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Joint Source-Channel Turbo Decoding of
Entropy-Coded Sources

Arnaud Guyader, Eric Fabre, Christine Guillemot, and Matthias Robert

_ Abstract—We analyze the dependencies between the variablesmake use of both forms of dependencies. First attempts at joint
involved in the source and channel coding chain. This analysis is source-channel decoding considered fixed rate source coding
carried out in the framework of Bayesian networks, which provide systems [1]-[4]. However, the wide use of variable length codes

both an intuitive representation for the global model of the coding - . . . .
chain and a way of deriving joint (soft) decoding algorithms. Three (VLCs) in data compression has motivated recent consideration

sources of dependencies are involved in the chain: 1) the sourceOf variable length coded streams, focusing first on robust de-
model, a Markov chain of symbols; 2) the source coder model, coding of such bit streams. In [5]-[7], a Markov source (MS) of
based on a variable length code (VLC), for example a Huffman symbols is assumed, which feeds a VLC source coder (Huffman
code; and 3) the channel coder, based on a convolutional error cor- ¢,qer) A major weakness of VLC-coded streams comes from
recting code. Joint decoding relying on the hidden Markov model the lack of hronization bet th bol clock and the bit
(HMM) of the global coding chain is intractable, except in trivial elac 0_ Synchronizauon be Ween - € Symbol cloc an _e_ |
cases. We advocate instead an iterative procedure inspired from €lock, which makes them very sensitive to channel noise. A joint
serial turbo codes, in which the three models of the coding chain VLC decoding relying on the residual redundancy of the MS has
are used alternately. This idea of using separately each factor of a heen shown to reduce this effect. It is only lately that models in-
big product model inside an iterative procedure usually requires 4h4rating both VLC-encoded sources and channel codes (CC)
the presence of an interleaver between successive components. W b idered [81=[121. Th thors in 81 deri lobal
show that only one interleaver is necessary here, placed between ave ee.n considered [8]-[12]. The au orsm[ ] grlveag oba
the source coder and the channel coder. The decoding scheme weStochastic automaton model of the transmitted bit stream by
propose can be viewed as a turbo algorithm using alternately the computing the product of the separate models for the Markov
intersymbol correlation due to the Markov source and the redun-  source (MS), the source coder (SC), and the channel coder (CC).
dancy introduced by the channel code. The intermediary element, q yagylting automaton is used to perform a MAP decoding
the source coder model, is used as a translator of soft information _ . . . . . .
from the bit clock to the symbol clock. with the Viterbi algorithm. The approach provides the optimal
] ) joint decoding of the chain but remains intractable for realistic
Index Terms—Bayesian network, data compression, entropy gnjications because of the state-complexity explosion phenom-
coding, iterative decoding, joint source-channel decoding, proba- In 1101131, th th th ti
bilistic inference, soft decoding, turbo code, variable length code. enon. In [10]-13], the au g ors remove the memory assumpton
for the source. They consider a general variable length SC fol-
lowed by a convolutional CC, these two components being sep-
. INTRODUCTION arated by an interleaver. They propose a turbo-like iterative de-
HE ADVENT of wireless communications, often charcoder for estimating the transmitted symbol stream, which alter-

acterized by narrowband and noisy channels, is creatiigtes channel decoding and VLC decoding. This solution has
challenging problems in the area of coding. Design princ’ihe advantage of using one model at a time, thus avoiding the

ples prevailing so far and stemming from Shannon’s sour&te explosion phenomenon.

and channel separation theorem are being reconsidered. ThEN€ purpose of this paper is to extend this turbo approach
separation theorem, stating that source and channel optim{#hit 9eneral coding chain, encompassing as particular cases the
performance bounds can be approached as closely as desiredB§/e!s of the papers above. The chain is composed of a Markov

designing independently source and channel coding strateg, c© of symbols, followed by a variable length source coder

holds only under asymptotic conditions where both codes (,thsformirjg symbols into information bits, the latter feeding
allowed infinite length and complexity. If the design of thé convolutional channel codenie also assume that both the

. . . . . number of transmitted symbols and the corresponding number
system is heavily constrained in terms of complexity or delagf bits in the coded sequence are known. The former is usually
source and channel coders can be largely suboptimal. :

Joint dch | codi d decoding h th fdetermineqh priori by the transmission protocol, while the latter
oint source and channel coding and decoding have terellg e jetermined at the receiver by isolating a prefix and a

gained considerable attention as viable alternatives for reliak&@stfix of the bistream. Such an assumption does not reduce the

communication across noisy channels. Forjoint coding, the idga, o jity of our framework. The difficulty is in the treatment of

relies often on capitalizing on source coder (SC) suboptimalitgis information. Estimation algorithms become simpler when

by exploiting residual source redundancy (the so-called “excegs$ys information is not known.

rate”). As a consequence, joint source-channel decoding musfye focus on an analysis and modeling of the dependencies
between the variables involved in the complete chain of source

and channel coding, by means of the Bayesian network for-
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malism. Bayesian networks are a natural tool to analyze thefast estimation algorithms. It was observed with turbo codes
structure both of stochastic dependencies and of constraints [id]—[16] that efficient approximate estimators can be obtained
tween variables, through a graphical representation. They aserunning a belief propagation algorithm omyclic Bayesian
also the relevant way of reading out conditional independengetwork (which is theoretically “illegal”), provided the cycles
relations in a model, which form the basis of fast estimaticare long enough. The great innovation of turbo codes is that the
algorithms (e.g., the Kalman filter, the BCJR, the Viterbi algasimple introduction of an interleaver between two models can
rithm, etc.). Indeed, the structure of Bayesian inference algmake short cycles become long. Adopting this principle, one can
rithms, either exact or approximate, and for several criteria, cdasign an iterative estimator working alternately on each factor
often been derived “automatically” from the graph. We theref the product model, with significant gain in complexity.
fore address the problem of joint source and channel decodingVe use this idea in the following way, focusing first on a con-
in this framework. stant length source code (CLC), in order to separate difficulties.
As in the early work of [8], our starting point is a state spacas it was already suggested in [10], we introduce an interleaver
model of the three different elements in the chain: the symhigétween the source coder and the channel coder. The Bayesian
source, the source coder, and the channel coder. These moglelsvork formalism shows that there is no need for a second
are cascaded to produce the bitstream sent over the channeljafleaver separating the Markov source and the source coder.
the randomness of variables is introduced by assuming a whiigis allows the construction of an iterative soft decoder alter-
noise input of the cascade. The product of these three automa{ang between the CC model and the joint model of the-MS
induce immediately a state variable model of the bitstreami2 \yith the bit clock as time index. But the idea can be pushed
the triple of states—one state for each model—appears 10 bganer. The joint MS-SC model can actually be processed op-
Markov c;haln, the transitions of which generate the sequencetmf]a”y by a sequential use of the SC model, followed by the
output bits that are sent over the channel. The observed outpidl 1ol \We end up with an iterative procedure between the
of a memoryless channel corresponds to noisy measurem%sources of redundancy (the MS and the CC), where the in-

of these bits. Recoven_ng the transm|tted_ sequence of S.ou{gFmediary SC model is used as a translator of soft information
symbols from these noisy measurements is equivalent to mfFrro-m the bit clock to the symbol clock

ring the sequence of model states. Therefore we are exactly Iy

the HMM framework, for which fast estimation algorithms are When we move to varla_ble Ie.ngth source codes, a new phe-
well known. nomenon comes into the picture: for a fixed number of symbols,

