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Abstract—Multi-user video streaming over wireless channels
is a challenging problem, where the demand for better video
quality and small transmission delays needs to be reconciled with
the limited and often time-varying communication resources.
This paper presents a framework for joint network optimization,
source adaptation, and deadline-driven scheduling for multi-user
video streaming over wireless networks. We develop a joint
adaptation, resource allocation and scheduling (JARS) algorithm,
which allocates the communication resource based on the video
users’ quality of service, adapts video sources based on smart
summarization, and schedules the transmissions to meet the frame
delivery deadlines. The proposed algorithm leads to near full
utilization of the network resources and satisfies the delivery dead-
lines for all video frames. Substantial performance improvements
are achieved compared with heuristic schemes that do not take the
interactions between multiple users into consideration.

Index Terms—Collaborative video streaming, optimization
decomposition, pricing control, rate-distortion modeling, video
adaptation.

I. INTRODUCTION

A. Motivation

W
ITH the advances of mobile computing technology

and deployments of 3G wireless infrastructure, video

communication applications are becoming very important for

service providers as a source of many new business applica-

tions. However, there are still many open problems in terms

of how to efficiently provision complicated quality-of-service

(QoS) requirements for mobile users. One particular chal-

lenging problem is multi-user video streaming over wireless

channels, where the demand for better video quality and small

transmission delays needs to be reconciled with the limited

and often time-varying communication resources. The main

technical difficulties are as follows:
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• The video sources for most streaming applications are typ-

ically precoded stored video sequences with relative high

bit rates. However, the currently deployed wireless cellular

systems (e.g., [1], [2]) are designed to only support voice

and lower bit rate data. In order to support video streaming

over such networks, the high rate video sources need to

be adapted through a variety of schemes, such as scalable

video stream extraction (e.g., [3]–[5]), transcoding (e.g.,

[6], [7]), and summarization (e.g., [8]), before they can be

accommodated by the wireless channel.

• Different video content segments have different rate-dis-

tortion characteristics, e.g., some segment may be part of

an action movie and requires a lot of bits to encode, while

others maybe news anchors talking that require relatively

less bits to encode. In a wireless multiaccess channel, the

type of multi-user content diversity in content rate-dis-

tortion characteristics should be taken into consideration

while optimizing the network resource.

• The resource consumptions of video users are typically dis-

crete, i.e., measured in frames instead of in bits. As a re-

sult, their utility functions (QoS as functions of allocated

resources) are discrete as well, and typically do not have

close form representations. Therefore, most of previous

work on resource allocation for elastic data traffic does not

directly apply here, and a new optimization framework is

needed.

• The streaming applications have stringent delay require-

ments, which can be only satisfied under a carefully de-

signed scheduling policy. This is a challenging task in a

wireless network, since the transmissions of multiple users

are typically tightly coupled either due to limited network

resource (e.g., transmission power or bandwidth in down-

link transmissions) or mutual interferences (e.g., in uplink

transmissions).

Traditionally the mechanisms of content generation and the

engineering of network resources are designed separately, and

most of the above challenges are ignored in the network design.

This has led to a “content-pipe divide” [40], and the need for

application-aware networking. This paper presents another step

towards matching content processing with network engineering

so as to maximize the user perception’s utility. In this paper, we

propose a framework for resource allocation, source adaptation,

and deadline oriented scheduling. During the resource alloca-

tion phase, the network resources are allocated to different video

users by temporally treating them as “elastic data users,” i.e.,

without considering the discrete nature of the video traffic. An

optimal average resource allocation is achieved in a distributed

fashion by exploiting the content diversity among users. Based

1051-8215/$25.00 © 2008 IEEE
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on the average resource allocation, users perform source adap-

tations in a distributed fashion to select a set of video frames

to be transmitted in order to match the allocated resource. Then

two greedy deadline oriented scheduling algorithms (for uplink

and downlink transmissions, respectively) are proposed to sat-

isfy users’ stringent deadline requirements by taking advantage

of the variable bit rate (VBR) nature of users’ traffic.

B. Background and Related Work

The problem of source adaptation has been widely explored

in the video coding community, with a good review provided by

[9]. Video source adaptation serves two purposes in video com-

munication and consumption: 1) complying with the resource

limitations in communication and 2) satisfying user preferences

in video consumption. Resource limitations can be due to band-

width and energy limitations in communications, disk size in

storage devices, display size in hand-held devices, and battery

energy and computational power in mobile devices. User pref-

erences can be expressed in terms of the reconstructed video

quality, which is a function of the frame size, peak signal-to-

noise ratio (PSNR), and frame rate. There are two basic so-

lutions to the video adaptation problem, provided by scalable

coding [3]–[5] and transcoding [6], [7]. With scalable coding, a

video source is encoded once in such a way that different subsets

of the bit stream can be used to reconstruct the video sequence

at different frame sizes, frame rates, and visual quality levels.

Scalable coding offers adaptation with minimum computational

burden and can be performed at routers and access points. With

transcoding, a decoder and an encoder are concatenated back

to back, resulting in a flexible system that is able to adapt to

communication resource limitations and achieves desired video

quality levels at the cost of high computational complexity. Var-

ious means for reducing the complexity of transcoding exist

by taking advantage of partial decoding of the bit stream and

reusing of the motion field information.

