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Joint Source-Channel Turbo Coding
for Binary Markov Sources

Guang-Chong Zhu, Member, IEEE and Fady Alajaji, Senior Member, IEEE

Abstract— We investigate the construction of joint source-
channel (JSC) Turbo codes for the reliable communication of
binary Markov sources over additive white Gaussian noise and
Rayleigh fading channels. To exploit the source Markovian
redundancy, the first constituent Turbo decoder is designed
according to a modified version of Berrou’s original decoding
algorithm that employs the Gaussian assumption for the ex-
trinsic information. Due to interleaving, the second constituent
decoder is unable to adopt the same decoding method; so its
extrinsic information is appropriately adjusted via a weighted
correction term. The Turbo encoder is also optimized according
to the Markovian source statistics and by allowing different or
asymmetric constituent encoders. Simulation results demonstrate
substantial gains over the original (unoptimized) Turbo codes,
hence significantly reducing the performance gap to the Shannon
limit. Finally, we show that our JSC coding system considerably
outperforms tandem coding schemes for bit error rates smaller
than 10−4, while enjoying a lower system complexity.

Index Terms— Joint source-channel coding, turbo codes,
AWGN and Rayleigh fading channels, Shannon limit, Markov
sources, iterative decoding, bit error rate.

I. INTRODUCTION

THE fundamental goal of a communication system is to
efficiently and reliably transmit information data from

a source to a destination over a physical channel where
noise distortion may occur. For the sake of efficiency, the
source output, which often contains a substantial amount of
redundancy, is usually compressed prior to transmission. This
data compression procedure (also known as source coding),
renders the sources more vulnerable to noise corruption. In
order to make the transmission reliable, channel coding is
usually employed to combat the noise by adding controlled
redundancy to the data.

Traditionally, source and channel coding are implemented
independently, resulting in the so-called tandem coding
scheme.1 Furthermore, in almost all the theory and practice
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1This is justified by Shannon’s well-known separation principle (or

information-transmission theorem) [23] for single-user communication sys-
tems which states that there is no loss of performance optimality if separately
designed optimal source and channel codes are implemented in tandem as
opposed to designing the codes jointly or using a single optimal joint source-
channel code. This result inherently assumes that unlimited encoding/decoding
delay and complexity are available at the transmitter and the receiver.

of error-control coding, the data at the input of the channel
encoder is assumed to be uniform and memoryless. Obviously,
this is true only when the source coding part is optimal;
that is, the source-coded bit stream contains zero redundancy.
However, in reality, most existing source coding schemes
are only sub-optimal (particularly fixed-length source codes),
resulting in a certain amount of residual redundancy in the
compressed bit stream. For example, the 2.4 kbits/s US Federal
Standard MELP speech vocoder produces pitch and gain para-
meters that contain 43 to 52.7% of residual redundancy due to
non-uniformity and memory [14]. For uncompressed sources
such as image and speech signals, the natural redundancy
can be much higher. Therefore, transmission of sources with
a considerable amount of natural or residual redundancy is
an important issue. Several studies (e.g., [2], [3], [14], [22],
[25], [28]–[31], [34], etc.) have shown that when the source
redundancy is exploited in the channel coding design, the
system performance can be significantly improved.

The introduction of Turbo codes in 1993 [7] is regarded as
one of the most significant achievements in channel coding.
Since then, there has been a large number of publications
regarding various aspects of Turbo codes. The original work
by Berrou et al. demonstrated excellent performance of Turbo
codes for the transmission of uniform memoryless sources
over additive white Gaussian noise (AWGN) channels [7],
[8]. Turbo codes were later extended to Rayleigh fading
channels showing comparable performance [21]. However,
most Turbo coding studies assume that the input stream to
the encoder is a uniform memoryless source. To the best of
our knowledge, only limited attention has been paid to the
problem of exploiting the source redundancy in the Turbo
coding context. This is in essence a joint source-channel (JSC)
coding issue. The design of (systematic and non-systematic)
Turbo codes for the transmission of non-uniform memoryless
sources has been recently studied in [35], [36], where close
to Shannon limit performance was achieved. For the scenario
of sources with memory, Garcia-Frias et al. [15], [16] inves-
tigated the design of Turbo codes for Hidden Markov sources
over AWGN channels. Also in [14], Fazel et al. considered
employing Turbo codes for the MELP speech coder output
whose parameters are modeled by Markov chains. In [15],
[16] and [14], the modifications to the BCJR algorithm [4]
are only proposed for the first constituent decoder. Due to
interleaving, the second constituent decoder remains the same
as for memoryless sources. Another related work is by Cai et
al. [11], who proposed a simple modification to the extrinsic
information terms of both constituent decoders; but their de-
coding algorithm remains the same as for uniform memoryless
sources. Other related source-channel coding works based on
the Turbo coding principle include [1], [17], [20].

1536-1276/06$20.00 c© 2006 IEEE
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In this work, we consider stationary ergodic binary first-
order Markov sources. We investigate the design of (system-
atic) Turbo codes for transmitting such Markov sources over
binary phase-shift keying (BPSK) modulated AWGN channels
and Rayleigh fading channels with known channel state infor-
mation. One main goal is to obtain the best performance that
is as close to the Shannon limit as possible. The proposed
framework can be extended to high-order Markov sources by
using non-binary Turbo codes. Our contributions regarding
decoding and encoding design are as follows.

• According to the general principle of iterative decod-
ing [7], [24], after decomposing the log-likelihood ratio
(LLR) generated by the decoder of each constituent
code, the channel transition term and the a priori term
should not be passed on to the other constituent decoder;
otherwise, performance degradation would occur. When
the BCJR algorithm is modified for the first decoder to
incorporate the Markovian property of the source, the
LLR can only be decomposed into two separate terms
(instead of three as in the case of memoryless sources),
where the new extrinsic information contains the a priori
term. Furthermore, the extrinsic information generated
from the second constituent decoder cannot be used in the
same fashion as the a priori term for the first constituent
decoder to “update” the new extrinsic information.
In the first Turbo coding paper by Berrou et al. [7],
the original BCJR decoding algorithm was relatively
complex to implement and, as a result, the extrinsic
information was approximated by a Gaussian distribution
and modeled as an additional input sequence to the other
constituent decoder. Later Robertson [24] improved and
simplified Berrou’s BCJR algorithm, and his technique
has been widely adopted ever since. We however herein
observe that, for the Turbo coding of Markov sources,
Berrou’s original method with the Gaussian assumption
is indeed a valid solution (to the above issues) for the
first constituent decoder.