This nice picture suffers from two difficulties, however. Firs{he number (_)f output bits is random,_ Wh_'c_h makes th_e structu_re
we have, the presence tfio time indexesthe symbol clock, of the Bayesian network random. This difficulty remains even if
and the bit clock. The input of the source model is an i.i.d0th the number of symbols and the number of bits are known,
sequence that produces symbols with the right joint distrib8LNce the segmentgt.lon of the bltst'ream into codewgrds remains
tion (we will assume a Markov source in the sequel). Input af@ndom. But surprisingly, all algorithms developed in the CLC
output sequences are synchronous and indexed by the synfisse extend to VLCs, which is a new result. In particular, even
clock. At the other extremity, the channel coder gets a (cdithe case of VLCs, there is no need for an extra interleaver sep-
related) sequence of useful bits, to which some redundancyaréting the MS and the SC. A successive use of these models is
incorporated. Input and output time indexes are proportiona@ltimal for joint decoding of the pair.
the coefficient being the rate of the error correcting code. No The rest of the paper is organized as follows. Section Il de-
difficulty here, and we define the bit clock as the index of thecribes part of the notation we use. Section Il revisits briefly
channel coder input. By contrast, the central element, i.e., ttlassical estimation algorithms to give them a graphical inter-
source coder, receives a sequence of (correlated) source symprdgation, on which we rely in the sequel. Section IV addresses
and outputs variable length codewords. So it operates a clankdeling issues in the case of constant length source codes
conversion with a varying rate. Actually, for a given number qfCLC), in order to focus on the structure of the iterative algo-
source symbols, the number of bits of the coded sequence istiém based on three models. However, we distinguish the two
random variable, which is quite unusual. The second difficulime indexes. Section V relies on this material to study and solve
is more classical; it comes from the fact thia state space di- the extra difficulty introduced by variable length codes (VLC).
mension of the product model explodiesnost practical cases, This appears to be only a technical extension, that does not
so that a direct application of usual techniques is unaffordabigyange the ideas of Section 1V, but only makes them less ob-
except in trivial cases. In this paper, we thus rely on propertigs, sty applicable. Finally, experimental results are described

evidenced by serial turbo codes to design an estimation stratgg\s o ction VI, in which we observe the resynchronization prop-
Instead of using the big product model, inference can be doneei'qieS of the algorithm.

an iterative way, making use of part of the global model at each
time.

In detail, this takes the following form. Instead of building the
Markov chain of the product model, one can directly consider Let S = S - - - S be the sequence of source symbols, coded
the Bayesian network corresponding to the serial connectionigfo a sequence of information bitg = U; - - - Uy, by means
the three HMMs, one for the source, one for the source codsra variable length source code (e.g., a Huffman cob@nd

and one for the channel coder. This S|mpI|f|eS the Bayesian n%trepresent generic time indexes for the symbol clock and the
work since “smaller” variables are involved. However, beyond

the tim? inde?( difficulty, this results in a complex Bayesian net- 2gy contrast, [10] is assuming an i.i.d. source, which makes the source model
work with a high number of short cycles, and thus not amenahlgeless.

Il. NOTATIONS
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S U R In this section, we briefly review some of these strategies for
a standard Markov process, which is enough for the sequel. The
classification follows: 1) the estimation criterion and 2) the gen-
eral organization of computations (either organized in sweeps
Y Z or “graph blind”). Our purpose is to gather here the equational
Fo 1 A hical del depicting dependenci . part of algorithms, in order to rely later on graphical arguments
sl,gtf, By e e theepoequﬁtncffs the. chanror T8 explain the organization of computations for more complex
This graph states thatP(S, U, R, Y, Z) factorizes according to Structures.
P e St ) el o E12) 4 The Markoy process (o esimate 6 = X . Xi. The
défifled) by char%]nel hoise. White dots represént/unobserved variablesfqgtonzatlonP(X) = Hn P(X_"|X"—1_) is graphically I’e_p-
estimate, and black dots stand for observed variables. resented by the oriented chain of Fig. 2. The procksss
“hidden,” i.e., one only gets information aboit through the
(noisy) measurement proce¥s = Y; --- Y. Measurements
are assumed to be conditionally independent givéni.e.,
P(Y|X) = ][, P(Y,|X). They are also assumed to be local,
ere locality means either thaf, measuresX,, only, i.e.,
@’(Y,JX) = P(Y,|X,), orthatY,, measures the transition from
110X, 1.e,P(Y,| X) = PY,| X, —1, X,).

bit clock, respectively. We denote i@y, the codeword corre-
sponding toSy, soU = U, --- Uy represents the bitstream
U segmented into codewords. As mentioned in Section I, b
K and N are assumed to be known, since the difficulty is i
the treatment of this information (estimation algorithms beco
simpler when one of these lengths is unknown). Observe thaf ™
the lengthV of the information bit stream is a random variable,. MPM Estimates
function of $. A sequence of redundant bils= F, - - - R IS 1) “Organized” Strategies: The maximum of posterior
constructed frond/ by means of a (possibly punctured) system- ™ . . . . N

. . . . marginals (MPMj is such that eaclX,, is estimated individu-
atic convolutional error correcting code. In the triple U, R), I ding t
all the randomness comes frofiy sincel/ and R are deter- ally according to
ministic functions ofS. The bitstream(U, R) is sent over a X, = argmax P(X,, = z,|Y). 1)
memoryless channel and received as measurerfgnis) (see T
Fig. 1); so the problem we address consists of estimafingHence, the objective is to obtain these posterior marginals. Com-
given the observed valuesand ». We reserve capital letterspytations can be organized around the factorization
to random variables and small letters to values of these vari-

ables. For handling ranges of variables, we use the notation P(X,|Y) oc P(X|Y) - P(Y, 4 1X0) 2
Xy =A{Xy, Xyq1, ..., Xy} or Xy wherel is the index set . L
{t u+1, ..., v}. We omit] when all indexes are taken. OtherWhere x denotes an obvious renormalization. The Markov

property allows a recursive computation of both terms of the

notations are defined later in the body of the paper. right-hand side. The “forward” sweep concerns the first term

