to rank the segments by
their repetition count r. However, this measure can overlook useful
segments that are not salient on Wi and thus have low repetition
count. Instead, we define a more global measure ws of each seg-
ment’s potential usefulness. The measure ws takes into account not
only the repetition count of s over the segmentations of Wi, but also
the repetition counts of similar segments on other database shapes.

In order to define the measure ws, we consider a shape distance
measure d(·, ·) that evaluates the geometric similarity of two seg-
ments. The distance d factors out anisotropic scale variations and
is described in detail in Appendix A. Using this distance, we define
ws by considering the repetition counts of the most similar seg-
ments to s on all database shapes {W1, . . . ,Wn}:

ws =
n∑

j=1

w(s,s∗j)
r(s∗j), (1)

where s∗j = argmins′∈Īj
d(s, s′) is the most similar segment to s

in the set Īj and

w(s,s′) = exp
(
−d2(s, s′)

2σ2

)
, (2)

where σ is chosen as the median of distances between all pairs of
most similar segments from all pairs of input shapes.

We retain the most highly weighted segments from Īi as the set
Ii. In our implementation, the top 200 most highly weighted seg-
ments are retained. In addition, to make sure that Ii contains at
least one complete segmentation of Wi, we include all segments
from the random segmentation with the highest minimum segment
weight. The resulting set Ii provides the set of initial segments for
each shape Wi. The final segmentation of Wi will consist of a sub-
set of segments from Ii, identified by the optimization procedure
described in Section 5.

4 Pairwise Joint Segmentation

The core of our joint segmentation pipeline is a new approach to
optimizing a joint segmentation of two shapes. This approach will
be extended to joint segmentation of sets of shapes in Section 5.

The optimization approach is described in three parts. In Section
4.1, we formally introduce pairwise joint segmentation as an opti-
mization problem. The objective function is defined abstractly over
all possible segmentations of the two shapes and over all possible
mappings between pairs of segmentations, and is thus not imme-
diately amenable to efficient computational solutions. In Section
4.2, we present an integer programming formulation that expresses
the objective function in terms of indicator variables for initial seg-
ments and pairs of segments across shapes. This formulation has
a tractable number of variables, but is still not practically feasi-
ble, due to the computational complexity of integer programming.
In Section 4.3, we provide a linear programming relaxation of the
integer program. This is done by linearizing the objective func-
tion, relaxing the domains of the variables, and specifying a simple

rounding procedure. The resulting linear program is sparse and can
be efficiently solved with standard optimization packages.

4.1 Objective

Let W1 and W2 be two shapes and let I1 and I2 be the sets of
initial segments generated for the two shapes as described in Sec-
tion 3. Our approach optimizes over subsets of initial segments on
each shape and finds segmentations S1 ⊂ I1 and S2 ⊂ I2, as well
as mappings between them, that maximize both the quality of the
individual segmentations and the consistency of the two segmenta-
tions under these mappings. Specifically, the objective for pairwise
segmentation is defined as

max
S1⊂I1, S2⊂I2

seg(S1) + seg(S2) + consistency(S1,S2), (3)

where seg(S1) and seg(S2) denote the segmentation score of S1

and S2, respectively, and consistency(S1,S2) denotes their consis-
tency score. Our approach aims to maximize the objective given in
(3) over possible segmentations S1 and S2. We will now define the
segmentation score and the consistency score.

Segmentation score. The segmentation score seg(Si) is defined
as the sum of normalized weights of all segments s ∈ Si:

seg(Si) =
∑
s∈Si

ws =
∑
s∈Si

area(s)ws, (4)

where area(s) = area(s)/area(Wi) is the normalized area of seg-
ment s, and the unnormalized weight ws is the measure of segment
quality defined in Section 3. The weights are normalized by the
relative area of the segment since otherwise the objective might be
maximized by a decomposition into a large number of small seg-
ments.

Consistency score. The score consistency(S1,S2) is defined in
terms of directed mappings between segmentations:

consistency(S1,S2) =
∑

ij∈{12,21}

max
Mij

consistency(Mij), (5)

where Mij ⊂ Si × Sj is a di-
rected mapping from Si to Sj . We al-
low many-to-one mappings since cor-
responding segments can appear a dif-
ferent number of times on W1 and
W2, as illustrated on the right. Since
corresponding segments can be more
numerous on either of the two shapes,
we consider both mappings from S1 to
S2 and mappings from S2 to S1.

The score consistency(S1,S2) thus maximizes over all possible
mappings from S1 to S2 and, independently, over inverse map-
pings from S2 to S1. The definition of consistency(Mij) is moti-
vated by previous work on shape registration [Anguelov et al. 2005;
Chang and Zwicker 2008] and aggregates correspondence terms
for individual segments and for pairs of adjacent segments:

consistency(Mij) = λsim(Mij) + μadj(Mij), (6)

where λ and μ control the relative importance of the two terms. In
all our experiments, we used λ = 1 and μ = 2.

The term sim(Mij) evaluates the geometric similarity of individual
corresponding segments in Mij :

sim(Mij) =
∑

c∈Mij

area(c)wc =
∑

c∈Mij

wc. (7)

(a) (b) (c) (d)

Figure 4: The effect of different objective function terms, illustrated
on a joint segmentation of four models from the FourLeg category.
In (a), the consistency score was omitted and only the segmentation
score was optimized. In (b), the segmentation score was omitted
and only the consistency score was optimized. In (c), the adjacency
term was omitted from the consistency score. In (d), the complete
objective was optimized.

The normalized area of a pair c = (s, s′) is defined as area(c) =
area(s) and the weight wc is defined as in (2).