• Due to interleaving, the second constituent decoder is
unable to adopt the above method; it thus employs
Robertson’s decoding technique. Nevertheless, we at-
tempt to exploit the source memory by modifying its
extrinsic information term using a weighted correction
factor involving the Markov source statistics. Our pro-
posed technique, is an improvement of an earlier method
of Cai et al. [11].

• Since the two constituent decoders employ different de-
coding algorithms and thus have different error-correcting
capabilities, a symmetric Turbo code (i.e., a code with
identical constituent encoders) may not be the best struc-
ture. We herein allow the use of asymmetric encoders.
Furthermore, as revealed in [35], [36], optimization with
respect to the choice of the tap coefficients in each con-
stituent encoder plays an important role vis-a-vis system
performance. Therefore, for a given source transition
probability matrix, we optimize the encoder structure to
further improve the performance.

Our resulting JSC Turbo coding system demonstrates sub-
stantial gains (from 0.45 up to 3.57 dB) over the original Turbo

codes that do not exploit the source statistics at both encoder
and decoder. Furthermore, it performs within 0.73 to 1.45 dB
from the Shannon limit for symmetric Markov sources, and
approximately within 0.64 to 1.67 dB for asymmetric Markov
sources.

In relation to previous works in [15], [16], our approach
regarding encoding/decoding design is different in the fol-
lowing aspects: (a) we solve the design problem of the first
constituent decoder in order to exploit the source memory
using Berrou’s [7] original Gaussian approximation method
for the extrinsic information, while [15], [16] employ a trellis
based generalized version of Robertson’s method [24]; (b)
we attempt to exploit (although to a limited extent) the
source redundancy in the second constituent decoder in spite
of the use of interleaving; (c) [15], [16] do not optimize
the encoding structure since a fixed symmetric encoder is
employed. However, it is important to point out that [15], [16]
consider a wider class of sources with memory, hidden Markov
sources. Furthermore [16] introduces a new “universal” Turbo
decoder that does not require advance knowledge of either the
hidden Markov source statistics or the channel noise variance.
The decoder instead iteratively estimates the source parameters
and the channel noise power, and it is shown to produce no
noticeable performance degradation.

Finally, we compare, for identical transmission rates, the
performance of our JSC coding system with that of two
tandem coding schemes, which employ an 8th-order Huffman
code followed by a standard Turbo code. The 8th-order
Huffman code performs near optimal data compression while
the standard Turbo code is chosen such that it gives either
an excellent water-fall bit error rate (BER) performance, or a
lower error-floor performance with a slightly worse water-fall
performance. It is shown that the tandem schemes inevitably
suffer from a high error-floor effect for medium to high signal-
to-noise ratios (SNRs), while our less complex JSC coding
system offers a robust and substantially superior performance
(for BERs ≤ 10−4).

The rest of the paper is organized as follows. In Section II,
we give a brief description of the system. In Section III,
Turbo decoder design for Markov sources is discussed. Turbo
encoder optimization is then described in Section IV. In
Section V, we address the determination of the Shannon limit
for the transmission of binary Markov sources over AWGN
and Rayleigh fading channels. Simulation results are presented
in Section VI. In Section VII, we compare the performance
of our system with two tandem coding schemes. Finally,
concluding remarks are given in Section VIII.

II. SYSTEM DESCRIPTION

We first describe the JSC Turbo coding system for the
transmission of binary Markov sources over noisy channels.
We consider a stationary ergodic binary first-order Markov
source {Uk}, whose transition probabilities are described by
the transition matrix:

Π = [πij ] =
[

q0 1− q0
1− q1 q1

]
,

where the transition probability is defined by

πij
�
=Pr{Uk = j|Uk−1 = i}, i, j ∈ {0, 1}.



ZHU AND ALAJAJI: JOINT SOURCE-CHANNEL TURBO CODING FOR BINARY MARKOV SOURCES 1067

  

I X

kX 1p

2p

k

X k
s

BPSK
 mod.

BPSK

BPSK

 mod.

 mod.

Uk
Channel

Turbo
Encoder

W

W s
k

1p
kW

2p
k

I

I −1

I

Enc 1

Enc 2

Dec 1 Dec 2

Y
k

1p

Yk
s

2pYk

Turbo
Decoder

^Uk

Fig. 1. Block diagram of the system (I and I−1 stand for the interleaving
and de-interleaving operations, respectively).

We denote the marginal distribution of the source as (p0, p1)
where p0

�
= Pr{Uk = 0}�=1 − p1. By stationarity, it can be

easily shown that p0 and p1 are given by the source stationary
distribution:

p0 = 1− p1 =
1− q1

2− q0 − q1 . (1)

In general, the source described above is an asymmetric
Markov source (i.e., with q0 �= q1); its redundancy is in
the form of both memory and non-uniformity. When q0 =
1 − q1, the source reduces to a memoryless source with
marginal distribution given by p0 = q0 and p1 = q1; in this
case, the source redundancy is purely in the form of non-
uniformity. When q0 = q1 �= 1/2, the source becomes a
symmetric Markov chain with a uniform marginal distribution,
i.e., p0=p1=1/2; in this case, the source redundancy is strictly
in the form of memory. When the source is symmetric, we

write q0 = q1
�
=q.

A Turbo code encoder consists of two systematic recursive
convolutional encoders in parallel concatenation and linked
by an interleaver, which re-arranges the information sequence
into a different order. In general, there can be more than two
constituent encoders and they do not have to be identical.
Each constituent encoder has memory size m; therefore, the
number of possible encoder states is 2m. If at time k, the
first constituent encoder is in state Sk, then an input bit Uk

brings the encoder state into Sk+1, generating a parity bit X1p
k

(for the second constituent decoder, the parity bit is X2p
k ). To

keep the notation consistent, we denote the systematic bit as
Xs

k , which is identical to Uk. The pair (Xs
k, X

1p
k ) is denoted

by Xk, and after transmission over the channel, it becomes
Yk = (Y s

k , Y
1p
k ), the noise corrupted version. We denote L-

tuples by Y L
1

�
=(Y1, Y2, · · · , YL), and we use capital letters for

random variables and lower case letters for their realizations.
Corresponding to the two parallel concatenated constituent

encoders, a Turbo code decoder has two constituent decoders
in serial concatenation, separated by an interleaver which is
identical to the one used in the encoder. In the feedback loop
from the output of the second constituent decoder to the input
of the first constituent decoder, a de-interleaver is used to
permute the sequence back into the original order.