[1l. B ACKGROUND ONALGORITHMS P(X,|Y?") o< P(X,[Y7 ) - P(YV,| X,) (3)
In the sequel, we analyze the structure of the coding chainwhere
the framework of Bayesian networks [17]. Bayesian networks P(X, Y1) = Z P(Xn|Xn—1 = Tn-1)
(BN) are the most natural tool to display the structure both of Tt

stochastic dependencies and of constraints between random P(X. . — yn—1 4
variables. They also provide a powerful way of reading out P =2 [¥7). )

conditional independence relations in a model, and it is wetlyation (4) is usually referred to as t@pagationor predic-
known that such relations are the key to fast estimation alggs, step. In theupdatestep (3),P(Y,,|X,.) assume&;, mea-
rithms. Indeed, the structure of Bayesian inference algorithmgyresx.,,; it must be replaced by(Y;,|X,,_1, X,,) if Y,, mea-
either exact or approximate, and for several criteria can begiyes the transition fromk,,_; to X,, (from now on, we omit

derived “automatically” from the graphical representatiomemioning this detail). The “backward” sweep provides the
of the process. In particular, very efficient algorithms exis{econd term in (2)

as far as this graph is a treewhere efficiency refers to a

linear complexity with respect to the number of variables. PY,N1X,) Z P(X,y1 = zni1]|X5)
Such algorithms are obtained by combining simple primitive Trtl
operations:propagation, updateand merge(see [18] or [19, PV | Xsr = )
Sec. 2]). There exist numerous ways of combining these prim- n2lntl = ot
itives, which makes the classification of estimation strategies PYog1|Xnt1 = Tng1)- (5)

quite difficult, except with respect to the estimation criterion

they use. Moreover, many communities (re-)discovered igince this quantity goes to zero as the number of measurements
dependently some of these strategies, hence, we have a I&¢@ments, it is often handled in a renormalized form (over
variety of names for very similar algorithms (e.g., KalmaMariableX;,), hence, thex in (5), which has no influence on
smoother, Raugh-Tung-Striebel algorithm, BCJR a-lgorithmﬁlntheimage|orocessingcommunity,MPM is also read as “marginal posterior
belief propagation, sum-product algorithm, etc.). modes.”
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X, X X; Xy X, X X; Xy
Y, Yy Y3 Yn Y, Y; Y3 YN

@) (b)

Fig. 2. A Markov process{ and a measurement procésqa) on variables of{ or (b) on transitions of{ .

(2). This two-sweep organization of computations is sometimes P (Xn,]L |YR(n_1))
called the BCJR algorithm [20] and is well adapted to a defini-
tion of P(X) through transition probabilitieB(X,,|X,_1). A o Y P(Xpt| X = )
more symmetric version drops the left-right orientation in the Tn
factorization ofP(X) by relying on P(Xn = 20|Y0) - P (Xn = 20| Yr(n)) (10)
P(X,]Y") o P(X[Y7") - P(X [V (6) P(Xy = n)
" P(X5)

and symmetrically for the message senkig, ;. Equation (10)
which is amergeof two lateral conditional distributions ai,,. ~ can be generalized by leaving the inclusionifoptional. By
The second term of the numerator can be recursively obtaif@@notonicity, the only stable state of the algorithm is obtained
by (4) and (3) with a backward factorization BfX). So (6) forL(n) ={1,..., n—1}andR(n) = {n+1, ..., N} forall
requiresP(X,,| X,+1) andP(X,,). n. S0, whatever the ordering of updates, (8) finally gives the de-
Remark: The posterior margin&(X,,, X,,;1|Y) isderived sired posterior marginals. Notice that variations of the algorithm
immediately from byproducts of an MPM estimation algorithmgan be obtained by defining messages and updates on other fac-
For example, if factorization (2) has been chosen to base col@rzations than (8), e.g.,

putations, one has
P (XnlYL(n), Yos YR()

P(X,, Xnt1]Y) xP(X, YY) - P(Xpa1|Xn
( +1[Y) o< P(X [¥]7) - P(X 41 N) % P (Yoo X0) - PVl %) P (V) - P(X0)
P Xngr) P [Xng). (7) 1)

In other words, an MPM estimation algorithm also provides the ) ) . .
posterior distribution oftransitionsof X . or any other Bayesian equatiéiNotice also that the organized

2) Graph-Blind StrategiesThe above estimation Strategiesalgorithms pre_sented aboye come out_ as _particular orderings of
organize computations into two sweeps or recursions, thyRdate operations for particular factorization$™¢f,[Y).
following closely the graph of Fig. 2. By contrast, other One specific ordering of computations is worth mentioning

message-passing algorithms only specify local computatighg'®: In the case wher#” measures variables ak' (not
j&a@snmns). It starts by computing local posterior distributions

and leave unspecified the general organization of messayge * , - :
circulations on the graph. Such methods appear in the decodirigi»|¥») for every X,, and then organizes updates in two

of sparse parity check codes, for example. Because no gloB4FePs, from left to right and right to left. This strategy

knowledge of the graph is necessary, we refer to this family §8responds to computing firB(X|Y’) assumingX is a white
“graph-blind methods.” noise with distribution?(X) = J[,, P(X,) and then taking

The idea is to reacl(X,|Y) by increasing the number COrrelations into account. We will refer to it as algorith#nin
n

of measurements in the conditioning part B{X,|Y;), e sequel.
whereI < {1,2,..., N}. For our Markov process, let )
us define variable index sets(n) C {1,...,n — 1} and B. MAP Estimates
R(n) C {n+1,..., N}. SinceYy,, Y, and Yp,) are The MAP criterion (maximuna posterior) corresponds to
conditionally independent giver,,, the following merge the optimal Bayesian estimation of the whole procEskased
equation holds: on all available measuremerits

P (Xn|YL(n)7 Yo, YR(n)) X = argmax P(X =z|Y) (12)

P (Xn|YL(n)) P(Xp|Yy) P (XTL|YR(n)) ) S . .
x P(X,)2 - (8) hence, the optimization is over all possildequences. For

Ic{l, ...,N}anindexsetand = I\ {n}, let us define
For every X,,, the algorithm maintains incoming messagegotationP by