The term adj(Mij) prioritizes mappings of pairs of adjacent seg-
ments to pairs of adjacent segments:

adj(Mij) =
∑

(c,c′)∈Aij

(
area(c) + area(c′)

)
w(c,c′)

=
∑

(c,c′)∈Aij

w(c,c′), (8)

where Aij is the set of adjacent pairs in Mij × Mij . A pair(
(si, sj), (s

′
i, s

′
j)
)

is said to be adjacent if the segments si and s′i
are adjacent on Wi and the segments sj and s′j are adjacent on Wj .

The weight w(c,c′) is defined as

w(c,c′) = wcwc′wpose(c, c
′),

where wpose(c, c
′) is a pose term that evaluates the quality of the cut

between c and c′. This term is defined in Appendix B.

Aggregating equations (3), (4), (6), and (8) leads to the full defini-
tion of the pairwise segmentation objective:

max
∑

s∈S1∪S2

ws +
∑

ij∈{12,21}

⎛
⎝λ

∑
c∈Mij

wc + μ
∑

(c,c′)∈Aij

w(c,c′)

⎞
⎠ ,

(9)
which is maximized over segmentations S1 ∈ I1 and S2 ∈ I2 and
mappings M12 and M21 in both directions. The effect of different
terms in the objective function is illustrated in Figure 4. In the next
section we show how to express this optimization problem as an
integer quadratic program.

4.2 Integer Programming Formulation

In order to formulate the optimization problem defined in Section
4.1 as an integer program, we introduce indicator variables for seg-
ments in I1 and I2. These variables are used to formulate integer
segmentation constraints that restrict the chosen subsets S1 ⊂ I1

and S2 ⊂ I2 to be valid segmentations. Likewise, we introduce
indicator variables for segment correspondences in I1 × I2 and
I2 × I1, which are used to define integer mapping constraints that
restrict the subsets M12 ⊂ I1 × I2 and M21 ⊂ I2 × I1 to be
valid mappings between the segmentations.

Segmentation constraints. A subset Si of segments from Ii is a
valid segmentation if the segments in Si cover every patch in Pi

exactly once. In order to formulate this constraint, we introduce a
binary indicator xs for every segment s ∈ Ii. Given a candidate
segmentation Si, a segment indicator xs for s ∈ Ii is defined to be
xs = 1 if s ∈ Si and xs = 0 otherwise. Using this definition, we
can formulate the segmentation constraints for Si as

∑
s∈cover(p)

xs = 1 ∀p ∈ Pi,

where cover(p) ⊂ Ii is the set of all segments that cover patch p.
The segmentation constraints can be expressed in matrix notation
as

Aixi = 1, (10)

where the vector xi contains all segment indicators for segments
in Ii. The segmentation score seg(Si) can also be reformulated in
terms of xi as

seg(Si) =
∑
s∈Ii

xsws = xT
i w

seg
i , (11)

where the vector wseg
i contains all normalized segment weights for

segments in Ii.

Mapping constraints. A subset Mij of pairs from Cij = Ii ×
Ij is a valid mapping from Si to Sj if the pairs in Mij contain
segments that are included in Si and Sj and if each segment from
Ii is included in at most one pair in Mij . In order to formulate
these constraints, we introduce a binary indicator yc for every pair
c ∈ Cij . Given a candidate mapping Mij , a pair indicator yc for
c ∈ Cij is defined to be yc = 1 if c ∈ Mij and yc = 0 otherwise.
The above mapping constraints for Mij can be expressed in terms
of these variables via the following inequalities

∑
s′∈Ij

y(s,s′) ≤ xs ∀s ∈ Ii

y(s,s′) ≤ xs′ ∀(s, s′) ∈ Cij

The mapping constraints can also be expressed in matrix notation
as

Bijyij ≤ Dijxi

B′
ijyij ≤ D′

ijxj

(12)

where the vector yij contains all pair indicators for pairs in Cij .
The consistency score consistency(Mij) can now be reformulated
in terms of yij as

consistency(Mij) = λyT
ijw

cor
ij + μ

∑
(c,c′)∈Aij

ycyc′w(c.c′), (13)

where the vector wcor
ij contains all normalized pair weights for seg-

ment pairs in Cij , and Aij is the set of adjacent pairs in Cij × Cij .

Integer quadratic program. Aggregating equations (10), (11),
(12), and (13) leads to the formulation of the pairwise joint seg-
mentation problem as an integer quadratic program:

max
∑

i∈{1,2}

xT
i w

seg
i +

∑
ij∈{12,21}

⎛
⎝λyT

ijw
cor
ij + μ

∑
(c,c′)∈Aij

ycyc′w(c,c′)

⎞
⎠

s.t. A1x1 = 1 A2x2 = 1

B12y12 ≤ D12x1 B21y21 ≤ D21x2

B′
12y12 ≤ D′

12x2 B′
21y21 ≤ D′

21x1

and x ∈ {0, 1} ∀x ∈ x1,x2,y12,y21 (14)

4.3 Linear Programming Relaxation

In order to relax the integer quadratic program (14) to a linear pro-
gram, we need to linearize the objective function and to make the
domains of the variables continuous. Our relaxation technique is
motivated by convex relaxation algorithms for MAP estimation in
Markov random fields [Kumar et al. 2009], which formulate a sim-
ilar objective to (14).

To linearize the objective, we associate each adjacent pair (c, c′)
with a latent indicator z(c,c′) = ycyc′ . Let zij be a vector of these
indicators for all pairs in Aij , and let wadj

ij be the vector of corre-
sponding normalized weights. The objective in (14) can be rewrit-
ten as

max
∑

i∈{1,2}

xT
i w

seg
i +

∑
ij∈{12,21}

(
λyT

ijw
cor
ij + μzTijw

adj
ij

)
.