Our JSC coding system is very simple. As depicted in
Fig. 1, a binary Markov source {Uk} is directly fed into
the Turbo encoder without source encoding. The Turbo coded
sequence {Xk} is then BPSK-modulated as {Wk} (under an
average symbol energy of Es = 1) before transmission over
the channel. The channel model considered here can be either

an AWGN channel or a Rayleigh fading channel described by

Yk = AkWk +Nk, k = 1, 2, · · · , L,
where {Nk} is a memoryless or independent and identically
distributed (i.i.d.) Gaussian noise source with zero mean and
varianceN0/2. For the AWGN channel,Ak = 1, k = 1, 2, · · · ,
while for the Rayleigh fading channel, the amplitude fading
process {Ak} (also known as the channel state information)
is assumed to be i.i.d. and Rayleigh distributed. We assume
that {Ak} is known at the decoder, and that Ak , Wk, and
Nk are independent of each other. At the receiver end, Turbo
decoding is applied on the received sequence {Yk} to yield
the decoded sequence {Ûk}.

III. TURBO DECODER DESIGN FOR MARKOV SOURCES

A. BCJR Algorithm for I.I.D. Sources

For the sake of clarity and completeness, we first briefly
describe the BCJR algorithm for i.i.d. sources. There are
several slightly different versions of the BCJR algorithm in the
literature; the one we present here is due to Robertson [24].

To decode {Uk}Lk=1, based on the observation of the whole
received sequence Y L

1 , each constituent decoder evaluates the
conditional log-likelihood ratio (LLR) for every bit Uk defined
by

Λiid(Uk) = log
Pr{Uk = 1|Y L

1 = yL
1 }

Pr{Uk = 0|Y L
1 = yL

1 }
.

For memoryless sources and memoryless channels, the LLR
can be decomposed into three separate terms:

Λiid(Uk) = Lch(Uk) + Liid
ex (Uk) + Liid

ap (Uk), (2)

which are called the channel transition term, the extrinsic
information term, and the a priori term, respectively. Their
expressions are given as follows.

Lch(Uk) = log
p{Y s

k = ys
k|Uk = 1}

p{Y s
k = ys

k|Uk = 0} ,

Liid
ex (Uk) = log

∑
s

∑
s′ γ(yp

k, 1, s|s′)αk−1(s′)βk(s)∑
s

∑
s′ γ(yp

k, 0, s|s′)αk−1(s′)βk(s)
,

Liid
ap (Uk) = log

Pr{Uk = 1}
Pr{Uk = 0} ,

where p(·) denotes a probability density function, and αk(s),
βk(s) and γ(yk, i, s|s′) are defined by

αk(s)
�
= Pr{Sk = s|Y k

1 = yk
1},

βk(s)
�
=

p{Y L
k+1 = yL

k+1|Sk = s}
p{Y L

k+1 = yL
k+1|Y k

1 = yk
1}
,

γ(yk, i, s|s′) �
= p{Yk = yk, Uk = i, Sk = s|Sk−1 = s′}.

It is easy to show that αk(s) and βk(s) can be computed via
the following recursive relations:

αk(s) =
∑

s′
∑1

i=0 γ(yk, i, s|s′)αk−1(s′)∑
s

∑
s′
∑1

i=0 γ(yk, i, s|s′)αk−1(s′)
,

βk(s) =
∑

s′
∑1

i=0 γ(yk+1, i, s
′|s)βk+1(s′)∑

s

∑
s′
∑1

i=0 γ(yk+1, i, s′|s)αk(s)
.

To solve the above forward and backward recursions, properly
defined boundary conditions are needed; they are determined
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by the initial and terminal states of the encoder. Convention-
ally, the encoder starts and terminates at the all-zero state.
However, as we are using very long sequences in this work,
we leave the encoder unterminated since there is no noticeable
performance loss in comparison with the terminated case.
Suppose the encoder has memory size m, then the final state
can be any one of the total 2m possible states. Therefore, the
boundary conditions are

α0(0) = 1, α0(s) = 0, ∀ s �= 0,

βL(s) =
1

2m
, ∀ s = 0, 1, · · · , 2m − 1.

In iterative decoding, only Liid
ex (Uk) is passed on to the

next constituent decoder. After being re-arranged into the
appropriate order by the interleaver (or the de-interleaver),
the extrinsic information generated by one constituent decoder
becomes the a priori information for the other constituent
decoder. The reliability of the LLR soft decision improves
over the iterations, and the iterative decoding procedure may
terminate when the improvement becomes negligible, or the
number of iterations exceeds a pre-determined threshold.

B. First Constituent Decoder

To exploit the source memory, the BCJR algorithm em-
ployed in the Turbo code decoder has to be modified. The
modified BCJR algorithm in this section is derived for system-
atic Turbo codes; however, the modifications can be extended
to non-systematic Turbo codes [36].

Given that the L-tuple Y L
1 = yL

1 is received at the channel
output, we have the equation at the top of the next page, where
the summation for s is over all 2m possible states. Noting that
conditioned on Uk = i and Sk = s, the observation yL

k+1 does
not depend on yk

1 , we have that

p(yL
k+1|i, s, yk

1 ) = p(yL
k+1|i, s).

Now if we define

αk(i, s)
�
= Pr{Uk = i, Sk = s|Y k

1 = yk
1}, (3)

βk(i, s)
�
=

p(yL
k+1|i, s)

p(yL
k+1|yk

1 )
, (4)

then the conditional probability becomes

Pr{Uk = i|Y L
1 = yL

1 } =
∑

s

αk(i, s)βk(i, s). (5)

Note that now αk(·, ·) and βk(·, ·) are functions of both the
encoder state s and the input bit i. The exploitation of bitwise
dependency is evident in the following recursions:

αk(i, s) =

∑
i′,s′ γ(i, s, yk|i′, s′)αk−1(i′, s′)∑

i,s

∑
i′,s′ γ(i, s, yk|i′, s′)αk−1(i′, s′)

, (6)

βk(i, s) =

∑
i′,s′ γ(i′, s′, yk+1|i, s)βk+1(i′, s′)∑

i,s

∑
i′,s′ γ(i′, s′, yk+1|i, s)αk(i, s)

, (7)

where (8), located at the top of the next page.
Combining the marginal distribution of the Markov source

as given in (1), the boundary conditions for computing αk(·, ·)

and βk(·, ·) are now

α0(0, 0) = p0, α0(1, 0) = p1, (9)

α0(i, s) = 0, i = 0, 1, ∀ s �= 0, (10)

βL(0, s) =
p0

2m
, βL(1, s) =

p1

2m
, ∀ s. (11)

Note that in the above boundary conditions, the source
redundancy in the form of non-uniformity can be exploited
when p0 �= 1/2.