P(X,|Y7) on every edge around,,, whereY; are measure-

ments located beyond that edge from the standpoist,ofFor P(X,|Y7) x max P(X,,, X7 = zs[Y7) (13)

instance, the edgéX,,_;, X,,) brings P(X,,|Y7,)) to X,.. *J

These messages are updated by merge and propagation. The P(Y7|X,.) < max P(Y7, X; = z7|X,,). (14)
T

messag® (X, 1|Yr(,—1)) Sent byX, to X, ; is updated by
4Remark: wherY” measures transitions of procexs the indexn of mea-
R(n—1):=R(n)U{n} (9) surement’, must be counted bfi(n).
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This definition drops a multiplicative constant, which is use- 51 5 53 Sk
less for the estimation and leaves space to renormalizations
(over X,,), which favors the algorithms stability. The optimal 0, 90, 00, [0
sequenceX can be obtained by gathering local estimalgs
defined by Y % Y %,
Xy = arg H;;%X P(Xn = 2a]Y) (15) Fig. 3. Bayesian network of a symbol clock model for the paiM&C, in the

case of a constant length source code. Black dots show the observed variables.
hence, once again the objective is to obtain these “posterior
marginals.” Bayes factorizations like (2), (6), (8), or (11) remai

. = Pn words, it represents the extra information carriedbgibout
valid for P. For example (2) becomes P 5

X,, once the local measuremeXit is known. The notion of

= — s S ON extrinsic information as defined by (18) extend$*o
P(X.JY) & P(X, YY) - PV, (16) y (18)

X,).

In the same way, it is straightforward to check that all compu- V. JOINT SOURCECHANNEL DECODING FORCONSTANT
tations defined o extend toP provided thed operator is LENGTH SOURCE CODES

replaced by the max operator. Hence, all estimation strategiesg clarify the structure of the algorithms developed for VLC-
designed for the MPM criterion extend directly to the MAPencoded sources, we first consider codewords of constant length
which was already mentioned by several authors [21]-[23]. Fprconstant length codes (CLC) make the problem much sim-
example, the “sum—product” algorithm for the MPM becomesier; with a VLC, one must both recover symbol boundaries
the so-called “max-sum” algorithm for the MAP [23] if one usegng transmitted symbols in the noisy bit stream, whereas here
the logarithm of?, which is usually preferred. the segmentation is known. Although the bit clock is a multiple

This theoretical result is very useful for designing estimatiogs the symbol clock, we distinguish them and build models for
strategies, but is somehow suboptimal. The final max in (18hth time indexes, in order to prepare for the VLC case. We start
and some update messages can be avoided by capitalizing\@ a decoder for the pair MBSC and prove that there exists
intermediary max operations. For example while updating th@ optimal joint decoder using first the SC model and then the
message’(X,—1|Yr(x-1)) in (10), the argument of the max1s model. We then consider the complete chainh\8&+CC,
overz, can be stored as a function&f, _;: X7 (X, _1). When o which this strategy fails, and propose instead an iterative pro-
X,.—1 is known, one directly ha&’,, = X*(X,,_;). Thistrick cedure.
is well known and implemented in the Viterbi algorithm.

A. Decoding of the Pair Markov Sourege Source Coder

C. Extrinsic Information o )
1) Symbol Clock ModelFor simplicity, we consider a

This notion represents an intermediary product of a be”@{/mbol sourceS described by an order-one Markov process.
propagation algorithm. It has little relevance by itself butis COMsympolss; are translated into codeword®, by a determin-

monly used for explaining t_he structure qf iterative .algorithm%tic function. Thanks to the constant length property, one has
Let X be some random variable to be estimated using two meg- _ U(’Zl_l)zﬂ- Gathering measuremeri! into Y,

" ?I’Z—l)u-l
surementsy” andZ. One has the decomposition we have a symbol clock model for MSSC that fits exactly

P(Y|X) P(Z|X,Y) Section lll (Fig. 3). Thus estimation algorithms are readily
P(X]Y, Z) =P(X) - POy P(Z|£/) . (17)  available with complexity C; = O(K - |S|?), whereS is the
set of possible source symbols.
The first term is thea priori information about¥, the second  2) Bit Clock Model: Notice that estimating' is equivalent
one the information of the first measuremaftabout X, and to estimatingl/. To design a bit clock model for the pair
the last one the remaining information carried ByaboutX ~MS+SC, we must focus ofV and analyze the structure of its
onceY is known, i.e., thextrinsic informatiorExty (Z|Y). It ~ distribution.P(U) can actually be modeled as a semi-Markov

is often determined by process. We haw&(l/) = P(T71)-P(Ts|U1)- - - P(Uk Uk 1),
so the problem amounts to factorizing further each element.
PXY, 2) For the first term, Bayes formul®(U,) = P(U;) -
E YY) = ————= 1 ' .
xtx (Z]Y) P(X|Y) (18) P(Us|Uy)---P(U;JUSY) suggests a stochastic automaton

_ - _in the form of a decision tree for generating codewotds
Notice thatEixty (Z]Y) can be handled as the conditional dis¢rig. 4): each vertex of the tree corresponds to a tupé 1,
tributionP(A[.X') of apseude—measuremenh on X.. It plays  from which two transitions are possible, one far= 0 and one

the part of the rightmost term in (2) and, hence, can be readigs; = 1. A bit clock model forP(U, ) follows immediately.
amessage sent backibto update an estimate. We use this ing gt s defineX; as the state (i.e., vertex) reached aftei

terpretation in the sequel. o ~ transitions of this automaton. Thek} is a Markov process
In the context of Markov models, the extrinsic information on

Xy is often defined as SThe results in this paper extend directly to any semi-Markov source, which
allows a longer memory faf.

Exty, (V[Y,) = Extx, (Y7 1, V|V, (19)  ©complexities are evaluated as the number of multiplications.
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* |S|2-|7]?) =~ O(N -|S|*). But the complexity cannot be evalu-
ated so loosely because the transition matrix is very sparse. Let
us consider steps together; with a rapid evaluation, from each
03 (o, o) there ardS| decisions to take to reach the next symbol,
which yields complexityC, = O(K - |S|?). Hence, acareful
handling of this product model for MSSC reaches the same
o, performance as an estimation algorithm for MS alone.
3) Mixed Clocks Model:Following ideas that appeared in

Os iterative decoding, one could imagine estimating the symbol
stream by using the two models MS and SC alternatively,
0\0__,.-"'0 - provided an interleaver is inserted between the source and the

Ty source coder. This idea is misleading here. We now prove that
performing first a CLC decoding and injecting its soft output

Fig. 4. Example of a stochastic automaton associated to Bayes decomposﬁ% an estimation algorithm for the MS model is an optimal
of P(TU,) = [I'_, P(U;|U{ 1), for I = 3 and five possible source symbols, 9 P

with probabiliies (0.08, 0.12, 0.3, 0.2, 0.3). Transitions probabilities argtrategy. This is due to the pointwise translation of symbols
mentioned close to the edges. Transitions upward prodice= 1 while into codewords.