To achieve better end-to-end quality at very low bit rate over

wireless networks, a more intelligent approach to video adap-

tation is needed. In this work, we utilize video content analysis

[10] and summarization solutions [8], [11] to deliver good visual

quality at low bit rates. Through content analysis and optimiza-

tion, video summarization schemes select a subset of frames

from the video sequence to form a concise representation of the

sequence, such that the incurred loss is minimized. This extra

layer of intelligence can be used to guide transcoding or scal-

able stream packet extraction, while achieving better quality and

achieves better quality than the content-blind approaches. In a

wireless network, the complex underlining channel conditions

directly affect the QoS of the video applications. In order to

achieve an optimal network performance, it is natural to coor-

dinate the decisions at the application layer (e.g., source coding

and adaptation) with the underlying physical layer resource al-

locations. There exists a rich literature in this field, and some

representative work includes [12]–[19], with a good survey in

[20]. One approach focuses on the design of effective protection

strategies to deal with the error-prone wireless channels (e.g,

[14], [15]); another one is to partition the multimedia data into

various priority classes for adaptive transmission (e.g., [16]); a

final approach is to take the stochastic nature of the wireless

networks into consideration (e.g, [18], [19]). However, most of

the previous work did not explicit consider the competition for

resource among multiple users in the network. Recently, rate

control for multiple video streaming over multihop wireless net-

works was considered [21][22], where the deadline constraints

are not explicitly taken into consideration.

Cross-layer resource allocation based on optimization

decomposition has also been considered in the networking

community, with recent results summarized in the long survey

paper [23]. Most work in this field (e.g., [24]–[27] and ref-

erences therein) has considered optimization for elastic data

traffic using a fluid model without delay constraints. In the

video streaming applications, however, we need to further

consider the discrete frame selection problem (through source

adaptation) and satisfy the stringent delivery deadline con-

straints (through scheduling).

C. Summary of Contributions

In this paper, we start by formulating a joint optimization

problem that involves both the network resource constraints at

the physical layer and users’ QoS service requirements at the

application layer. The decomposition of the joint problem is

then carried out in a systematic way such that modularity of

different functional units is maintained while the interactions

among them are properly designed, which leads to enhanced

network efficiency without sacrificing network architectural di-

visions among coders, routers, and schedulers. The major con-

tributions of this paper are as follows.

• Framework: This paper presents a framework for joint net-

work optimization, source adaptation, and deadline-driven

scheduling for multi-user video streaming over wireless

networks. By exploiting the content diversity of the video

users, the network resources can be efficiently used, and

the aggregate distortion of the video users can be mini-

mized while meeting the stringent delivery deadlines of the

streaming applications.

• Algorithm: We develop a family of joint adaptation, re-

source allocation, and scheduling (JARS) algorithms,

which allocate the communication resources based on

the video users utility functions, adapt video sources at

very low bit rate (VLBR) based on content-aware sum-

marization and transcoding schemes, and schedule the

transmission of packets to meet individual deadline con-

straints. The resource allocation is achieved in a distributed

fashion based on dual decompositions, while the source

adaptation is performed based on content summarization

to minimize the delivery distortions. The scheduling is

done in a centralized fashion, and requires the mobile

users to send frame information to the base station. A

feedback mechanism between resource allocation, source

adaptation, and scheduling is established to ensure the

feasibility of the solution.

• Performance Evaluation: The proposed algorithms lead to

near full utilization of the network resources, and achieve

good delivered visual quality with very low bit rate that

can be supported by the existing cellular networks. Both

the computational complexity and communication over-

head are low. The performance improvement is significant
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Fig. 1. Single-cell network with mixed voice and video users.

compared with the heuristic schemes that do not take the

interactions between multiple users into consideration.

The rest of the paper is organized as follows. We first describe

the general solution framework in Section II. In Sections III and

IV, we discuss in details of how the framework can be applied

for uplink and downlink video streaming in wireless networks.

Experimental results are given in Section V, and we conclude

in Section VI.

II. FRAMEWORK OF OPTIMIZATION, ADAPTATION

AND SCHEDULING

We consider a single cell model in a wireless cellular net-

work based on code division multiple access (CDMA).1 A

fixed user population with both voice and video applications

are considered, as shown in Fig. 1. All users communicate with

the base station through one-hop transmission, thus there is no

problem of multihop relay or routing. A voice transmission

is successful if a target signal-to-interference-plus-noise ratio

(SINR) is reached at the receiver. A video users is more flexible

and can adapt to the network environment in terms of the

achieved SINR and the transmission rate. However, once the

video frames are transmitted, stringent delay deadlines need to

be satisfied in order to guarantee the normal operation of the

streaming application.

Here the network objective is to maximize the overall perfor-

mance of the video users (measured in terms of video qualities),

subject to the normal operations of voice users. We will achieve

this by allocating various network resource (i.e., transmission

power and transmission time), video source signal processing

(i.e., adaptation by summarization) and scheduling (both “soft

scheduling” in terms of deadline aware power allocation, and

“hard scheduling” in a time-division-multiplexing fashion).

We will consider both uplink and downlink video streaming

in this paper. In the uplink case, video users need to limit

aggregate interference that they generate and affect the voice

users. In the downlink case, the base station needs to limit the

amount of transmission power allocated to the video users. In

1Although we focus on CDMA systems in this paper, the proposed framework
in Section II is general and can be applied to other wireless access schemes [e.g.,
orthogonal frequency-division multiplexing (OFDM)] as well.

both cases, the optimal video streaming problem can be mod-

eled in the framework of nonlinear constrained optimization.

Two key questions that need to be answered are: 1) how to

allocate resources among video users in an efficient manner

(i.e., maximizing total user’ quality or minimizing total users’
distortion) and 2) how to make sure that the stringent delivery

deadline requirements are met for every video frame that is

chosen to for transmission.

In this section, we describe a solution framework that answers

the above two questions. This framework involves three phases:

1) Average resource allocation. This is achieved by solving

a network utility maximization (NUM) problem. The

multi-user content diversity will be fully exploited to

make efficient use of the network resources. A distributed

pricing-based algorithm is proposed to achieve the resul-

tant solution.

2) Video source adaptations. Based on the average resource

allocation results in phase 1), each video user adapts the

video source by solving a localized optimization problem

with video summarization.

3) Multiuser deadline oriented scheduling. The network de-

cides a transmission schedule based on video users’ source

decisions in phase 2), in order to meet the stringent dead-

line constraints of the streaming applications.