For iterative decoding, the LLR needs to be decomposed.
Using (5)-(8), we can decompose the decoder’s LLR of Uk

into two separate terms:

Λ(1)
k (Uk)

�
= log

Pr{Uk = 1|Y L
1 = yL

1 }
Pr{Uk = 0|Y L

1 = yL
1 }

= Lch(Uk)+L(1)
ex (Uk),

(12)
where

Lch(Uk) = log
p(ys

k|1)
p(ys

k|0)
(13)

and (14), located at the top of the next page.
If we compare with the decomposition of the LLR in the case
of Turbo coding of uniform i.i.d. sources in (2) where

Λiid
k (Uk) = Lch(Uk) + Liid

ex (Uk) + Liid
ap (Uk),

we observe that in (12), the extrinsic information term
L

(1)
ex (Uk) is in essence the combination of Liid

ex (Uk) and
Liid

ap (Uk), and Liid
ap (Uk) is actually the extrinsic information

generated from the second constituent decoder. However, an
important principle of iterative decoding is that the estima-
tion generated by a constituent decoder should not be fed
back to itself, otherwise the noise corruption will be highly
correlated [7]. Thus, the decomposition in (12) renders the
first constituent decoder unable to “update” its a priori term
by using the extrinsic information generated from the second
constituent decoder in the same way as in the memoryless
source case. Therefore, the extrinsic information term for the
first constituent decoder must be further modified.

Soon after the debut of Turbo codes in 1993, Robertson [24]
improved Berrou’s version of the BCJR algorithm in several
aspects. His algorithm (which is described in Section III-A)
is less complex and uses a different method to exchange the
extrinsic information between the two constituent decoders.
However, we observe that our decomposition in (5) is more
similar to Berrou’s version than Robertson’s, and that Berrou’s
method with the Gaussian assumption actually provides a
suitable solution for the above decomposition problem.

By using Berrou’s method, the input to the first decoder has
now three components:

yk = (ys
k, y

1p
k , y

ex(2)
k ),

where yex(2)
k is the extrinsic information term from the second

constituent decoder, L(2)
ex (Uk), after de-interleaving. Using the

Gaussian assumption on yex(2)
k as in [7], [12], [13], we obtain

that in (8), γ(i, s, yk|i′, s′) has an additional factor in its
expression; the factor is described by the following density

p(yex(2)
k |i) =

1√
2πσ̄2

e− [yex(2)
k

−(2i−1)M̄]2
2σ̄2 , i = 0, 1,
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Pr{Uk = i|Y L
1 = yL

1 } =
∑

s

Pr{Uk = i, Sk = s|Y L
1 = yL

1 }

=
∑

s

p{Uk = i, Sk = s, Y k
1 = yk

1 , Y
L
k+1 = yL

k+1}
p(yk

1 , y
L
k+1)

=
∑

s

p{Uk = i, Sk = s, Y k
1 = yk

1} · p(yL
k+1|i, s, yk

1 )
p(yk

1 ) · p(yL
k+1|yk

1 )

γ(i, s, yk|i′, s′) �
= p{Uk = i, Sk = s, Yk = yk|Uk−1 = i′, Sk−1 = s′}
= p(ys

k|i)p(yp
k|i, s)Pr{Sk = s|Uk = i, Sk−1 = s′}Pr{Uk = i|Uk−1 = i′}

�
= p(ys

k|i) · p(yp
k|i, s) · q(s|i, s′) · πi′i (8)

L(1)
ex (Uk) = log

∑
s

∑
i′,s′ p(yp

k|1, s)q(s|1, s′)αk−1(i′, s′)βk(1, s)πi′1∑
s

∑
i′,s′ p(yp

k|0, s)q(s|0, s′)αk−1(i′, s′)βk(0, s)πi′0
(14)

where M̄ and σ̄2 are the estimated mean and variance obtained
via an on-line estimation as follows:

M̄ =
1
L

L∑
i=1

|yi|,

σ̄2 =
1

L− 1

L∑
i=1

(|yi| − M̄)2.

Thus, in the forward-backward recursion, both αk(i, s) and
βk(i, s) are computed according to this modification.

Finally, in the decomposition of Λ(1)(Uk), due to inter-
leaving, yex(2)

k can be regarded as weakly correlated with ys
k

and y1p
k ; therefore, the LLR soft-output generated by the first

decoder is:

Λ(1)
k = Lch(Uk) + L(1)

ex (Uk) + L(1)
ap (Uk),

where the a priori term becomes

L(1)
ap (Uk)

�
= log

p(yex(2)
k |1)

p(yex(2)
k |0)

=
2M̄
σ̄2

y
ex(2)
k .

At this point, we can use the extrinsic information L(1)
ex (Uk)

as the a priori term for the second constituent decoder.
In [14], Fazel et al. consider designing a Turbo code for the

2400 bps MELP speech coder’s output modeled by non-binary
Markov chains. However, in [14], both αk(·) and βk(·) have
the same forms as for memoryless sources (see Section III-A),
and only γ is changed to take account of the source Markovian
property. Therefore, the source memory is not fully exploited
by such modifications. Our approach is in the same spirit
as in [15], [16], where Garcia-Frias et al. consider the issue
of using Turbo codes for Hidden Markov sources (although
in [15], [16], the modification of the extrinsic information in
(14) is not explicitly addressed, to the best of our knowledge).

C. Second Constituent Decoder

As mentioned in [14], [15], due to interleaving, the Markov-
ian property in the input sequence of the second constituent

decoder is destroyed. This renders the second constituent de-
coder unable to adopt the same modifications as in Section III-
B. Therefore for this decoder, we employ Robertson’s BCJR
algorithm for i.i.d. sources presented in Section III-A, with the
exception that we alter the extrinsic information, as described
below.