transitions downward produdé; = 0. Let us reconsider the symbol clock model (Fig. 3). Algorithm
A applied toS and corresponds to the followihg

Xo X1 X Xk 1) computing posterior margina(Sy|Y) [or the ratio
. P(Sk[Y 1) /P(SI];
U] U, " U symbol termination 2) using these quantities as input of a two sweep procedure
yielding P(Sx|Y).
Yi Yy Yk As mentioned earlier, operation 1 amounts to estimating

i.e., computingP;(S;|Y"), assuming symbols are independent
Fig.5. Bayesian network of a bit clock model for the pair#4SC, in the case (hence, notatiof?;), and operation 2 is in charge of incorpo-
of a constant length source code. rating the extra knowledge on intersymbol correlation.
Although the symbol clock model looks natural for these two
andU; is a deterministic function of its transitions, that is obperations, it may be interesting to perform the first one with a
(Xiz1, Xi). bit clock model. This first operation corresponds to estimatting
To factorize the remaining ternf¥ U, |U}._,) according to assuming®; (U) = [, P(U}), which can be done as in the pre-
the bit clock, we must proceed in the same way, foutevery vious section, on a bit clock basis. Symbol independence brings
possible value o, or equivalently ofS; ;. In other words, some simplifications into the picture. The state variabjedoes
for k > 2, we must keep track of the last symbol produced. Lgfot need any more to keep track of the last symbol produced.
us define the general state varialilg as a paifo, ) wheresis  So X, reduces to a simple vertexof the dyadic tree, and the
the value of the last completed symtsl, with & = |n/l], and  connection of local models is done with soluticin One point
v is the current state of the stochastic automaton describing faénains to be solved: how to get soft information $rirom
construction of the next symbol, followir®(Sk+1|Sk). Once  this model? The solution is straightforward: there is no need to
againX is a Markov process, the transitions of which producgstimate bitd’,, nor codeword€7,, it suffices to estimate the
U (Fig. 5). state procesX’. Indeed ;(Xy,|Y") corresponds to the desired
The last step of the construction consists of connectirnlg(gk|y) since the possible values fdf;; are the leaves of the
the local bit clock models foP(Sy1|Sx). This amounts to dyadic tree, i.e., possible symbols at tifnéHence, the transla-
identifying each terminal stat&,; with the initial state of the tjon is immediate. By the way, notice tHR(X;,|Y") is readily
next symbol. There are two practical ways to do so. Solution gbtained with one single sweep, since symbol independence in-
views each leafnode as a root of the next tree; this preservegucesP; (X |Y) = P; (X |Y/).
the leaves of the tree as possible valuesfand removes the  Qperation 1 in algorithr relies only on the inner codeword
rootnode. SolutioB is an improvement. Observe that the Va'u%dundancy_ If a (Constant |ength) Huffman code is used, this
of o changes in the transition frotkiz;—; to X;, when a new represents at most 1 bit of redundancy per codeword, which is
leaf is reached. Hence, not all pairs v) are possible folX,,.  quite low. Anyway, the interest of algorithi is to separate the
Whenv is a leaf node, then is necessarily the correspondingse of the SC model and of the MS model. The SC model incor-
symbol. In other words, knowledge ofis useless when a newporates information on thstructureof codewords (constraints
symbol terminates. We denote such terminal state&byy),  in some sense) and is used to translate soft information from the
whereuy is the root node of the tree. As a result, the state spagig clock to the symbol clock. The MS model incorporates the
X for X is the productS x 7 where7 is the set of inner major part of source redundancy.

vertices of the dyadic tree. o _ In terms of complexity, operation 1 amounts to estimating
The resulting Bayesian network of Fig. 5 is again amenabyg s, |Y,.), so its complexityO(K -|S|) is negligible compared
to algorithms of Section Il. The state space is larggrx 7| ~  to the complexity of operation L'z = O(K - |S|?).

|S|?, which requires more memory and means that a blackbox
algorithm for this model will result in complexit¢, = O(N - "MPM is assumed, but the argument remains valid Fith
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Fig. 6. Bayesian network of a bit clock model for the complete chain

MS+SC+CC, in the case of a constant length source code. Measureirients

andZ are not represented for the sake of clarity. Fig. 7. Introduction of an interleaver to make short cycles long in the joint BN.
EachR, may contain 0,1, or several redundant bits.

B. Joint Decoding of the Complete Chain

While the SC removes some redundancy of the source (ger@p_interleaver between the pair MSC and the channel coder
ally the intra-symbol redundancy), the CC reintroduces redumakes short cycles of the BN become long (Fig. 7). A graph-
dancy in the bit stream. Hence, the joint use of the two sourdé3! model containing only long cycles can be locally approx-
of information MS and CC must be done with care. In this pap#pated by a tree, around a given variable, taking into account
we consider a systematic convolutional channel code which, &t the correlation decays exponentially fast with the distance.
believe, captures the structural difficulty of the joint decodingherefore, estimation algorithms designed for trees give good
problem. Small block-codes are easy to handle as far as tf@@proximations on graphs with long cycles.
cover one (or an integer number of) source symbol(s), sincelhe easiest strategies to implement on a BN with loops be-
the Bayesian network incorporating redundant Bitsemains long to the “graph blind” family, as far as there is no obvious or-
(close to) a tree. In the general case, and in particular after vVig@nization of message circulations. Updating all edge messages
coding, the intersymbol correlation due to block-codes bringé & time amounts to collecting measurements lying at distance

the same difficulties as convolutional codes, since we come &pthen 2, and so on around each node, which provides a simple
with a very loopy BN, as shown below. way to tune the tree approximation by defining a horizon to mea-

We rely on a trellis representation for the channel coda!fementsinvolved inthe estimates. In the case of concatenated

(which could also capture the case of block-codes), so the d&grkov models, it is generally preferred to organize computa-
has a state-space representation, with as state variable. tions, for matters of simplicity in the decoding. The usual (turbo)
Without loss of generality, we assume a bit clock recursicirategy follows an iterative scheme alternating the use of the
for the state equation. The CC takes information bits of&@0 models. It completes message circulations in one model
at a time and yields a number of redundant bits, possiblfyvo sweeps) before updating messages toward the other model,
none. The Bayesian network incorporating the complete chaifich is processed in the same way. This iterative procedure
MS+SC+CC is depicted on Fig. 6. The top part represengfers the advantage of isolating two soft decoders, which min-
the bit clock product model for M&SC, and the bottom part imizes cultural changes with respect to the separate decoding
represents the serial concatenation of a convolutional encodéProach and allows some interpretation of the approximations
Variables ofR are depicted as functions of the coder stite Made, as shown below.
but could as well be functions of state transitions. Pointwise 1) Iterative Scheme With Two Modelsiere, we stick to this
measurementy” and Z on U and R are not represented for traditional architecture of turbo algorithms and design an iter-
clarity. ative scheme alternating uses of the CC model and of the joint