In some cases we may not be able to find a feasible schedule

in phase 3). This implies that although the system resource is

enough in an average sense [guaranteed by phase 1)], the dead-

line requirements might be too stringent to satisfy. In that case,

we will go back to phase 1) and re-optimize the average re-

source allocation, but with more stringent resource constraints

(e.g., less total power in downlink transmission). This will force

the users to be more conservative when doing the source adapta-

tions in phase ) (i.e., each user will transmit fewer frames),

thus make it easier to achieve a feasible schedule in step 3).

This section will focus on the discussions of the essence of

the above three phases. Further details for specific settings of

uplink and downlink streaming will be given in Sections III and

IV.

A. Average Resource Allocation

A key question of resource allocation for multimedia com-

munication is how to deal with the VBR nature of the source.

We take a decoupling approach in this paper, by first consid-

ering the resource allocation in the average sense without wor-

rying about the time dependency. The time dependency will be

brought back into the picture later in the source adaptation and

multi-user scheduling phases.

Assume there are video users in the cell. We characterize

the QoS of a video user by a utility function , which

is an increasing and strictly concave function of the commu-

nication resource allocated to user , . This models various

commonly used video quality measures such as the rate-PSNR

function [28] and rate-summarization distortion functions [11].

It is well known from information theory [29] that the rate-dis-

tortion functions for a variety of sources are convex, and in prac-

tice, the operational rate distortion functions are usually convex

as well. Thus, the utility functions (defined as negative distor-

tion) are concave. For the average resource allocation phase, we

assume that is continuous in . The average resource

allocation is achieved by solving the following NUM problem,
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where denotes the total limited resource available to the

video users (i.e., total transmission power in the downlink case

and total transmission time in the uplink case)

(1)

Solving Problem (1) directly requires a centralized computation

due to the coupling resource constraint. However, a distributed

solution is often more desirable, since the base station typically

does not know the utility functions of individual video users.

Here we use the dual decomposition technique [30], where the

base station sets a price on the resource, and each mobile user

determines its average resource request depending on the an-

nounced price and its own source utility characteristic. This

technique has been extensively used in network resource alloca-

tion for elastic data traffic (e.g., [24]–[27]). Here we will briefly

review the main results, and details can be found in, for example,

[31].

First, we relax the constraint in (1) with a dual variable and

obtain the following Lagrangian

(2)

where . The variable can be interpreted

as the shadow price for the constrained resource . Then

Problem (1) can be solved at two levels. At the lower level, each

video user solves the following problem:

(3)

which corresponds to maximizing the surplus (i.e., utility minus

payment) based on price . Denote the optimal solution of (3) as

, which is unique since the utility function is continuous,

increasing and strictly concave. The video users then feedback

the values of to the base station. At the higher level, the

base station adjusts to solve the following problem:

(4)

where is the maximum value of (3) for a given value of

. The dual function is nondifferentiable in general, and

(4) can be solved using a subgradient searching method

(5)

where is the search iteration index and is a small step size at

iteration . The two level optimizations together solve the dual

problem of the original NUM problem (1) (which we call the

primal problem). This enables us to obtain a distributed solu-

tion. Base station controls the resource price according to (5),

and each video user chooses the average resource request

to maximize its surplus according to (3) in a distributed

fashion. This avoids centralized computation and makes the so-

lution scalable in a large network.

The difference between the optimal solutions of the primal

and dual problems is known as the duality gap. Given the as-

sumption on the utility functions, we have the property of strong

duality [30] which implies zero duality gap. In other words,

given the optimal dual solution , the corresponding

for all are the optimal solution of the primal problem (1). The

complete distributed algorithm is given in Algorithm 1.

Algorithm 1 Dual-based Optimization Algorithm to solve

Problem (1)

1: Initialization: set iteration index , and choose

as the stopping criterion.

2: Base station announces an arbitrary initial price .

3: repeat

4: for all video user do

5: Locally determine the resource consumption

.

6: Send the value of to the base station.

7: end for

8: Base station announces a new price

.

9: .

10: until .

Algorithm 1 converges under properly chosen step sizes, as

stated in the following proposition (for proof, see [24]).

Proposition 1: If the step-sizes in (5) satisfy

and (e.g., ), then Algorithm 1 converges

to the optimal solution of Problem (1).

So far we have not specified how Problem (3) is solved in

Algorithm 1. Since the utility functions in video communica-

tions typically do not have closed form representations, Problem

(3) needs to be solved by using various source adaptation tech-

niques. This is different than, for example, congestion control in

the Internet (e.g., [25]), where each source determines the trans-

mission rate as a closed form function of the network congestion

price.

B. Source Adaptation

The utility functions for elastic data traffic are typically de-

fined on instantaneous allocated resources, such as the allocated

bandwidth at time . However, this is in general not suitable for

video transmissions, due to the inter-dependent nature of the

video frames. The video quality can be better determined by the

total resource allocation during a time segment, which should

be long enough for the user to perform source adaptation to de-

termine the best set of frames to transmit.

In this paper, we define the utility of the -th

user as the video summarization quality of a segment

of frames within a time segment of length , de-

noted by . Let us de-

note the corresponding video summary of frames by

, where . It is

assured that is always included in the summary. In

other words, we will only send out of frames through the

wireless channel, due to the limited communication resources.

Assuming that all frames can be received error-free by the

receiver, the original frame sequence can be reconstructed
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Fig. 2. Example of DP Trellis.

as by substituting the missing

frames with the most recent frame that is in the summary .

The video summary quality, which is defined as the negative of

the average distortion caused by the missing frames, is given as

(6)

where is the distortion between the original frame

and the reconstructed frame . If frame is in the sum-

mary of the frames, then and .