In [11], Cai et al. proposed a different modification in
an attempt to exploit the source memory. In their scheme,
the original BCJR algorithm is employed in both decoders;
however, the extrinsic information probability term Pex is
updated by adopting a modified probability according to:

P ′
ex(uk) =

1
2

⎡
⎣Pex(uk) +

∑
uk−1

πuk−1uk
Pex(uk−1)

⎤
⎦ ,

uk = 0, 1.

Although this method is simple to implement, it suffers from
the problem that the above modified probabilities may not
sum up to 1 due to round-up errors. This may cause an error
propagation in the decoder. Furthermore, the reliability of the
correction term is unknown; therefore, putting equal weights
on the original probability and the correction term is ques-
tionable. Thus, we propose the following modification to the
extrinsic information generated from the second constituent
decoder:

L(2)
ex (Uk) = c1L

iid
ex (Uk) + c2 log

[∑
i πi1Pr{Ûk−1 = i}∑
i πi0Pr{Ûk−1 = i}

]
,

(15)
where {Uk} refers to the original uninterleaved source se-
quence, Liid

ex (·) is the extrinsic information defined in Sec-
tion III-A and c1, c2 ∈ [0, 1] with c1 + c2 = 1. The values
of c1 and c2 are empirically chosen to yield the best possible
improvement. Pr{Ûk−1 = i} (with i=0, 1) is directly obtained
from the extrinsic information described by

Pr{Ûk−1 = 0} = 1− Pr{Ûk−1 = 1} =
1

1 + eLex(Uk−1)
,

for k ≥ 2 with

Pr{Û1 = 0} = p0 = 1− Pr{Û1 = 1}.
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IV. ENCODER STRUCTURE OPTIMIZATION

When the Markov source distribution is biased, the input
sequence to the encoder would contain long segments of
1s or 0s. To see how the encoder structure may affect the
performance, we first consider sources whose transitional
probability distribution is extremely biased. For example, a
“1” followed by a very long segment of 0s. Suppose we are
using Berrou’s (37, 21) encoder [8], which starts at the all-zero
state 0000, where each digit represents the content of each
shift register. The encoder would remain in this state until the
first “1” arrives, which would cause a transition to state 1000.
The following state transitions would be 1100 → 0110 →
0011 → 0001 → 1000, and from then on the state transition
would be confined in a short cycle consisting of the above 5
states while all the other states remain dormant. Similarly, a
long segment of 1s will also drive the encoder circulating
among five states. This clearly indicates that the encoder
memory is not fully exploited. In fact, it is equivalent to an
encoder with smaller memory size. For such extremely biased
sources, it is easy to see that an encoder with feedback 31
can excite all 16 states, and thus is intuitively a better choice
than one with feedback 37. As the source gets less biased, the
advantage of adopting an encoder with longer cycles becomes
less obvious. For non-uniform i.i.d. sources, we showed in [36]
that certain feed-forward polynomials are more desirable than
others for a chosen feedback polynomial; however, the proof
for the Markov source case is not obvious. Nevertheless, it
is evident that encoder optimization plays an important role
in determining the system performance. Since we employ
different decoding methods in the constituent decoders, they
exploit the source redundancy with different degrees. It is thus
judicious to allow different encoding structures in our search
for the best constituent encoders.

Since the original Turbo codes employ 16-state recursive
systematic convolutional (RSC) constituent encoders, we focus
on the design of 16-state encoders (m = 4). We denote the
coefficients of the feedback and feed-forward polynomials of
a 16-state RSC encoder in binary form as {f0, f1, f2, f3, f4}
and {g0, g1, g2, g3, g4}, respectively, where fi, gj = 0 or
1, i, j = 0, 1, · · · , 4. An exhaustive search for the best
encoding coefficients is however computationally expensive.
The search is indeed more taxing than in the case of symmetric
(i.e., identical) encoders [35], since we allow different (or
asymmetric) constituent encoders. We then search for sub-
optimal encoder structures. Our search, with the restriction that
both constituent encoders have f0=f4=g0 = 1, is performed
as follows.

1) Fix the second constituent encoder as, for example,
(31, 23), find (by simulation) the best feed-forward and
feedback polynomials of the first constituent encoder via the
iterative steps described in [35].

2) Fix the best structure for the first constituent encoder
as found in step 1), find the best feed-forward and feedback
polynomials of the second constituent encoder.

The initial structure of the second constituent encoder in
step 1) is selected according to our results obtained in [35].
For example, for a general asymmetric Markov source, if the
marginal distribution p0 ≥ 0.9, then the second constituent

encoder is initially chosen as (31, 23); if 0.6 ≤ p0 ≤ 0.8, we
may choose it as (35, 23). If the source is symmetric, since
there is no redundancy in the form of non-uniformity that
can be exploited by the second constituent decoder, we may
initially choose the second constituent encoder in step 1) as
Berrou’s (37, 21) code, which offers very good performance
for uniform i.i.d. sources. In our search, we used a sequence
length L = 65536 bits.2

V. SHANNON LIMIT

Shannon’s Lossy Information Transmission Theorem [23],
[27] states that for a given memoryless source and a given
memoryless channel with capacity C, the source can be
transmitted, for sufficiently large source blocklengths, via a
source-channel code over the channel at a transmission rate
of r source symbols/channel symbol and reproduced at the
receiver end within an end-to-end distortion given by D if the
following holds

r ·R(D) < C, (16)

where R(D) is the source rate-distortion function. As shown
in [27], the above result can be achieved by concatenating
(in tandem) separately designed source and channel codes
at an overall rate of r = Rc/Rs, where Rc and Rs are
the source and channel coding rates, respectively. The above
theorem is also applicable when the source and the channel
additive noise are stationary ergodic [6]. Under the Hamming
distortion measure, the distortion D = Pe, the BER. Note that
the capacity C for the considered BPSK-modulated channels
with average symbol energy Es is a function of Eb/N0, where
Eb = Es/r is the average energy per source bit. Thus, solving
(16) by assuming equality yields the optimum value of Eb/N0

to guarantee a BER of Pe; this value is called the Shannon
limit.