This BN is not a tree, hence, algorithms of Section 111, whicMS+SC model.
are optimal for trees only, do not apply directly. A first solution We consider the MPM criterion and rely on Fig. 1 to
to get back to a tree diagram is by means of “node aggregatiogive a macroscopic view of the procedure. Ideally, the
It consists of grouping nodes in order to remove all the cycldyst step computesExty(Z|Y) using the CC model,
Observe that the paftX, X”) forms a Markov process and thatassuming some distributior?® on the input U. Ob-
(Un, Ry,) is a function of the transition fronaX,_;, X’ _,) serve thatExty(Z]Y) = POUJY, Z)/PY(UJY) is in-
to (X,, X’). So, by adopting this node aggregation, we aensitive to the choice of distributio®® on U since
back to the standard framework of Section Il at the expenselokty (Z]Y) o< P(Y, Z|U)/P(Y|U); hence, Py can be
a dramatic state augmentation, however, sif€g, X/ ) now chosen so as to maké a white noise. The second step uses
gathers the last symbol of the source, the state of the soukeer (Z]Y") in conjunction withY’, as input to an estimation
coder, and the state of the channel coder. This construction ¢ffd/ based on the true distributid® ), as described by the
product model for the coding chain has been advocated in védp+CC model.
simple cases by some authors [8] butis unaffordable in practicalThis picture suffers from a severe difficultfxty (Z]Y)
situations. A reasonable source alphabet sati$fies= 2° or is too complex to be handled globally because bitstof
more, and usual convolutional coders need 5 bits of memosye correlated giverZ. In particular, Exty (Z]Y) could not
hence, a state space dimensior26f or more. be used as input to the Markov model of the pair MSC

An alternate solution to node aggregation is suggested by (sgxce it is not homogeneous to a pointwise measurement
rial) turbo codes. It was observed that the simple introduction pfocess onl/. Therefore an approximation is made after
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Fig. 8. Computing extrinsic information with the CC model. Primed lettéfsY’ and E°’ stand for interleaved versions 6% Y and E°. E? represents
Ext?, (Y, Z|Y.). The equivalence sign means that the posterior distributidii,ogivenY’,, andE? is identical to the posterior distribution givéhandZ and
basecf on the CC model.
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Fig. 9. Computing extrinsic information with the MSSC model £, represent&xty, (Y'|Y..). The equivalence sign means that the posterior distribution on
U, givenY,,., E? andE?! is identical to the posterior distribution givéh and E° and based on the MSSC model.

the first step. One introduces the white noise approximatiamganization of message circulations on the (loopy) BN of the

PO(UY, Z) = ], P°(U,|Y, Z) which yields joint model. Figs. 8 and 9 illustrate the two steps of one it-
HPO(Un|Y Z) eration, incorporating also the interleaver. Local extrinsic in-
o - ’ PO(U,|Y, Z) formations are represented as grey patches, indicating they be-
Exty (Z|Y) o B LA have as pointwise measurements. Fig. 8 represents the result of
n e soft decoding with the CC model, aftkt?, (Y, Z|Y,) appears
- H Exty (Y, Z|Y,,). (20) @s a grey square close to ealdh. Fig. 9 depicts the second
- step, making use of the MSSC Markov model, withy,, and
This has a double advantage. Ext?,n (Z]Y) as local measurements. The resulting extrinsic in-

. Firstly, each of the local extrinsic |nformat|onf0rmati0”EXti’n (Y'Y,,) is represented as a grey triangle close
Exty, (Y, Z|Y,,) can now be used as a local measuremek €achly..
on U,,, thus allowing the use of the joint Markov model Remarks:

for MS+SC to getP! (U]Y, Z), an approximation of the  « At the second step of each iteration (Fig. 9), one needs the

trueP(UY, Z). posterior distribution oi/,,, which follows from the pos-

» Secondly, the assumption of a white noise initial distribu-  terior distribution on pair{X,_;, X,,). This increases
tion P°(U) = [T, P°(U,) for U allows the use of the CC the computational complexity and is in favor of a small
Markov model to obtaikxty, (Y, Z]Y5,). state spacet’.

Unfortunately, unlike the global extrinsic information, this local « Stopping the algorithm at the first iteration amounts to
extrinsic information depends on the choic&8f The better the performing a soft channel decoding followed by source

neighbors of,, are estimated, the better the extrinsic informa-  decoding.
tion onU,,. Hence, one should inject as much prior information « At the last iteration, one should not keep an MPM esti-

as possible in th@° distribution, still keeping the white noise mate of the bit strear¥, since a bit-by-bit MPM estima-
assumption. This suggests the us@bft/,,|Y, Z) for U/,,, from tion may very well yield nonvalid codewords. Instead, the
which the effect of local measuremeiisandExty, (Y, Z|Yy,) MPM estimates of symbols;, must be read out of the
must be removed. Let us defthe MPM estimate of the state proceX&s X;; givess.
Extl PH(ULY, Z) « Finally, notice that the final MPM estimation of the useful
xty (YY) x . (21) . .
" P(Un|Yy) - Exty, (Y, Z|Yy) bitstream{ with the MS-SC model can be replaced by
We replace the prioP? at the input of the CC decoder by the a MAP estimation, considering extrinsic information as
new prior[F’2 extra measurements. The MAP estimate of the bitstream
U necessarily gives valid codewords, since it corresponds
) o H P(Un) - Exty, (Y]Yn) (22) to the MAP estimate of the symbol streain
which closes the first Ioop of the iterative procedure. 2) lterative Scheme with Three ModelgVith no additional

Once again, this architecture rephrases the turbo algoritlweomplexity, the decoding of the MSSC pair (second step of
for serial turbo codes and is nothing more than one possildach iteration) can be performed with the mixed clocks model.
s This amounts to estimating the bit stredmusing first the
Finding a good notation is difficult for this quantity, that depends both on
Y and Z. The correct notation should téxt}, (Y, Ext°[Y,,, Ext), ). We intracodeword redundancy (i.e., the SC model alone), exactly
choose to focus on the dependencetbn as above (Section IV-B1). More precisely, the state prodéss
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RS RS Ry Fig. 11. Bayesian network of a symbol clock model for the pair{Ms,

1 in the case of a variable length source code. The tree-shaped BN is random;
connections depend on valuesf

Fig. 10. With constant length source codes, the interleaver can be defined on
symbols instead of bits and placed either before or after the source coder.
We therefore review the models developed in the previous sec-

) ) tion in order to introduce these clock variables and show how
of the SC model is estimated. Then the symbol stream cangfyorithms adapt.

turn be estimated using the intersymbol correlation (i.e., the

MS n_10de|_), as was shoyvn in Sect_ion I_V-AS. To prepare for the Symbol Clock Model

next iteration, the resulting posterior distributid®s( Sy |Y, Z) . o )
must be transformed back inR(U,|Y, Z), which is the only Let us defineVy, as the nur_nber of bits in the VLC codmg of
novelty. This “clock conversion” is straightforward, as showfYMboIsS: - - - Si. Starting withN, = 0, one has the recursion
in Section IV-A2, and is much simpler than in Section IV-B1

since no posterior distribution on paifX,._;, X,,) is neces- Ny = Ny—1 + L(Sk) (23)
sary (see the first remark there).