The constraints z(c,c′) = ycyc′ can also be converted into linear
constraints using a variant of the marginalization strategy described
by Wainwright et al. [2005]:

∑
s′i∈cover(pi)

∑
s′j

z(c,(s′i,s′j)) ≤ yc ∀c ∈ Cij , pi ∈ Pi. (15)

The derivation of these constraints is provided in Ap-
pendix C. They can be expressed in matrix notation as
Eijzij ≤ Fijyij . We thus obtain the following linear
programming formulation for pairwise joint segmentation:

max
∑

i∈{1,2}

xT
i w

seg
i +

∑
ij∈{12,21}

(
λyT

ijw
cor
ij + μzTijw

adj
ij

)

s.t. A1x1 = 1 A2x2 = 1

B12y12 ≤ D12x1 B21y21 ≤ D21x2

B′
12y12 ≤ D′

12x2 B′
21y21 ≤ D′

21x1

E12z12 ≤ F12y12 E21z21 ≤ F21y21

and 0 ≤ x ≤ 1 ∀x ∈ x1,x2,y12,y21, z12, z21 (16)

This linear program is sparse and can be efficiently solved using
interior point methods [Boyd and Vandenberghe 2004]. After solv-
ing the LP, the values of the variables must be rounded to the integer
values {0, 1}. We use a simple greedy rounding procedure that first
rounds the segment indicators x1,x2 and then the remaining vari-
ables. Segment indicators are rounded iteratively. At each step of
the iteration, we pick the highest unrounded segment indicator and
snap its value to 1; the values of all overlapping segments are set
to 0. This procedure is repeated until all segment indicators are

(a) (b) (c)

Figure 5: Joint segmentation of (a) two, (b) three, and (c) five shapes from the Airplane and Bird categories. Incorporation of similar shapes
improves segmentation performance.

rounded. We then fix the values of the segment indicators and solve
(16) again for updated values of the remaining variables. To round
the values of pair indicators y12,y21, we consider each segment s
such that xs = 1. We then consider all pair indicators y(s,s′) for
pairs originating at s and snap the one with the highest value to 1
and the rest to 0. For segments s such that xs = 0, all pair indica-
tors y(s,s′) for pairs originating at s are set to 0. The values of all
latent indicators z12, z21 are determined by the rounded indicators
y12,y21. This completes the rounding procedure.

5 Multiway Joint Segmentation

Joint segmentation of a set of shapes is performed by optimizing a
generalization of program (16). The objective of the program is ag-
gregated over pairs of similar shapes and the constraints are applied
to each pair. Since the resulting optimization problem is imprac-
tical for the sizes of shape databases used in our experiments, we
describe a block coordinate descent procedure that makes the opti-
mization computationally feasible. In the remainder of this section,
we formulate the generalization of (16) to multiple shapes, describe
how pairs of similar shapes are identified, and derive the block co-
ordinate descent procedure.

Linear program over shape sets. The generalization of program
(16) to a set W = {W1, . . . ,Wn} of shapes is formulated as fol-
lows:

max
n∑

i=1

xT
i w

seg
i +

n

|E|
∑

(i,j)∈E

(
λyT

ijw
cor
ij + μzTijw

adj
ij

)

s.t. Aixi = 1, 0 ≤ xi ≤ 1 for all 1 ≤ i ≤ n

and Bijyij ≤ Dijxi, B
′
ijyij ≤ D′

ijxj , Eijzij ≤ Fijyij ,

0 ≤ yij ≤ 1, 0 ≤ zij ≤ 1 for all (i, j) ∈ E (17)

where E is the set of pairs (i, j) such that the shapes Wi and Wj

are similar.

Similar shapes. Similar shapes are identified by performing pair-
wise joint segmentation between all pairs of shapes. To evaluate
the similarity of two shapes Wi and Wj , we use the similarity score
yT
ijw

cor
ij + yT

jiw
cor
ji , where yij and yji are the rounded optimized

mapping indicators obtained by the program described in Section
4.3. This similarity score aggregates the weights of pairs of corre-
sponding segments in Si and Sj , normalized by area. Due to the
normalization, the similarity score ranges from 0 to 2. We define
two shapes to be similar if their similarity score is greater than a
similarity threshold ρ, which was set to 1 in our experiments. The
effect of parameter ρ is examined in Section 6.

Block coordinate descent. Program (17) quickly becomes imprac-
tical as the number of shapes grows, due to its extensive mem-

ory requirements and the superlinear complexity of linear pro-
gramming in practice. In order to optimize program (17) effi-
ciently, we introduce a block coordinate descent procedure that
solves the global optimization problem by a sequence of small con-
strained optimizations whose size is independent of the number of
shapes in the database. Each step in the procedure optimizes a
small subset of the variables while the remaining ones are fixed
[Sontag and Jaakkola 2009]. In our formulation, each individual
step optimizes over a segmentation of an individual shape or over
a mapping between a pair of similar shapes. Since the objective
function is convex, the procedure converges to the global optimum.