In general, for asymmetric Markov sources, there are no
closed-form expressions for R(D). In this case, Blahut’s
algorithm [9] can be employed to compute the normalized
nth order source rate-distortion function Rn(D), which is an
upper bound to R(D). It can also be used to compute the
Wyner and Ziv lower bound [33] to R(D) which was later
tightened by Berger [6]. In other words, the following two
bounds for R(D) can be calculated:

Rn(D) ≥ R(D) ≥ Rn(D)−
[

1
n
H(Un)−H(U∞)

]
, (17)

where H(Un) = H(U1, U2, · · · , Un) is the source block
entropy and H(U∞) is the source entropy rate. Remark that
the above bounds hold for general stationary sources with
memory. For a stationary Markov source, (17) reduces to

Rn(D) ≥ R(D) ≥ Rn(D)− 1
n

[H(U1)−H(U2|U1)] , (18)

where H(U1) is the source entropy and H(U2|U1) is the
source conditional entropy of U2 given U1. Note that the above
two bounds are asymptotically tight as n→∞; however, the

2We observed that when the performance of an encoder is better than
another encoder for a given sequence length, then this behaviour also holds
for longer sequence lengths. We used a shorter sequence length than in the
simulations section to speed up the optimization procedure.
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complexity for computing Rn(D) grows exponentially in n.
Therefore, for a desired BER level and a given overall rate
r in source symbol/channel symbol, we may substitute R(D)
with its upper or lower bound in (16), and hence obtain an
upper or lower bound on the corresponding Shannon limit.

For the special case of binary symmetric Markov sources
with transition probability

Pr{Uk+1 = j|Uk = i} = q, for i �= j, (19)

where it is assumed that q > 1/2 without loss of generality,
Gray proved that [18]

R(D) = hb(q)− hb(D), if 0 ≤ D ≤ Dc, (20)

where hb(·) is the binary entropy function and Dc is the
critical distortion defined by

Dc =
1
2

(
1−

√
1− (1− q)2

q2

)
. (21)

Therefore, when the desired distortion D satisfies D ≤ Dc,
R(D) admits a closed-form expression identical to that of a
non-uniform i.i.d. source with Pr{Uk = 0} = q. Under the
Hamming distortion measure, we obtain that, for the values
of q that we considered, Gray’s critical distortion in (21) is
indeed greater than our target BER (which is 10−5); hence,
the Shannon limit can be determined exactly using (16) and
(20).

VI. NUMERICAL RESULTS AND DISCUSSION

We present simulation results of our JSC systematic Turbo
codes for the transmission of binary Markov sources over
BPSK-modulated AWGN and Rayleigh fading channels. All
simulated Turbo codes have 16-state constituent encoders and
use the same pseudo-random interleaver introduced in [7].
To keep a tolerable computational complexity, the sequence
length is limited to L = 512×512 = 262144 and at least 200
blocks are simulated; this would guarantee a reliable BER
estimation at the 10−5 level with 524 errors.

In our modification of the extrinsic information generated
from the second constituent decoder, the weights c1 and c2
in (15) between the original extrinsic information term and
the correction term are selected by simulations. Given that
c1 + c2 = 1, we tried the following values for c1: 0, 0.1, 0.2,
· · · , 0.9, 1.0. The resulting best choice is to set c1=0.8 and
c2=0.2, and this choice is robust for the (q0,q1) pairs that we
have tested.

A. Symmetric Markov Sources

We first present the results for symmetric Markov sources.
The number of iterations in the Turbo code decoder is 20.
Simulations are performed for rate Rc = 1/3 with q=0.7,
0.8 and 0.9. The best encoder we found for q=0.9 has the first
constituent encoder as (31, 23), and the second as (35, 23). For
q=0.8 and 0.7, assigning (35, 23) for both constituent encoders
turns out to be the best choice.

Fig. 2 shows the performance of our systematic Turbo codes
designed for transmitting binary symmetric Markov sources
over AWGN channels. The Shannon limit curves, computed
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Fig. 2. Turbo code performance and Shannon limit for binary symmetric
Markov sources, Rc=1/3, L=262144, AWGN channel.
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Fig. 3. Turbo code performance and Shannon limit for binary symmetric
Markov sources, Rc=1/3, L=262144, Rayleigh fading channel with known
channel state information.

via (20) and (16), are also plotted for different target BERs.
To illustrate the gains achieved due to the exploitation of the
source redundancy (in both encoder and decoder), we include
the performance curve of the standard Berrou (37,21) Turbo
code which ignores the source statistics. The decoder of the
Berrou code hence assumes that the source is uniform i.i.d. and
employs Robertson’s decoding algorithm of Section III-A. In
Fig. 2, we refer to such system using the label “w/o JSC Dec.”
which stands for “without joint source-channel decoding.” We
clearly observe from the plots that at a BER level of 10−5,
when q = 0.7, our system offers a gain of 0.45 dB over the
“w/o JSC Dec.” scheme, yielding a gap of 0.73 dB from the
Shannon limit; when q=0.8 and 0.9, the gains become 1.29 dB
and 3.03 dB, respectively, which are 0.94 dB and 1.36 dB away
from the Shannon limit.

Fig. 3 illustrates similar results for BPSK-modulated
Rayleigh fading channels with known channel state informa-
tion. When q = 0.7, the gain over the “w/o JSC Dec.” scheme
due to exploiting the source memory in our design is 0.52 dB,
which is 0.87 dB away from the Shannon limit. When q=0.8,
the gain increases to 1.55 dB, bringing the performance at a
distance of 1.08 dB away from the Shannon limit. For q = 0.9,
the gain reaches 3.57 dB; resulting an gap of 1.45 dB to
the Shannon limit. The exact Shannon limit values and the
performance gaps vis-a-vis the Shannon limit for a BER target
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TABLE I

SHANNON LIMIT (SL) VALUES AND GAPS IN Eb/N0 AT BER=10−5 LEVEL (IN DB), TURBO CODES FOR BINARY SYMMETRIC MARKOV SOURCE,

Rc=1/3, L=262144, AWGN AND RAYLEIGH FADING CHANNEL. THE EXACT SHANNON LIMIT VALUE IS COMPUTED USING (20) AND (16).