This last approach results in a completely separate usewiere £(S;) is the length of the codeword;, associated to
the three models in the chain, provided one interleaver is ify. We still assumes is a Markov chain, hence, the extended
troduced. We have chosen an architecture where the interlegy@icess S, N) composed of pair&Sy, N;) remains a Markov
is placed between the SC and the CC. Notice that the same @main? The Bayesian network of Fig. 3 transforms into the
proach remains valid with the interleaver placed between tbae of Fig. 11, where the codewotd, has been further ex-
MS and the SC. This requires us to design a symbol clock mogieinded to display its internal bitéy, ,+1--- Uy, . The simi-
ofthe CC, which can be done by aggregafingnsecutive states larity is both inspiring and misleading. Apparently one still has
ofthe CC (Fig. 10). The advantage lies in a better white noise aptree-shaped graphical representation, which is favorable to es-
proximationP°(U|Y, Z) ~ [], P°(Ux|Y, Z), hence, a better timation algorithms. But a closer look reveals that the tree struc-
treatment of the extrinsic information of the CC than in (20}ure israndom Indeed, the connection frofsy, Ny) to Uy is
This is done, however, at the expense of a more complex s@ftually a connection to a variable number of bits, at a variable
channel decoder. position in the bitstream. Therefore the tree structure varies with
the values of procegss, NV).

Nevertheless, we now demonstrate a striking proptrges-
timation of(S, V) can be performed exactly as before, just ig-
noring this random BN phenomendviore precisely, the orga-
nized estimation strategies of Section IlI-Al remain valid. For

This section addresses the central purpose of the paper, st'wgplicity, we do not develop afu!l theoretical argument, which
general case of VLC encoded sources. Lengthand N, of Would_ go_beyond t_he scope of this paper. Instead, we show that
the symbol stream and of the bit stream, are supposed tofB(étor'Zat'On (2) still holds under the form
known; we will indicate how algorithms simplify when one of ) _ .
these information is missing. We focus on the joint decoding P(Sk: NalY) o P(Sy, NifV'T) - P(Y {541|Sk, Ni)  (24)
of the pair MS+ SC, since the introduction of the CC follows
the same lines as before, either an unrealistic product modehisere P is defined below, from which one can easily check
constructed or an iterative approach is chosen. The difficultiyat all other formulas of Section 11I-Al hold also. Quotation
of VLCs comes from the lack of synchronization between thearks should appear around the right-hand-side term, to
symbol clock and the bit clock. In other words, the estimation @fidicate that a quantity likd®(S, N|Y *) is not a correct
the transmitted bit stream must be performed jointly witlsé#g- conditional distribution 0S5, Ni). The conditioning variable
mentation This makes VLCs less robust to transmission nois?,’f =Y --- Yy, varies with values ofSy, Ny) . ... However,
since more information must be recovered for their decoding. iandling this object as a regular conditional distribution allows
estimate the segmentation of the received bit stream into codecorrect computation oP(Sw, Nx|Y), which is properly
words, one must determine the vall{g of the symbol clock at defined.
each bit instant, when a bit clock model is used for estimation. . ) o ) }

SWith our conventions, notatioV stands either for proce$dV;,) or for the

Con\(ersely, when a Symbc’l.ClOCk model is used, One must %’gth of the bitstream. But the context generally solves any ambiguity on the
termine the valuéVy, of the bit clock at each symbol instakt meaning ofV.

V. JOINT SOURCECHANNEL DECODING FORVARIABLE
LENGTH SOURCE CODES
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Let us start with the definition d?(Y /<, | |Si, Ni). Theran-  Constraints on the Number of Bits/Symbolsn estimation
domness of the tree structure is duestdGiven process, and algorithm based on the symbol clock model defined so far yields
thus processV, the tree structure is fixed, so we have an optimal sequence of paifS;, Vi ). In other words, the best

sequence of{ symbols is chosen regardless of its length in
P, Sk, Ni) number of bits. The easiest way to incorporate knowledge on
— P(Y|Sk, Vi) - P(Sk, Ni) (25) the number of bits is to ad_d one extra measurement n_ode on
the last pair(Sy, Nk ) stating thatNy equals the required
=P YN Sk, Ni) - P(Yn, 41 Y| Sk, Ni) number of bits. This measurement node is particular since there

P(Sk, Ni) (26) isno obsgrvation noise in the meagurement; it ac;tually encodes
S a constraint. Another strategy consists of computing a model for
=P(Y ¥[8, Ny) - P(?ﬁﬂSk, Ni) -P(Sy, Ni). (27) procesgS, V) conditionally to the fact that the last valuéy
is the required number of bits. It can be shown that this model
Equation (27) holds because for every valgey, nx) is still a Markov chain, but homogeneity is lost.
of the pair (S, Vi), vectors Y¥ = Yi---Yy, and When the number of bits is known, and the number of sym-
Y&, = Ynq41---Yy are perfectly defined and arebols is left free, the Markov model on proces., Ny)i=1...xc
conditionally independent. Hence, the required conditionalust be modified. FirstK must be large enough to allow all
distributions onY" given (S, i) are properly defined. We symbol sequences of bits. Then, oncéV,, reaches the required
can further define length, the model must enter and remain in a special state for
which all future measurements are noninformative.
Sk, Ni) -P(Sk, Ni) (28)

. . N B. Bit Clock Model
which sums to one as an ordinary distribution, as far as we start ) . )
summations by th& part. The procedure to build a bit clock model for the pair $4SC

Pushing further, the procedure to defiféY” ¥) and then follows the lines of Section 1V-A2. We have the factorization

P(Sk, Ni[Y ¥) fails. There is no simple way to give a meanind’ () = I1; P(Ux|Ur—1), the terms of which must be decom-
to P(Y¥) by summing over(Si, Ni), because the very Posed furtherto display a bit clock recursion.
definition of ¥ = Y; - Yy, requires the knowledge d¥;. The decomposition of each tel®(U|U_1) can be done