More formally, we wish to decompose the set of variables into seg-
ment indicators xi for each individual shape Wi and pair indicators
{yij , zij} for each pair of similar shapes (i, j) ∈ E . Such a de-
composition is precluded by the constraints Bijyij ≤ Dijxi and
B′

ijyij ≤ D′
ijxj , which couple segment indicators and pair indi-

cators. To decouple these variables in the constraint set, we replace
the segment indicators xi,xj with auxiliary pair indicators xij ,xji

in the above constraints, and add terms to the objective that mini-
mize the deviation of the auxiliary indicators from the correspond-
ing segment indicators. Specifically, we reformulate program (17)
as follows:

max
n∑

i=1

xT
i w

seg
i +

n

|E|
∑

(i,j)∈E

(λyT
ijw

cor
ij +μzTijw

adj
ij −γ‖xi−xij‖2)

s.t. Aixi = 1, 0 ≤ xi ≤ 1 for all 1 ≤ i ≤ n

and Bijyij ≤ Dijxij , B
′
ijyij ≤ D′

ijxji, Eijzij ≤ Fijyij ,

Aixij = 1, 0 ≤ xij ≤ 1, 0 ≤ yij ≤ 1, 0 ≤ zij ≤ 1

for all (i, j) ∈ E (18)

Program (18) decouples the set of segment indicator variables
xi for each shape Wi from the set of pair indicator variables
{xij ,yij , zij} for each pair of similar shapes (i, j) ∈ E in the con-
straint set. Since programs (17) and (18) produce the same result
when γ → ∞, we increase γ from 10−3 to 105 in the course of the
optimization. The individual steps of the optimization solve small
linear quadratic programs (quadratic objective, linear constraints)
whose size is independent of the number of shapes in the database.
The steps are of two types: single shape segmentation optimization
and pairwise mapping optimization.

A single shape segmentation optimization step fixes the variables
{xij ,yij , zij |(i, j) ∈ E} and optimizes the variables xi for a sin-
gle shape Wi. This yields the following quadratic program:

max
xi

xT
i w

seg
i − n

|E|
∑

{j|(i,j)∈E}

γ‖xi − xij‖2

s.t. Aixi = 1, 0 ≤ xi ≤ 1

A pairwise mapping optimization step fixes the variables
{xi|1 ≤ i ≤ n} and optimizes the variables xij ,yij , zij for a sin-
gle pair of shapes (i, j) ∈ E . The corresponding quadratic program
is

max
xij ,yij ,zij

λyT
ijw

cor
ij + μzTijw

adj
ij − γ‖xi − xij‖2

s.t. Bijyij ≤ Dijxij , B
′
ijyij ≤ D′

ijxji, Eijzij ≤ Fijyij ,

Aixij = 1, 0 ≤ xij ≤ 1, 0 ≤ yij ≤ 1, 0 ≤ zij ≤ 1

The block coordinate descent procedure consists of alternating sin-
gle shape optimization and pairwise optimization stages. In a sin-
gle shape optimization stage the procedure optimizes the segmen-
tations of all database shapes, for each shape in turn. In a pairwise
optimization stage the procedure optimizes the mappings between
all pairs of similar shapes, for each pair in turn. In practice, we
find that the procedure converges in less than 10 iterations over all
shapes and pairs of similar shapes. Since the number of variables
in each optimization step is independent of the number of shapes,
the block coordinate descent procedure is both fast and memory
efficient.

6 Results

6.1 Experimental Setup

We have evaluated the presented approach on the Princeton seg-
mentation benchmark [Chen et al. 2009]. The benchmark provides
19 categories of shapes, with 20 shapes in each category. For each
shape, a set of human-generated segmentations are provided, which
serve as a plausible ground truth for the dataset. On average, 11
human-generated segmentations are provided for each shape. The
benchmark also provides segmentations produced by seven popu-
lar segmentation algorithms, all of which analyze each individual
shape in isolation.

The Princeton segmentation benchmark evaluates segmentation al-
gorithms against human-generated segmentations. To compare seg-
mentations, we mainly use the Rand index measure [Rand 1971],
which was employed in the benchmark and in subsequent work on
supervised data-driven segmentation [Kalogerakis et al. 2010]. We
have also tested other measures described by Chen et al. [2009] and
found that the results are consistent with the Rand index measure,
as shown in Figure 7.

0

0.1

0.2

0.3

Consistency
Error (Local)

Consistency
Error (Global)

Rand Index Hamming Cut Discrepancy

Human Supervised Joint JointAll Rand. Cuts Shape Diam.

Figure 7: Performance of different segmentation algorithms with
respect to the evaluation criteria described by Chen et al. [2009].

Given two segmentations of the same shape, the Rand index r mea-
sures the degree of agreement between them, in terms of the pro-
portion of pairs of faces for which the two segmentations agree on
whether to assign the faces to different segments or to the same seg-
ment. Following Chen et al. [2009], we report 1− r as the segmen-
tation score, thus lower values are better. The Princeton segmen-
tation benchmark evaluates the output of each segmentation algo-
rithm against the set of human-generated segmentations. The Rand

index of a particular segmentation of a given shape is defined as the
average Rand index of this segmentation with respect to all human-
generated ground truth segmentations of the shape. The Rand in-
dex of the human-generated ground truth set for a given shape is
the average Rand index of all human-generated segmentations of
the shape (with respect to all other such segmentations). This im-
plies that a segmentation generated by a given algorithm can have a
lower Rand index than the human-generated ground truth set.

All tests were performed on a 2.4 GHz CPU with 12GB of RAM.
Our implementation used the CVX package [Grant and Boyd 2011]
to solve the linear programs. We have evaluated the presented joint
segmentation approach in two conditions. In the first condition
(Joint), joint segmentation was performed within each category sep-
arately. Thus, for each category, 20 shapes were optimized jointly.
In the second condition (JointAll), the complete benchmark dataset
of 380 shapes was optimized jointly. Figure 6 shows representa-
tive segmentations produced in the JointAll condition. The supple-
mentary material includes the complete segmentation results on the
benchmark.