Source Turbo AWGN Rayleigh

Distribution Codes SL value SL gap SL value SL gap

q = 0.7 (35,23), (35,23) -1.19 0.73 -0.34 0.87

q = 0.8 (35,23), (35,23) -2.24 0.94 -1.56 1.08

q = 0.9 (31,23), (35,23) -4.40 1.36 -3.96 1.45

TABLE II

SHANNON LIMIT LOWER BOUND (SL-LB), UPPER BOUND (SL-UB), AVERAGE VALUE (SL-AVG) AND GAP IN Eb/N0 AT BER=10−5 LEVEL (IN DB) OF

TURBO CODES FOR BINARY ASYMMETRIC MARKOV SOURCES OVER AWGN CHANNELS WITH Rc=1/3, L=262144 AND 30 DECODING ITERATIONS. THE

SHANNON LIMIT LB AND UB VALUES ARE OBTAINED FROM (18) AND (16) BY CALCULATING THE SOURCE n’TH RATE-DISTORTION FUNCTION Rn(D)

VIA BLAHUT’S ALGORITHM USING BLOCKLENGTH n = 12 FOR ALL SOURCES (EXCEPT THE FIRST AND FOURTH SOURCE FOR WHICH n = 10 IS USED).

Source Distribution Turbo Codes SL-LB SL-UB SL-avg SL gap

q0 = 0.7, q1 = 0.65, p0 = 0.538 (37,21), (35,23) -1.04 -0.99 -1.015 0.64

(35,23), (35,23) -1.04 -0.99 -1.015 0.69

q0 = 0.8, q1 = 0.7, p0 = 0.6 (35,23), (35,23) -1.80 -1.70 -1.75 0.83

q0 = 0.9, q1 = 0.8, p0 = 0.667 (35,23), (35,23) -3.59 -3.32 -3.455 1.14

q0 = 0.7, q1 = 0.25, p0 = 0.714 (37,21), (35,23) -1.31 -1.31 -1.31 0.89

(35,23), (35,23) -1.31 -1.31 -1.31 0.92

q0 = 0.9, q1 = 0.7, p0 = 0.75 (35,23), (35,23) -3.42 -3.25 -3.335 1.31

(31,23), (35,23) -3.42 -3.25 -3.335 1.36

q0 = 0.95, q1 = 0.8, p0 = 0.8 (31,23), (35,23) -5.49 -5.13 -5.31 1.67
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Fig. 4. Comparison with Berrou’s (37, 21) code for binary symmetric Markov
sources, Rc=1/3, L=262144, AWGN channel.

of 10−5 are summarized in Table I.
To demonstrate the gains achieved by encoder optimization,

we compare our system with Berrou’s (37, 21) code, which
also exploits the source statistics at the decoder in exactly
the same way. The results are shown in Fig. 4 for AWGN
channels (a similar behavior is also observed for Rayleigh
fading channels). We remark that as the source transitional
probability increases, the gain due to encoder optimization
becomes more significant yielding substantially lower error
floors. For example, at the 10−5 BER level, the gain is around
0.65 dB when q = 0.9. We have also separately obtained
the performance of our systems studied thus far for shorter
sequence lengths (L = 32 × 32 = 1024 and L = 128 ×
128 = 16384), since in some practical situations, delay may be
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Fig. 5. Turbo code performance for binary asymmetric Markov sources,
Rc=1/3, L=262144, AWGN channel.

limited. Our results indicate a similar performance advantage
of our JSC coding system even for relatively small values of
L (e.g., L = 1024).

B. Asymmetric Markov Sources

We next present simulation results for asymmetric Markov
sources. The sequence length is again L = 262144 and the
rate is Rc = 1/3. The number of decoding iterations is 30. By
varying the values of (q0, q1), we generate a series of Markov
sources which have different amounts of redundancy in the
form of memory and non-uniformity; in total six asymmetric
sources are considered. The results are summarized in Table II.
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Markov source with transition distribution given by q0 = 0.95 and q1 = 0.8
(p0 = 0.8), Rc=1/3, L = 16384, AWGN channel.

In Figs. 5 and 6, performance curves of our optimized Turbo
codes are provided for four sources. We also illustrate the ben-
efits of our encoder optimization by plotting the performance
of the Berrou code under identical decoding. We clearly note
that our codes offer considerably lower error floors than the
Berrou code.

The performance of our codes vis-a-vis the Shannon limit
is also assessed in Table II for all six asymmetric sources.
Since the Shannon limit cannot be exactly computed for
such sources, we provide the lower and upper bounds to the
Shannon limit using (18) and (16). We then use the average of
the lower and upper bounds as a benchmark to compute the
performance gap to the Shannon limit. As shown in Table II,
the gap varies from 0.64 dB to 1.67 dB. More conservatively, if
we instead use the Shannon limit lower bound as a benchmark,
then the performance gap to the Shannon limit varies from
0.665 dB to 1.85 dB.

In Fig. 7, we present the effects of optimizing the encoder
and exploiting the source memory and non-uniformity to
various degrees at the decoder on the Turbo code performance
for the transmission of the binary asymmetric Markov source
with q0 = 0.95 and q1 = 0.8 over AWGN channels. A
sequence length of L = 16384 bits is used with at least
3200 simulated blocks; 30 iterations are used at the decoder.
Note that the Markov source has substantial asymmetry as
its marginal distribution is p0 = 0.8. As shown in Table II,

the best encoding structure for this source is (31,23) for the
first constituent encoder and (35,23) for the second constituent
encoder. The performance of five systems is plotted in Fig. 7:

(i) Our JSC system using the best (31,23), (35,23) encoder
with full JSC decoding as described in Sections III-B
and III-C.

(ii) Our JSC system using the (31,23), (35,23) encoder and
JSC decoding as in Sections III-B and III-C with the
exception that it assumes that the source marginal distri-
bution is uniform in the boundary conditions (9) and (11)
for α(·, ·) and β(·, ·) of the first constituent decoder. This
decoder hence fully exploits the source memory, and it
exploits the source asymmetry partially as it depends on
the received systematic stream {Y s

k }.
(iii) An unoptimized encoder system using the Berrou (37,21)

code with full JSC decoding.
(iv) A system using the (31,23), (35,23) encoder and a

decoder that only exploits the source asymmetry. The
decoder assumes that the source is non-uniform i.i.d. and
is designed as in [35].

(v) A system using the (31,23), (35,23) encoder without JSC
decoding. In other words, the decoder assumes that the
source is uniform and i.i.d. and employs Robertson’s
method [24].