Therefore, the optimization Problem (3) can be translated into

the problem of summarization with a price on the resource,

(7)

Remark 1: In general, the solution to (7) depends on the avail-

able adaptation schemes and the operating bit rate range of the

network. Problem (7) can be solved with a Dynamic Program-

ming (DP) approach. More detail can be found in [8] for the

single user case. Basically, by relaxing the objective function,

each candidate video summary frame in the sequence is now

associated with a frame loss distortion and a bit-rate dependent

on the previous video summary frame selection. Starting with

the 1st frame of the sequence, a trellis is being built with edges

indicating valid choices of the video summary frames. An ex-

ample is shown in Fig. 2. Each node indicates the relaxed

cost of adding frame to the summary if the previous summary

frame is . The minimum cost choice of frame is found by,

(8)

where is the video summary distortion for the new segment

consisting of and is the transcoding cost

of predicting coding frame from . The minimum cost and

best choice of incoming frames are computed from the trellis

and then a back track program can retrieve the path to the start

point and construct the optimal video summary solution for the

given multiplier .

Remark 2: In order to utilize Algorithm 1 a, we need to find

the mapping between average resource consumption and

summarization . For the uplink case in Section III, is the

total transmission time of summary frames under a fixed

transmission rate; for the downlink case in Section IV, is

the average transmission power needed to deliver the summary

frames within the time segment .

Remark 3: By solving (3) using the summarization technique

outlined here, we have moved from the continuous utility model

(assumed in Section II-A) into a discrete utility model. This is

because the total number of choices of the summary sequence

is finite and equals . In other words, while solving (7),

user chooses one out of possible choices of to maxi-

mize the surplus. This also means that there exists only a finite

number of choices for the corresponding , and there might

not be a value of for which . That does not

create a problem for the convergence of Algorithm 1, since the

value of will still converge. However, the base station might

need to announce a positive price of even if the total resource

is not fully utilized, i.e., . This is different

from congestion control for elastic data traffic, where only sat-

urated links will generate positive congestion prices.

C. Deadline Oriented Scheduling

So far we have considered average resource allocation and

source adaptation, based on which each video user gener-

ates a sequence of frames to be transmitted during a given

time segment. The last step is to schedule the transmissions

of packets such that the delivery deadlines are met. This is

essential to streaming applications. All frames have to be

delivered to the receiver before their corresponding deadlines,

which are determined by their positions in the original frame

sequence (before summarization) and a predetermined initial

delay (which allows the transmission of intra- frames that are

needed at the beginning of frame sequences). The details of

the scheduling algorithm will depend on the physical model

of the communication networks. In the uplink case where

transmissions from various users interferer each other, we

propose time division multiplexing (TDM) among video users

to ensure a high enough transmission rate (voice users still

transmit constantly in the background). In the downlink case

where transmissions are orthogonal to each other, we propose

to schedule users to transmit simultaneously, with each user’s
transmission power determined by its current frame size, the

corresponding deadline, as well as the resource consumption

of other users. Further details will be given in Sections III and

IV, respectively.

III. WIRELESS UPLINK STREAMING

A. Problem Formulation

In a wireless CDMA network, different users transmit

using different spreading codes. These codes are mathemat-

ically orthogonal under synchronous reception. However, the

orthogonality is partially destroyed when the transmissions

are asynchronous, such as in the uplink transmissions. The

received SINR in that case is determined by the users’ trans-

mission power, the spreading factors (defined as the ratio of the

bandwidth and the achieved rate), the modulation scheme used,

and the background noise. The maximum constrained resource
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of the video users can be expressed as the maximum received

power at the base station, derived based on a physical layer

model similar as the one used in [32].

We consider the uplink transmission in a single CDMA cell

with voice users and video streaming users. The total

bandwidth is fixed and shared by all users. Each voice user

has a QoS requirement represented in bit-error rates (BER) [or

frame-error rates (FER)], which can be translated into a target

SINR at the base station, . Each voice user also has a

target rate constraint . Assuming perfect power control,

each voice user achieves the same received power at the base

station, . The total received power at the base station

from all video users is denoted as . The background

noise is fixed and includes both thermal noise and inter-cell

interferences.

In order to support the successful transmission of all voice

users, we need to satisfy

(9)

Here is the spreading factor, and coefficient

reflects the fixed modulation and coding schemes used by all

voice users (e.g., for BPSK and for

QPSK). For each voice user, the received interference comes

from the other voice users and all video users. From (9),

we can solve for the maximum allowed value of , denoted

as

(10)

which is assumed to be fixed given fixed number of voice users

.

The network objective is to choose the transmission power of

each video user during a time segment , such that the total

video’s utility is maximized, i.e.,

(11)

where is the transmission power of video user at time

, is the vector of all video users’ transmission power at

time , is the maximum peak transmission power of user

, and is the fixed channel gain from the transmitter of user

to the base station. is the rate achieved by user at time ,

and depends on all video users’ transmission power, the channel

gains, the background noise, and interference from voice users.

A user ’s utility function is defined on the video summarization

quality of its transmitted sequence during , as discussed in

Section II-B.

Remark 4: Problem (11) is not a special case of Problem

(1), since 1) Problem (11) optimizes over functions

, whereas Problem (1) optimizes over

variables , and 2) the objective function

in Problem (11) is coupled across users, whereas the objective

in Problem (1) is fully decoupled. This makes (11) difficult to

solve in a distributed fashion.

In order to solve Problem (11), we will resort to the frame-

work described in Section II, where we will perform average

resource allocation (in terms of average transmission power),

source adaptation (to match the average resource allocation),

and the deadline scheduling (to determine the exact power al-

location functions by deadline aware water-filling).

B. Transmission Time Allocation and Source Adaptation

To simplify the problem and make the solution tractable, we

consider the case where video users transmit in a TDM fashion.

This is motivated by [33], where the authors showed that in order

to achieve maximum total rate in a CDMA uplink, it is better to

transmit weak power users in groups and strong power users one

by one. Since video users typically need to achieve much higher

rate than voice users (thus transmit at much higher power), it

is reasonable to avoid simultaneous transmissions among video

users, and thus avoid large mutual interference. A more im-

portant motivation for TDM transmission here is to exploit the

temporal variation of the video contents, i.e., content diversity.