In the Joint condition, the average processing time of the approach
was 23 minutes per category, with highest processing time of 126
minutes (for the Human category) and lowest processing time of 10
minutes (for the Cup category). In the JointAll condition, the pro-
cessing time for the complete database was 31 hours and 48 min-
utes. The total time spent in each of the three stages of the approach
in the JointAll condition was as follows. In the first stage, 146 min-
utes were spent on computing patches and performing randomized
cuts, and 253 minutes were spent on computing the weights ws and
pruning the sets of potential segments. In the second stage, the total
time to perform pairwise joint segmentation for each pair of shapes
was 636 minutes. The number of pairs of similar shapes identified
in the second stage was 7130. In the third stage, multiway joint
segmentation over the complete database took 876 minutes. The
average running time for a single shape-wise optimization step in
the block coordinate descent procedure was 1 millisecond and the
average time for a single pairwise optimization step in the proce-
dure was 0.71 seconds. In total, 10 iterations over all shapes and
pairs of similar shapes were performed.

6.2 Parameters

The key parameters of our algorithm are the number of patches into
which each shape is partitioned (set to 50 in our implementation),
the number of initial segments constructed for each shape (set to
200), the similarity threshold ρ (set to 1), and the objective function
weights λ and μ (set to 1 and 2, respectively). We have found that
the performance of the algorithm is quite stable to changes in these
parameters and that setting them was quite easy, as summarized
below.

The number of patches generated for each shape balances segmen-
tation quality and computational efficiency. We found that setting
the number of patches to 2-3 times the estimated maximum number
of segments per shape is sufficient. The precise setting of this pa-
rameter is not critical. In the Joint setting, using 25 patches instead
of 50 increases the Rand index by only 0.5 percent while using 100
patches improves the Rand index by 0.3 percent, albeit at the cost of
significantly greater computational burden on subsequent stages of
the algorithm. Likewise, the performance of the algorithm is quite
insensitive to the precise setting of the number of initial segments
per shape. Setting this number to 100 instead of 200 increases the
Rand index by 0.5 percent while using 400 initial segments im-
proves the Rand index by only 0.4 percent.

There exist many possibilities for defining segment weights and
correspondence weights. For example, we have tested the weight-

Figure 6: Representative segmentations produced by our approach on the Princeton segmentation benchmark.

ing schemes described by Kraevoy et al. [2007] and found that they
can improve the Rand index by 0.1 and 0.3 percent in the Joint
and JointAll conditions, respectively. However, these weighting
schemes rely on a number of additional parameters. We thus re-
tained the simple weighting schemes used in Section 4.

The objective function weights λ and μ were set by hand to rather
natural values (1 and 2, respectively). We examined the perfor-
mance of the method in extreme cases where some terms in the
objective function are removed completely (see Figure 4). When
the consistency score is omitted and only the segmentation score is
used (Figure 4(a)), our approach reduces to single-shape segmenta-
tion; the average Rand index obtained on the complete benchmark
is 16.3%. When the segmentation score is omitted and only the con-
sistency score is used (Figure 4(b)), the approach produces segmen-
tations with good correspondences but does not take into account
the geometric complexity of individual segments; the correspond-
ing Rand index is 17.4%. When the adjacency term is omitted from
the consistency score (Figure 4(c)), the produced segmentations do
not consider the articulation of corresponding segments on other
shapes; the corresponding Rand index is 12.3%. When the com-
plete objective is optimized (Figure 4(d)), the approach achieves an
average Rand index of 10.1%. Finally, we analyzed the effect of the
similarity threshold ρ, used to identify pairs of similar shapes that

0.05

0.1

0.15

0.2

1.6 1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6

Ra
nd

 in
de

x

similarity threshold

Figure 8: The effect of the similarity threshold ρ.

should exchange information (Section 5). The effect of the thresh-
old is visualized in Figure 8, which plots the average Rand index
in the JointAll condition, as a function of ρ. When the threshold is
high (ρ = 1.6), only very similar shapes are selected for joint anal-
ysis and the joint segmentation reduces, in the limit, to single-shape
segmentation. When the threshold is low (ρ = 0.6), the computa-
tional requirements of the procedure grow considerably and occa-
sional spurious correspondences begin to degrade overall segmen-
tation quality. The value ρ = 1 was used in all our experiments.

6.3 Analysis of Segmentations

Table 1 provides the main results of the evaluation on the Princeton
segmentation benchmark. All results were obtained with the same
set of parameters, listed in the first paragraph of Section 6.2. The
joint segmentation approach produces significantly better results
than single-shape segmentation and is competitive with supervised
data-driven segmentation [Kalogerakis et al. 2010]. Among the
seven single-shape segmentation approaches included in the bench-
mark, Table 1 only lists the performance of the leading two: shape
diameter (SD, [Shapira et al. 2008]) and randomized cuts (RC,
[Golovinskiy and Funkhouser 2008]); statistics for the other algo-
rithms are provided in the original benchmark [Chen et al. 2009].