We note from the figure that our JSC system (i) offers the
best performance. Its gain over system (ii) though is minor as
the only difference between the two is that system (ii) does
not exploit the source non-uniformity in (9) and (11). The gain
of our system over system (iii) due to encoder optimization is
significant: for a BER of 10−5 the performance gain is more
than 1 dB. Furthermore, our system outperforms system (iv)
by more than 3.5 dB for the same BER level. This large gain
indicates that exploiting the source memory is considerably
more important than exploiting the source asymmetry for this
source. Finally, an additional 0.7 dB is gained (for a total
gain of more than 4.2 dB) over system (iv) which exploits no
source redundancy at the decoder.

In spite of its good performance, our JSC system is sub-
optimal for both symmetric and asymmetric Markov sources,
particularly for q0, q1 ≥ 0.9. As remarked earlier, the in-
terleaving prevents the second decoder from systematically
exploiting the source memory. By modifying the extrinsic
information as shown in (15), an improvement is achieved;
but clearly this method does not fully exploit the source
dependencies. Furthermore, for asymmetric Markov sources,
exploiting the source non-uniformity via non-systematic Turbo
codes [36] may yield further improvements, as it will reduce
the mismatch (due to the systematic structure of the Turbo
encoder) between the biased distribution of the systematic
bitstream at the encoder output and the uniform input distrib-
ution needed to achieve the capacity of the binary modulated
AWGN/Rayleigh channel (cf. [26], [36]). Another promising
method for exploiting the source non-uniformity, particularly
if the source is strongly asymmetric, is to use non-binary
modulation with unequal energy allocation as recently inves-
tigated in [10]. Hence, the design of a more sophisticated
Turbo coding system, which can perform even closer to the
Shannon limit for Markov sources with very biased transition
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Fig. 8. Performance comparison of the JSC Turbo coding system (with
Rc = 1/2) with that of tandem coding schemes (using Huffman coding with
Rs = 2/3 and standard Turbo coding with Rc = 1/3) for binary symmetric
Markov sources, q=0.848315, L=12000, AWGN channel.

distribution (e.g., q0, q1 ≥ 0.9), remains an interesting and
challenging problem.

VII. COMPARISON WITH TANDEM CODING SCHEMES

In this section, we compare our JSC Turbo codes with two
tandem coding schemes for the transmission of a symmetric
Markov source with transition probability q. As in [36], the
tandem schemes consist of a Huffman code followed by a
standard symmetric Turbo code with constituent encoders
(37, 21) or (35, 23), where the (35, 23) Turbo code offers a
lower error-floor performance than that of its (37, 21) peer at
the price of a slight performance loss in the water-fall region.

The comparison is made at the same overall rate r =
Rc/Rs = 1/2 source symbol/channel symbol. Our JSC coding
system has Rc = 1/2 and Rs = 1 (no source coding); the
tandem scheme, however, has Rc = 1/3, therefore it needs
to have Rs = 2/3. This can be achieved by numerically
choosing the value of q such that the Huffman code produces
an output sequence with average codeword length close to
2/3. Due to the source memory, a Markov source is harder
to compress than a non-uniform i.i.d. source. In fact, using
a 4th-order Huffman code, to guarantee Rs = 2/3, we need
to have q=0.881685. However, at this value of q, the entropy
rate of the symmetric Markov source is 0.524. To achieve a
better compression efficiency, we adopt an 8th-order Huffman
code, which can achieve Rs=0.666667 at q=0.848315, while
the source entropy rate is 0.614.

The sequence length is L=12000, and at least 60000 blocks
are simulated to produce a reliable average performance in
the error-floor region. An S-random interleaver with S=10 is
adopted replacing the pseudo-random interleaver. The number
of iterations in the Turbo decoder is 20. The detailed imple-
mentation procedure is similar to that described in [36].

Fig. 8 shows the performance comparison of our JSC coding
system with the two tandem schemes over AWGN channels.
We observe that although initially the tandem schemes offer
better water-fall performance, they are quickly outmatched by
our system due to their high BER performance from medium
to high SNRs. By using the (35, 23) code in the constituent
encoders, the error-floor performance of the second tandem
scheme is improved over the Berrou code based tandem

scheme (the floor is lowered from the 10−3 to the 10−4

BER level), at the cost of a slight water-fall degradation.
However, both tandem schemes have a high error floor (with
respect to our system) due to the inevitable error-propagation
incurred by the Huffman decoder. The use of a fixed-length
source code instead of the Huffman code (or other entropy
codes) would still not yield a satisfactory overall performance
for the tandem schemes, since standard fixed-length source
codes may not on their own achieve good compression (al-
though they would remedy the error propagation problem).
Unlike the tandem systems, our JSC coding system enjoys
lower complexity (since no source encoding and decoding are
performed), while offering a superior performance for BERs
less than 10−4. Note that the tandem system performance
can be improved if we replace its source decoder with a
soft-input source decoder (e.g., [32]), although at a price
of increased complexity. Furthermore, alternative JSC coding
systems that employ variable-length source encoding followed
by Turbo encoding and jointly designed soft-input variable-
length source decoding and Turbo decoding with possible
iterations between both decoders (e.g., [5], [19]), may be
compared in a future study to our JSC coding system; however,
our system is significantly simpler in terms of complexity. On
the other hand, the tandem scheme may have less delay since
in comparison with the JSC system, the interleaver size in its
Turbo coding part is shorter.

VIII. SUMMARY

In this work, we investigate the design of JSC Turbo codes
for binary stationary ergodic Markov sources. In the first
constituent decoder, the decoding algorithm is modified to
exploit the source redundancy in the form of memory and non-
uniformity, where Berrou’s original decoding method based on
the Gaussian assumption for the extrinsic information provides
a suitable solution for the LLR decomposition problem. Due to
interleaving, the second constituent decoder is unable to adopt
the same modifications. However, its extrinsic information is
modified via a weighted correction term that depends on the
Markovian source statistics. The Turbo encoder structure is
also optimized in accordance with the source statistics. Sub-
stantial gains (from 0.45 up to 3.57 dB) are demonstrated by
our system over the original Turbo codes, and its performance
gap vis-a-vis the Shannon limit ranges from 0.73 to 1.45 dB
for symmetric Markov sources, and from approximately 0.64
to 1.67 dB for asymmetric Markov sources. Finally, our
system is compared with two tandem coding schemes, which
employ 8th-order Huffman coding (to achieve near-optimal
data compression) and regular rate-1/3 Turbo coding. Our
system is shown to provide a robust and substantially better
performance (for BERs less than 10−4) while benefiting from
a lower overall complexity.
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