Under such a TDM transmission scheme, the constraint resource

to be allocated to the video users becomes the total transmission

time of length . The total number of bits that can be transmitted

by user is determined by the transmission time allocated to it,

, and the maximum rate it can achieve while it is al-

lowed to transmit. Let us denote this rate as , and it can

be calculated by

(12)

Under the assumption of TDM transmission, Problem (11)

can be written as follows:

(13)

where the new utility function is defined as

(14)

i.e., a user ’s total transmitted data during time is deter-

mined by the product of and the active transmission time

. Now Problem (13) is a special case of Problem (1), where

we replace by , by and by . As a result,

the optimal transmission time allocation per user can be found

using Algorithm 1.

Based on the discussions in Section II-B, each user locally

adapts its source using summarization, which leads to the best

sequence of video frames that fit into the transmission time al-

location . The transmission of each frame needs to meet a

certain delivery deadline, after which the frame becomes use-

less. This requires the base station to determine a transmission

schedule for all users, which will be explained next.

C. Uplink Greedy Scheduling

Our objective is to find a transmission schedule, such that all

frames meet their delivery deadline, subject to a causality con-

straint. In a TDM based transmission, since a user ’s trans-

mission rate is fixed, so is the transmission time of its

th summary frame. It can be calculated as , where

is the size of the frame (in bits).
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In order to calculate the value of according to (12),

the user needs to know the following information: 1) the back-

ground noise plus interference , and the max-

imum received power . These values do not change fre-

quently and they need to be fed back from the base station to the

user only once in a while; 2) the channel gain , which needs to

be updated with a frequency dependent on the moving speed of

the user; 3) bandwidth , which is a fixed and publicly known

parameter.

Given this information, the users calculate the transmission

time for each of the summary frames, and send this informa-

tion along with the absolute delivery deadline for each frame

to the base station. The correspondingly signaling overhead is

not significant compared with the transmission rate of the video

users.2 The base station makes the scheduling decisions based

on the GREEDY approach, where the frames from all users are

sorted and transmitted one by one according to their deadlines

(with the earliest deadline first).

Although the GREEDY scheduling is simple, it is optimal

among all TDM-based schedules.

Proposition 2: If any TDM-based scheduling algorithm can

meet the deadlines of all video frames, so can the GREEDY

scheduling algorithm.

Proposition 2 can be proved as follows: select any TDM-

based scheduling algorithm where all deadlines are met and

one or more frames are transmitted out of the deadline order.

Then by rearranging the corresponding out of order frames by

the deadline as in the GREEDY algorithm, all the deadline con-

straints are still satisfied.

If the GREEDY schedule can not meet all frames deadlines,

users need to go back and solve again Problem (13) again, where

the total transmission time constraint is replaced by a value

. In other words, the total resource constraint needs

to be reduced such that the corresponding summary frames be-

come schedulable. The complete uplink Joint Resource Alloca-

tion and Scheduling (JARS) algorithm is given in Algorithm 2.

Algorithm 2 JARS Algorithm for Video Streaming over

Wireless Uplink Channels

1: Initialization: let and choose .

2: repeat

3: Solve Problem (13) using Algorithm 1 in a distributed

fashion (replacing by in (14), by , and by

).

4: for all user do

5: Determine a summary sequence as in Section II-B.

6: Calculate rate according to (12).

7: Calculate transmission time for each summary frame.

2As an example, consider the case where each video user has a maximum of
90 evenly spaced frames within in a scheduling interval of 3 s. It only takes 7
bits to specify the location of any of the 90 frames. If we further assume that
each frame is no larger than 1 Mbits, it only takes no more than 20 bits to specify
the size of each frame. In total, the worst case communication overhead with 4
video users and an average of 90 frames per 3 s is upperbounded by (7+20) �
30 � 4=3=1000 = 1:08 kbps, which is very small compared with the average
transmission rate of video users (around 30 kbps in our numerical examples).

8: Send the transmission time and deadline information of all

summary frames to the base station.

9: end for

10: Base station sorts the frames in increasing order of

deadlines, and determines the transmission starting and ending

time of each frame accordingly.

11: If there is deadline violation, let .

12: until no deadline violation occurs for any user.

13: Base station informs all users of the schedule, and users

transmit accordingly.

D. Computational Complexity and Communication Overhead

of Algorithm 2

In this section, we show that the proposed algorithm has both

low computational complexity and communication overhead,

and thus is very scalable with the network size. We analyze each

of the three components of the algorithm as follows:

1) Average Resource Allocation: From the base station’s
point of view, this involves searching for the optimal dual

price . Since the total resource demand (transmission

time) is monotonic in the price, we can find the optimal

price by simply using bisection search. For example, if we

want to achieve a precision of 10 of the optimal price,

we only need to have at most price

iterations. Thus, the computational complexity of this step

is independent of the number of users, and we denote it as

. Since the number of price announcements from the

base station is the same as the number of iterations needed,

the total communication overhead of the base station is

also independent of the number of users, and we denote it

as .

2) Individual Source Adaptation: Under each fixed dual

price, each mobile user performs source adaptation inde-

pendently. The computational complexity of each user is

independent of the number of users. The total computa-

tional complexity (over all users) of this step is linear with

the number of users. We denote it as , where is

the total number of video users. Each user then need to

report its resource demand back to the station, with a total

communication overhead (over all users) of .

3) Deadline Oriented Scheduling: This involves sorting

all users’ frames accordingly to their deadlines. Under

a fixed total system resource (total transmission time),

the maximum number of frames that can supported is

upper-bounded (since in practice we have a minimum

frame size) and independent of the number of users. Thus,

the worst-case computational complexity of this step is

also independent of the number of users, and we denote

it as . The communication overhead involves users

reporting the lengths and locations of their frames and the

base station announcing the final schedule. Accordingly

to the same argument (upperbound on the number of total

frames), the worst-case communication overhead is also

independent of the number of users, and we denote it as

.