The segmentations produced by our approach in the JointAll con-
dition were generally better or on par with those produced in the
Joint condition. Segmentation performance was more similar in
the two conditions on shape categories that already exhibit signifi-
cant variability within the category. One example is the Armadillo
category, which contains articulated armadillos in a broad range of
poses. Joint segmentation of this category by itself (in the Joint con-
dition) is sufficient to produce very accurate segmentations. Cate-
gories that benefitted most from the JointAll condition were Hu-
man and FourLeg, and Bird and Airplane. In each case, meaning-
ful correspondences were established across categories, providing

SD RC Supervised Joint JointAll Human

Human 17.1 12.9 12.9 12.3 11.3 13.5
FourLeg 16.6 13.6 13.9 12.9 11.2 14.9
Armadillo 8.9 9.2 8.4 7.4 7.4 8.3
Teddy 5.9 4.6 3.2 3.3 3.3 4.9
Ant 2.0 2.6 2.2 2.4 2.4 3.0
Plier 37.1 11.2 9.0 7.5 7.5 7.1
Glasses 19.9 10.0 14.1 9.9 9.9 10.1
Bird 11.7 11.1 14.8 10.4 7.6 6.2
Fish 25.6 29.2 13.2 13.2 13.1 15.5
Mech 23.4 23.6 11.8 13.3 13.3 13.1
Bearing 12.1 12.7 17.6 11.3 11.3 10.4
Bust 28.8 23.6 22.2 19.5 19.8 22.0
Cup 35.1 21.2 9.9 11.2 11.2 13.6
Vase 23.6 12.7 17.1 13.5 13.2 14.4
Airplane 9.3 13.4 8.2 12.9 10.2 9.2
Chair 11.1 17.8 5.6 9.6 9.6 8.9
Table 17.8 38.1 6.6 6.6 6.6 9.3
Hand 19.2 9.0 11.2 13.2 13.1 9.1
Octopus 4.8 6.4 1.8 6.7 7.2 2.4
Average 17.2 15.3 10.7 10.5 10.1 10.3

Table 1: Rand index scores for leading single-
shape segmentation algorithms [Shapira et al. 2008;
Golovinskiy and Funkhouser 2008], supervised segmenta-
tion [Kalogerakis et al. 2010], our approach, and human-
generated segmentations. Lower values indicate closer similarity
to human-generated ground truth.

additional information that was exploited by the technique. For ex-
ample, necks in the human models are not clearly identifiable as a
distinct part by the geometry of human models themselves; by seg-
menting them jointly with quadruped shapes that have more salient
necks, such as dogs and horses, the technique correctly identified
necks as distinct segments.

The only category on which performance was significantly worse
in the JointAll condition was Octopus. This is because some octo-
pus models in the database have jointed tentacles that are similar to
insect legs in the Ant category (Figure 6, lower left). Thus strong
correspondences were established between these models, resulting
in over-segmentation of octopus tentacles. This shows that the vari-
ability exploited by joint segmentation can also lead to confusion.
Another evidence for this is the gradual decline in performance that
can be observed when the similarity threshold is significantly low-
ered, as seen in Figure 8, although joint segmentation continues to
produce superior results to single-shape segmentation even when
the similarity threshold is disabled completely, indicating that the
benefits of joint analysis outweigh the negative impact of spurious
correspondences.

Comparison with supervised segmentation. We have also com-
pared the presented technique to the supervised data-driven ap-
proach recently introduced by Kalogerakis et al. [2010]. Table 1
lists the quantitative performance of the supervised technique on
the benchmark and Figure 9 provides a qualitative comparison. For
the supervised approach, 12 out of the 20 models in each category
were segmented manually. These 12 models were used as train-
ing data, with performance evaluated on the remaining 8. (This is
the “SB12” condition described by Kalogerakis et al. [2010].) Our
technique used no manually segmented training data.

The overall performance of the two approaches is similar, although
their behavior on individual categories is often quite different. Su-
pervised segmentation works particularly well when the variation in
a given category is small and the features learned from the training
segmentations map well to other models in the category. In contrast,

Consistent Supervised Our approach

Figure 9: Comparison with prior data-driven segmentation
techniques. From left to right: consistent segmentation
[Golovinskiy and Funkhouser 2009], supervised data-driven seg-
mentation [Kalogerakis et al. 2010], our approach.

our technique favors large variation in the input shapes, exploiting
salient cuts on some models in order to identify less salient cuts on
other models. This difference is illustrated by the Airplane cate-
gory, which contains many highly similar shapes. The supervised
approach outperforms our technique in this case, indicating that the
training data provides more information than the variability within
the dataset itself. On the other hand, our technique outperforms the
supervised approach on categories that feature many geometrically
dissimilar shapes, especially when the shapes are also articulated,
as in the Bird and Glasses categories. Likewise, our technique out-
performs the supervised approach on the Bust and Vase categories,
which feature significant variation between the shapes.

Comparison with consistent segmentation. We have also com-
pared the presented technique to the consistent segmentation ap-
proaches of Golovinskiy and Funkhouser [2009] and Xu et al.
[2010]. Representative results are shown in Figures 9 and 10. The
approach of Golovinskiy and Funkhouser relies on rigid alignment
in order to establish correspondences. Thus the performance of
the approach suffers when rigid alignment does not yield good re-
sults. The comparison with the approach of Xu et al. was per-
formed on the Humanoids dataset provided by the authors, which
contains 15 roughly humanoid shapes. Both approaches were ini-
tialized with the same set of patches. Figure 10 shows the segmen-
tations produced for three of the models; the rest are provided in
supplementary material. The approach of Xu et al. relies on the
existence of strong cuts on all shapes in order to identify consis-
tent segments. While this strategy is appropriate for the application
of swapping segments for shape synthesis, it can easily overlook
meaningful segments that are not demarcated by strong cuts in a
given shape. In contrast, our technique finds segments based on
average cut strength across the shapes and is able to more robustly
identify natural parts.

Xu et al. [2010]

Our approach

Figure 10: Comparison with the approach of Xu et al. [2010] on
the Humanoids dataset provided by the authors. Our technique suc-
cessfully identifies the head, hands, and feet, which are missed by
the prior approach.

7 Conclusion

In this paper, we have demonstrated that performing joint segmen-
tation on a set of shapes can significantly improve the segmentation
quality of each individual shape. We have developed a joint seg-
mentation technique that simultaneously optimizes segmentations
of shapes and correspondences between similar shapes at the seg-
ment level. We have implemented the technique using efficient op-
timization procedures and have demonstrated its practicality on a
standard benchmark.

A major limitation of the presented approach is that the segments
in the final segmentation of each shape are generated from the ini-
tially computed patches. In other words, if an underlying segment
is not captured well by the patches, then it is not present in the
final segmentation. Furthermore, our method exploits variability
in the database. If there is no variability, our approach reduces to
single-shape segmentation. When there is variation, similar shapes
exchange information, leading to better segmentations. However,
as discussed in Section 6, variation in the input can also lead to
confusion.

There are many avenues for future work. We would like to inves-
tigate alternative approaches to determining which pairs of shapes
should directly communicate during the optimization. Likewise,
we believe that both the computational efficiency and the segmenta-
tion performance of the approach can be further improved, perhaps
with alternative optimization formulations and objective functions.
More broadly, we believe that a variety of problems in geometry
processing can benefit from joint shape analysis.

Acknowledgements

We are grateful to Mirela Ben-Chen, Siddhartha Chaudhuri, and
Evangelos Kalogerakis for their comments on this paper. This
work was supported in part by NSF grants 0808515 and 1011228, a
Stanford-KAUST AEA grant, and a Stanford Graduate Fellowship.

References

ANGUELOV, D., SRINIVASAN, P., PANG, H., KOLLER, D.,
THRUN, S., AND DAVIS, J. 2005. The correlated correspon-

dence algorithm for unsupervised registration of nonrigid sur-
faces. In Proc. Neural Information Processing Systems (NIPS),
The MIT Press.

BOYD, S., AND VANDENBERGHE, L. 2004. Convex Optimization.
Cambridge University Press.

CHANG, W., AND ZWICKER, M. 2008. Automatic registration for
articulated shapes. In Proc. Symposium on Geometry Processing,
Eurographics Association.

CHAUDHURI, S., KALOGERAKIS, E., GUIBAS, L., AND
KOLTUN, V. 2011. Probabilistic reasoning for assembly-based
3d modeling. In Proc. SIGGRAPH, ACM.

CHEN, X., GOLOVINSKIY, A., AND FUNKHOUSER, T. 2009. A
benchmark for 3d mesh segmentation. In Proc. SIGGRAPH,
ACM.

GOLOVINSKIY, A., AND FUNKHOUSER, T. 2008. Randomized
cuts for 3d mesh analysis. In Proc. SIGGRAPH Asia, ACM.

GOLOVINSKIY, A., AND FUNKHOUSER, T. 2009. Consistent seg-
mentation of 3d models. Computers & Graphics 33, 3, 262–269.

GRANT, M., AND BOYD, S. 2011. CVX: Mat-
lab Software for Disciplined Convex Programming.
http://www.stanford.edu/˜boyd/cvx/.

KALOGERAKIS, E., HERTZMANN, A., AND SINGH, K. 2010.
Learning 3d mesh segmentation and labeling. In Proc. SIG-
GRAPH, ACM.

KATZ, S., AND TAL, A. 2003. Hierarchical mesh decomposition
using fuzzy clustering and cuts. In Proc. SIGGRAPH, ACM.

KAZHDAN, M., FUNKHOUSER, T., AND RUSINKIEWICZ, S.
2004. Shape matching and anisotropy. In Proc. SIGGRAPH,
ACM.

KRAEVOY, V., JULIUS, D., AND SHEFFER, A. 2007. Model
composition from interchangeable components. In Proc. Pacific
Graphics, IEEE Computer Society, 129–138.

KUMAR, M. P., KOLMOGOROV, V., AND TORR, P. H. S. 2009.
An analysis of convex relaxations for MAP estimation of discrete
MRFs. Journal of Machine Learning Research 10, 71–106.

OSADA, R., FUNKHOUSER, T., CHAZELLE, B., AND DOBKIN,
D. 2002. Shape distributions. ACM Transactions on Graphics
21, 4, 807–832.

RAND, W. M. 1971. Objective criteria for the evaluation of clus-
tering methods. Journal of the American Statistical Association
66, 846–850.

REN, X., AND MALIK, J. 2003. Learning a classification model
for segmentation. In Proc. IEEE International Conference on
Computer Vision.

SHAMIR, A. 2008. A survey on mesh segmentation techniques.
Computer Graphics Forum 27, 1539–1556.

SHAPIRA, L., SHAMIR, A., AND COHEN-OR, D. 2008. Consis-
tent mesh partitioning and skeletonisation using the shape diam-
eter function. The Visual Computer 24, 4, 249–259.

SHAPIRA, L., SHALOM, S., SHAMIR, A., COHEN-OR, D., AND
ZHANG, H. 2010. Contextual part analogies in 3d objects. In-
ternational Journal of Computer Vision 89, 309–326.

SHI, J., AND MALIK, J. 2000. Normalized cuts and image seg-
mentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence 22, 8, 888–905.

http://www.stanford.edu/~boyd/cvx/

Figure 11: Normalization operators for comparing segment
shapes. The compared segments are shown in the leftmost column
in the context of the source database shapes. The effects of the three
normalization operators are illustrated in the three columns to the
right. The most effective operator for each pair of segments is indi-
cated by a bold outline.