Furthermore, if the scheduling phase does not lead to a fea-

sible schedule, we need to go back and rerun the average re-

source allocation with a more stringent total transmission time
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constraint. The total number of such iterations can be upper-

bounded by and is again independent of the number of users.

As a conclusion, the worst-case computational complexity of

the proposed algorithm is , and the worst-case

communication overhead is , both are linear in

the number of users. However, in terms of the base station and

each mobile user, the computation complexity and communica-

tion overhead is independent of the total number of users. This

shows that the proposed algorithm scales well with the network

size.

IV. WIRELESS DOWNLINK STREAMING

Different from the uplink case, transmissions in the down-

link are orthogonal to each other, thus it is desirable to allow si-

multaneous transmissions of multiple video users. The resource

constraint in the downlink case is the maximum peak transmis-

sion power at the base station. The objective here is to determine

the transmission power functions, , of each user during

time , such that the total user utility (measured in video

quality) is maximized.

A. Problem Formulation and Average Power Allocation

Following the framework described in Section II, the first step

is to perform average resource allocation. For the downlink case,

we will allocate the transmission power to each user, subject to

the total transmission power constraint (for video users) at the

base station, . Since there is no mutual interference, the

transmissions of the voice users need not be taken into consider-

ation when determining the achievable rates of the video users.

At this stage, we will temporality assume that each user will

transmit at a fixed power level throughout the time segment

. The problem we want to solve is

(15)

Problem (15) is a special case of Problem (1), and can be solved

using Algorithm 1. Assuming that user is allocated a con-

stant transmission power , its total throughput within

is given by

(16)

where is the channel gain from base station to the mobile

receiver, and is the background noise density at the receiver

end. The user can determine its best video summary sequence

based on this achieved throughput.

Due to the difference in frame sizes and locations, transmit-

ting at constant power levels is not optimal in terms of meeting

the frame delivery deadlines. Next we present an energy-effi-

cient water-filling power allocation algorithm based on the so-

lution of Problem (15).

B. Frame Scheduling With Greedy Water-filling Power

Allocation

Next we develop an energy-efficient scheduler that tries to

meet the deadlines of the frames for all users with a minimum

amount of power. Compared with the uplink case, the users can

transmit simultaneously in the downlink case without gener-

ating interference. The key concern is how to choose a transmit

Fig. 3. Greedy water-filling transmission power allocation.

power function of each user , during , which

can meet the frame delivery deadlines without violating the total

power constraint, . This is achieved by a se-

quential scheduling algorithm based on a water-filling solution

over the transmission power that has been allocated.

First, similarly to the uplink case, we sort the frames of

all users in an increasing order of delivery deadlines. If the

th frame in the sequence belongs to user , we will denote

its frame size, frame arrival time, and delivery deadline as

, with the superscript denoting summa-

rization and .

Then the scheduling is performed one frame at a time, starting

from the frame with the earliest deadline. Assume that we have

completed the scheduling up to the st frame in the se-

quence, where the transmission power allocated to a user

is for . Notice that the power will

be zero for any time , since all the frames scheduled

have deadlines smaller than . Also let the total allocated

transmission power to be . Assuming

that the th frame belongs to user , the allocated transmission

power to user after the th frame is scheduled, , will

satisfy

otherwise
(17)

where is the water-level. The extra amount of information

that user can transmit during time can be

computed as a function of

(18)

and a fast bisection search can be performed to find the op-

timal value of such that the th frame can be transmitted

before the deadline, i.e., . This is a greedy type

of water filling solution and tries to satisfy the delivery dead-

line of the current frame with the minimum amount of total

power (summed over all users). A graphical illustration of the

water-filling algorithm is given in Fig. 3.

The algorithm does not stop until the power function corre-

sponding to the last frame is computed. Each user ’s complete

transmission power function is then , where
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is the total number of frames for all users. Notice that al-

though the resulting ’s may not be constant functions,

the scheduler tries to spread transmission as much as possible

over time such that the total power used at each time is min-

imum. This has the same flavor as the “lazy scheduling” in [34],

which showed that the total energy consumption for transmit-

ting a fixed amount of data decreases as the transmission time

increases. Instead of focusing on data transmission in a single

user environment, here we focus on the multimedia transmis-

sion in a multi-user environment.

If the water-filing algorithm leads to a peak transmission

power greater than , users need to go back and solve

Problem (15) again, where the maximum peak power constraint

is replaced with . In other words, the total

resource constraint needs to be reduced such that the resultant

summary frames can be schedulable. The complete downlink

JARS algorithm is given in Algorithm 3.

Algorithm 3 JARS Algorithm for Video Streaming over

Wireless Downlink Channels

1: Initialization: let peak power constraint be ,

and choose a resource constraint reduction factor .

2: repeat

3: Video users and the base station solve Problem (15) using

Algorithm 1 in a distributed fashion (replacing by and

by ).

4: for all user do

5: Determine a summary video sequence as in Section II-B.

6: Send the frame sizes and frame deadlines to the base station.

7: end for

8: Base station sort the frames in increasing order of deadlines,

and determines transmission power for each user using greedy

water-filling scheduling.

9: If the peak power constraint is violated, let

.

10: until no peak power violation at any time.

11: Base station transmits utilizing the computed transmission

power functions.

C. Computational Complexity and Communication Overhead

of Algorithm 3

Similar as the uplink case, we will analyze the computational

complexity and communication overhead of the proposed JARS

algorithm for the downlink case.

The computational complexity of the downlink algorithm is

, where is the maximum number of iterations

that the base station need to rerun the algorithm (due to infea-

sible schedule), denotes the maximum number of iterations

for searching the optimal dual price, denotes the maximum

number of computation needed for a user to perform single user

source adaptation, and represents the product of the max-

imum number of frames to be scheduled and the maximum it-

erations of bisection search needed for finding the appropriate

water-filling level for each frame. Notice that in the downlink

TABLE I
KEY SIMULATION PARAMETERS—PART 1

case all computation happens at the base station, where in the

uplink case the computation is distributed among the base sta-

tion and the mobile users.

The communication overhead for the downlink algorithm is

zero, since the base station knows the information of all users’
frames and performs all computation locally without any further

message exchange with the users.

V. EXPERIMENTAL RESULTS

We choose four video clips with different content activity

levels. Clips 1 and 2 are, respectively, frames 150–239 and

frames 240–329 from the “foreman” sequence, and clips 3

and 4 are respectively frames 50–139 and 140–229 from the

“mother-daughter” sequence, respectively. The codec used is

H.263, and GoP structure is IPPPP. There are 90 frames within

each video clip at a frame rate of 30 Hz, which corresponds to

a time segment of s. We will use these clips for both

uplink and downlink streaming simulations.

A. Simulation Results for the Uplink Case

In the uplink case, besides the GREEDY scheduling algo-

rithm, we also simulate the case where all four video users are

allowed to transmit simultaneously with the same constant rates

(SIMCONST). In other words, the received power from each

of the video user is the same at the base station in SIMCONST

algorithm, and no scheduling across users is needed due to si-

multaneous transmissions.

In Table I we list the simulation parameters that are kept con-

stant throughout this subsection.

1) Achievable Video Rate Under Different Number of Voice

Users: We first compare the video users’ total achievable rate

under GREEDY and SIMCONST algorithms for different voice

user load. Under GREEDY, we plot the maximum rate achieved

by allowing only one user transmitting. Under SIMCONST, we

plot the total rate achieved by all four users. Fig. 4 shows that

the video users’ total achievable rate decreases with the number

of voice users, and becomes zero when there are more than 26

voice users in the system. In other words, the system’s ability

of supporting video users depends on the current voice load in

the cell. It is also clear that the GREEDY algorithm always out-

performs the SIMCONST algorithm in terms of total achiev-

able rate, due to the heavy mutual interference among users in

the latter case. Later we will show that due to the ability of

exploiting content diversity, the GREEDY algorithm achieves

much better performance than the SIMCONST algorithm in

terms of the distortion experienced by the users.

2) Transmission Time Allocation and Source Rate Adapta-

tion: As a concrete example, let us consider a cell with 24 voice

users, where the GREEDY algorithm achieves a rate of 120 kbps

(for the single active user) and SIMCONST algorithm offers

a rate of 29 kbps for each of the four video users at the same
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Fig. 4. Comparison of total achievable rate between GREEDY and SIM-
CONST algorithms.

Fig. 5. Dual price iteration.

TABLE II
KEY SIMULATION PARAMETERS—PART 2

time (Table II). First consider the pricing-based rate control al-

gorithm. Based on the assumption of TDM scheduling, pricing

on transmission time is equivalent to pricing on the achievable

rate. We start from an initial price , and use diminishing

step-sizes that satisfy the conditions in Proposi-

tion 1. The iteration stops when the total transmission time of

the four video users achieves more than 99% of the time seg-

ment length (i.e., 3 s). Fig. 5 shows the convergence of price in

21 iterations, with a final optimal price equal to .

Fig. 6 shows how the summary distortion per frame of each

individual user decreases (or increases) as the price decreases

(or increases). Depending on the video contents that determine

the specific rate-distortion functions, users experience different

levels of distortions under the same price. Among the four users,

user 2 experiences the largest distortion due to the large tem-

poral variations of its content. Users 3 and 4 achieve similar

Fig. 6. Users’ distortion iteration.

Fig. 7. Transmission time iteration.

distortions that are much smaller than that of users 1 and 2, due

to the small time variations in the contents.

Fig. 7 shows how the total transmission time of the summa-

rized frames changes during the iteration. If we relax the con-

vergence criterion from 99% to 80% (i.e., the price converges

when it first enters the region bounded by the two dashed lines in

Fig. 7), then the convergence is achieved in nine iterations. This

reflects a trade-off between the computational complexity and

resource utilization efficiency. A system designer needs to care-

fully choose the iteration parameters to tradeoff the convergence

speed and performance. In general, the convergence speed of

the pricing algorithm depends on the video contents, the initial

price, the choice of step-sizes, and the stopping criterion. Except

for the video contents, which can not be adjusted by the system,

all other factors can be continuously tuned based on experiences

to offer the best tradeoff of convergence and performance. Typ-

ically the requirement of faster convergence inevitably leads to

degraded performance since the resource (transmission time)

may not be fully unutilized (e.g., by reducing the stopping crite-

rion from 99% to 80%). This tradeoff becomes more important

as the number of video users increases.

The resulting video summary distortions based on the op-

timal price are plotted in Fig. 8. The vertical arrows indi-

cate video summary frame locations in the sequence. Notice

that the distortion is zero at summary frame locations, since

the received frames are exactly the same as the original frames

before summarization. The optimal price gives a good tradeoff
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Fig. 8. Resulting video summary distortion at optimal pricing.

Fig. 9. Video users’ received powers at the base station under GREEDY sched-
uling algorithm (power is measured in milliwatts).

between total transmitting time and total video summary distor-

tions. Clips 1 and 2 are coded at an average PSNR of 27.8 dB,

and clips 3 and 4 at 31.0 dB. The resulting average bit rates for

the four clips are 27, 68, 9.1, and 13.1 kbps, respectively.

3) Greedy Scheduling: Given the summarization results,

the GREEDY algorithm performs scheduling based on sorted

packet deadlines. The corresponding received power functions

of users are plotted in Fig. 9 and the corresponding delivery

deadlines are plotted in Fig. 10. Under an initial delay of 30

frames (1 s), the GREEDY algorithm successfully transmits all

frames within 3 s and meets all deadline requirements.