SHOTTON, J., WINN, J., ROTHER, C., AND CRIMINISI, A. 2009.
Textonboost for image understanding: multi-class object recog-
nition and segmentation by jointly modeling texture, layout, and
context. International Journal of Computer Vision 81, 2–23.

SIDI, O., VAN KAICK, O., KLEIMAN, Y., ZHANG, H., AND
COHEN-OR, D. 2011. Unsupervised co-segmentation of a set
of shapes via descriptor-space spectral clustering. ACM Trans.
Graph. 30 (December), 126:1–126:9.

SIMARI, P., NOWROUZEZAHRAI, D., KALOGERAKIS, E., AND
SINGH, K. 2009. Multi-objective shape segmentation and label-
ing. Computer Graphics Forum 28, 5, 1415–1425.

SONTAG, D., AND JAAKKOLA, T. 2009. Tree block coordinate de-
scent for MAP in graphical models. Journal of Machine Learn-
ing Research - Proceedings Track 5, 544–551.

WAINWRIGHT, M. J., JAAKKOLA, T., AND WILLSKY, A. S.
2005. MAP estimation via agreement on trees: message-passing
and linear programming. IEEE Transactions on Information
Theory 51, 11, 3697–3717.

XU, K., LI, H., ZHANG, H., COHEN-OR, D., XIONG, Y., AND
CHENG, Z.-Q. 2010. Style-content separation by anisotropic
part scales. ACM Trans. Graph. 29 (December), 184:1–184:10.

A Shape Distance Measure

In this appendix we define the shape distance measure d(·, ·) that
is used to evaluate the geometric similarity of individual segments.
We follow the common idea of computing descriptors for each seg-
ment and comparing segments through their geometric descriptors.
As we have to compute descriptors for segments from all random-
ized segmentations and the geometric details could change drasti-
cally across shapes, we use the D2 descriptor [Osada et al. 2002]
due to its simplicity and robustness. It is possible that a more so-
phisticated similarity metric could further improve the results.

The main challenge we have encountered for estimating the geo-
metric similarity of individual segments is anisotropic scale varia-
tion, which is common in large shape databases. To factor out shape
anisotropy, we build on the approach of Kazhdan et al. [2004].
Specifically, we define three normalization operators that factor out
scale variation along one, two, and three principal directions re-
spectively. These normalization operators are illustrated in Figure

11. The first operator, o1(s), scales the shape s isotropically such
that the first principal eigenvalue equals 1: this operator is partic-
ularly suitable for comparing highly elongated segments. The sec-
ond operator, o2(s), scales the shape anisotropically such that the
first two principal eigenvalues equal 1: this operator is effective for
comparing largely flat segments. Finally, the third operator, o3(s),
scales the shape such that all three principal eigenvalues equal to 1:
this is the operator used by Kazhdan et al. [2004].

As pointed out by Kazhdan et al., o3 is less effective when the un-
derlying shape is highly anisotropic, as in the case of very elon-
gated or flat segments. For this reason, we also employ operators
o1 and o2, and define the distance function d in terms of the operator
that minimizes the difference between the descriptors of normalized
segments. The distance function is defined as follows:

d(s, s′) =

(
min

1≤i≤3
‖di(s)− di(s

′)‖2 + α‖Λ(s)− Λ(s′)‖2
) 1

2

,

where di(s) denotes the D2 descriptor of oi(s) [Osada et al. 2002],
Λ(s) denotes the vector of principal eigenvalues of segment s, and
α controls the importance of anisotropic segment scales. In this
paper, we set α = 0.1.

B Pose Term

In this appendix we define the
pose term wpose

(
(si, s

′
i), (sj , s

′
j)
)

that
partly evaluates the quality of the
corresponding cuts between adjacent
pairs of segments si and s′i on Wi and
sj and s′j on Wj . The pose term is
defined to be higher for cuts that sep-
arate corresponding segments whose
relative pose is different in the two shapes. Let oi and o′

i denote the
barycenters of si and s′i, respectively. Let ci denote the barycenter
of the cut between si and s′i. Let αi = ∠oicio

′
i denote the angle

between vectors oici and cio
′
i. The pose term is defined as follows:

wpose
(
(si, s

′
i), (sj , s

′
j)
)
= 1 + 2|αi − αj |.

C Variable Linearization

In this appendix we prove that the linear constraints defined in (15)
are equivalent to the quadratic constraints z(c,c′) = ycyc′ over all
adjacent pairs (c, c′). First we show that the linear constraints are
implied by the quadratic constraint:

∑
s′i∈cover(pi)

∑
s′j

z(c,(s′i,s′j)) =
∑

s′i∈cover(pi)

∑
(c,(s′i,s

′
j))∈Aij

ycy(s′i,s′j)

≤ yc
∑

s′i∈cover(pi)

∑
s′j

y(s′i,s′j) ≤ yc
∑

s′i∈cover(pi)

xs′i
= yc.

Next we prove that the linear constraints imply the quadratic con-
straint. If either yc = 0 or yc′ = 0 then (15) directly implies
zc,c′ = 0. If yc = yc′ = 1 then yc′′ = 0 for all c′′ = (s′′i , s

′′
j) 	= c′,

s′′i ∈ cover(pi). Replacing c in (15) by each c′′ in turn, we see
that adjacent pair indicators on the left side of (15) are zero except
z(c,c′), which is either 0 or 1. Similarly, z(c,c′) on the left side of
(15) can be either 0 or 1 when c is swapped with c′. Since z(c,c′)
only appears on the left side of (15) twice, it follows that z(c,c′) = 1
because the objective function is maximized and the coefficient of
z(c,c′) is positive.