Remark 5: As we mentioned in Section III, if the current sum-

mary frames can not be scheduled (i.e., deadline violation oc-

curs), then the base station needs to increase the price and let

the users recompute the summarizations. However, in all simu-

lations that we performed, the summarization results from the

pricing-based rate control are always schedulable. This is due

to the fact that by taking advantage of the multi-user content di-

versity, the deadline requirements of the summary frames are

typically spread out through the time segment, thus it is rela-

tively easy to satisfy the scheduling constraints. This implies

that as long as there are enough content differences among the

Fig. 10. Frame delivery deadlines under GREEDY scheduling algorithm.

Fig. 11. Resulting summary distortion under SIMCONST scheme.

video users, the two stages of the algorithm can be operated sep-

arately in practice.

4) Simconst Algorithm: In the SIMCONST algorithm, users

perform summarizations based on the same guaranteed rate, so

that all the summary frames can be transmitted within their indi-

vidual deadline constraints. The resulting summary distortions

are shown in Fig. 11. The averaged distortions per frame for

all users are 1.74, 15.98, 0, and 0, respectively, with a total

distortion per frame equal to 17.72. For comparison purposes,

the averaged distortions per frame for all users achieved under

pricing-based rate control are 1.90, 2.61, 0.56, and 0.37, respec-

tively, with a total distortion per frame equal to 5.43. Under

SIMCONST, user 2 encounters a much larger distortion due

to its busy content. As a result, the total distortion per frame

increases more than 200% from the pricing-based approach to

SIMCONST.

Remark 6: We can also think the SIMCONST algorithm as

a special case of the class of “reservation based” algorithms,

where each user is reserved (guaranteed) a constant bit pipe

during the transmission. Since users can not shared resource

with each other under the reservation based algorithms, the re-

sultant performance is typically much worse than our proposed

algorithm where the content diversity among users is exploited.
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Fig. 12. Utility-average power functions for different clips.

B. Simulation for the Downlink Case

For the downlink case, channel gains are given as

. This in conjunction with the

clip choices, is intended to cover a range of activity levels and

reflects diversity in utility as function of the transmitting power

levels. Fig. 12 shows the summary distortion versus the average

transmission power for these four users.

At the summarization-power allocation phase, a total trans-

mitting power threshold of mW is used, and the

optimal price is found to be equal to through the

price iteration.

The resulting video summary distortions are plotted in

Fig. 13. The vertical arrows indicate video summary frame

locations in the sequence. Notice that the distortion is zero

at these locations. The optimal price gives the best trade-off

between total transmitting power and total video summary

distortion. Clips 1 and 2 are coded at an average PSNR of 27.8

dB, and clips 3 and 4 at 31.0 dB. The resulting average bit rates

for the four clips are 20.1, 43.3, 8.1, and 9.4 kbps, respectively.

If an equal power allocation scheme is used instead, i.e., each

user is allocated a power level of mW, it is clear

that clips 1 and 2 will suffer large distortions, while clips 3 and

4 will have virtually no distortions. This is not a good allocation

of resources if we want to achieve best total quality.

The joint water-filing scheduler achieves a total power limit

of mW. There is a slight loss of power efficiency

through the summarization and power allocation phase that only

considers the average transmitting power.

The power allocation results, , for the video

summaries generated in Fig. 13 are shown in Figs. 14 and 15.

The dotted line is the total power function . Although each

user’s transmission power function is not constant over time,

the total transmission power function is rather flat and achieves

efficient utilization of the power resource. As a comparison,

the results based on the single-user earliest deadline first serve

(EDFS) scheduling are plotted in Fig. 15, which leads to a max-

imum power of mW. The efficiency of joint power

scheduling is clearly demonstrated in this case.

Fig. 13. Resulting video summary distortion for P = 2:4.

Fig. 14. Deadline-driven water-filling scheduling result. Solid lines represent
the transmission power for each user, and the dotted line is the total transmission
power at the base station. The horizontal axis represents the number of frames.

Fig. 15. Single-user based scheduling result. Solid lines represent the trans-
mission power for each user, and the dotted line is the total transmission power
at the base station. The horizontal axis represents the number of frames.
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VI. CONCLUSION AND FUTURE WORK

Traditional network engineering treats traffic as generic

stream of data bits, while top down video streaming solutions

view network as bit pipes of different capabilities with a loose

coupling between the operations in Application layer and var-

ious layers below the application layer. As video is becoming

the dominant traffic in network applications, it is essential to

consider a joint optimization of video adaptation and network

resource allocations to take full advantages of various features

offered at different layers.

In this paper, we considered efficient multi-user video

streaming over the existing wireless networks. Our objective

is to maximize the total reception quality of a limited number

of video users, without interrupting the service of the existing

voice users. Since the video sequences in this case can only be

supported at a very low bit rate, it is very important to jointly

optimize both the resource allocation across users and the indi-

vidual video source adaptations to achieve the best results. We

formulated the problem as a NUM problem, and developed a

class of joint resource allocation and scheduling algorithms for

both uplink and downlink video streaming scenarios. There are

three key phases in the algorithms: average resource allocation

by a dual-based pricing algorithm, individual source adaptation

by smart summarization, and scheduling that takes advantage

of multi-user content diversity. The resulting algorithms have

provable convergence, low computational complexity, and

small communication overhead. They also achieve much better

overall received video quality and resource utilization efficiency

compared with the algorithms that are content blind. The algo-

rithms also enjoy the benefit of distributing the computational

complexity among mobile users by coordinating individual

video summarization via a low overhead pricing scheme. In

particular, in the four video user case that we simulated, the

proposed algorithms reduce video distortion by more than 2/3

(under a fixed total network resource) in the uplink case and

reduce peak resource consumption by 2/3 (with fixed total

video reception quality) in the downlink case.
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