We proceed in another way. Equations (27) and (28) yield 85 before, by mapping this conditional distribution on the tree
representation of codewords. In usual entropy-coding schemes,

P(Sk, Ny, Y) = P(Sk, Ni, ?iﬁ) -P(? ﬁﬂsk’ Ni). (29) it corresponds to a Huffma_m tre_e f(_)r the stationary_ distribution
of the symbol source. Again, this yields a stochastic automaton
In practice, one samplgeof the measurement processs avail- construction of thekth codeword, which can be put in state

P(Ylfv Sk7 Nk) = P(YEL o 'YNk

able, as input to the estimation algorithm, @y, Ni|Y = space form. The state variahl, is a pair(o, v), wheres is

y) is obtained by renormalizing(Sx, Ny, Y = y). Letus de- the last symbol produced anda vertex of the codeword tree.

fine P(Sk, Ni|Y %) for that particular valuey as By contrast with the fixed length case, knowing the bit ingex
. — —r is not sufficient to determine the rarikof the symbol being
P(Sk, Ne|Y'T) o P(Y'T =77, Sk, Vi) (30)  constructed, i.e., to determine what probabiRyT:|T_1)

— governs the next transition. Therefore, this information must be
where stands for a renormalization oV, Ny). Then (24) available jointly with the state variablg,, . Let us denote by,

holds for that particular valug, which is all we need in prac- . : )

. o . : e number of achieved symbols at timeThe connection of

tice for estimating S, V). One easily checks that recursions o L A
ocal models now amounts to defining a Markov chain distribu-

Section 11I-A-1 also hol&® with this definition ofP. ) .
. .. tionon paird X,,, K,,). Forwhat concerns thg,, part, trees are
As a consequence, symbol clock based decoding algorlthc%snnected one to the other like in the CLC case (Section IV-A2)
developed for CLC encoded sources remain valid for VLCs. The '

only (light) difference lies in the computationB{Y x| Sy, Ny), with either solutionA or solutionB. The transition probability

which requires us to pick measurements at the right placeILr?m X 10 Xy is thus determined bR (U, 41|U, ). For

the received bitstream. A direct computatiorPgh ;| Sx., Ny) € K" part, K".“ = K, 1 each time a new symbol is
. : . . . achieved byX,, i.e., each timeX,,; reaches a new leafnode,
is possible but seems inappropriate because it does not follg :
the natural time index of measurements, which is the bit clo& nerwiseky 1 = K.
' "To ensure that the last bit of the chain terminates a symbol,

An alternate solution is proposed in Section V-D, with similar :
complexity. an extra measurement (or constraint) node can be added on

Soft Information on Bits:The use of a symbol clock modelN€ last state Xy, Ky). This measurement takes the form

for iterative decoding of the chain MSSC+CC requires the i(a’ﬂgr’] ’i/S’ ]ljieTeslsl)f 7 is a leafnode, and 0 otherwise (normal-
translation of posterior marginal¥( S, Nx|Y') into posterior :

. ) I . : i In terms of complexity, the symbol clock model and the
marginalsP(U,[Y'). This point is developed in Section V-D. bit clock model are equivalent, as in the CLC case, provided

10No big mystery in the above developments—estimation algorithms rely dhe sparse transition matrix of the latter is handled properly.

the factorization properties of the distributit(.5, NV, Y'); renormalizations This will become clear in the next section. Again if black
appearing in computations are generally harmless and mainly meant to favorthe ’

stability of algorithms. Hence, a proper definition of conditional probabilitiesipox algorithms are used_’ the state space S!Ze favors_the
useless. symbol clock model. Notice also that extracting posterior
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marginalsP(1/,,|Y") requires the transition posterior marginals ‘;
P(X,—1, K,—1, X,, K,]Y), which is a large object and
penalizes this model.

Constraints on the Number of Bits/SymboiEhe bit clock
model as defined above imposes no constraint on the number of
symbols. The symbol countédf,, only helps selecting the right I e
transition probability on symbols. So whehis a stationary I Lo
Markov chain,k,, becomes useless and can be removed. An I A
estimation algorithm based on this model will yield the best S I
decoding of the sequence of bits, regardless of the number -
of SymbOIS' . L . Fig. 12. Global trellis of the pair M$SC, constrained to produéé symbols

If the number of symbols is known, this information can ben v bits. Only the(k, n) part of states is represented. Vertical cuts define the
incorporated as before, by adding an extra measurement onhihelock model, and horizontal cuts (after some state elimination) define the
last state(Xy, Kx) of the bit clock model, constraining theYMPo! clock model.
value of K .

Symmetrically to the symbol clock model, for the case of some obvious properties of trellises. Each path from the initial
fixed number of symbols and a free number of bits, the modstate (bottom-left) to a final state (top-right) corresponds to one
must be modifiedNV must be set large enough to capture thgossible sequence of symbols and bits. The probability of a path
longest bit stream. And when the right number of symbols is naturally the product of all transition probabilities, and over
reached in someX,,, K, ), the model must enter and remain irall possible paths that probability sums to 1. The probability
a special state for which all future measurements are noninfof-a state is the sum of path probabilities over all paths going

WO R
'I-nl-d'
R |

T RN T

¥ M

=l

mative. through that state. States can be removed from the trellis, for
a model reduction purpose, for example. Wheis removed,
C. Trellis for Joint Decoding each predecesser must be connected to all successsts

The relationship between the symbol clock model and the B‘i?d path probabilities follow accordingly. éut. of the trellis
clock model is best evidenced using a global trellis represenﬁ—a set of states such that none of the”.‘ Is a successor of
tion, as suggested in [12], [13]. Actually, the trellises of the tw/ nother and such that every path of the trellis goes through one

models are almostidentical; models essentially differ by the d |r|_n|que) state of that set. As a consequence, the sum of state

inition of state variables that involve different cuts of the treIIis‘.)mb‘”"b'“t_Ies over a cutis 1. Successive cuts allow us to defmr_—:
Let us define astate of the global trellis as a 4-tuple state variables and consequently a state space representation

(0, v, k, n) where of the trellis. For example, §ta_1tes = (o, v, k, 71) with the
s €8 last completed symbol; same value_z form a_cut at bit tl_men. Let us defingg,, as the
LeT vertex of the Huffman tree: random variable taking values in that cut, then one recovers the
. bit clock model in the Markov chaif¥,,),—o...n . The symbol
k number of completed symbols; clock model can be recovered in a similar manner. Let us first
n length of the bit stream up to that state. remove all states = (o, v, k, n) for which v is an internal
Hence, the two clock indexes appear in this definition of gyqe of the codeword tree. Then only states corresponding to
state. Transitions are defined in the following way (we adopf,¢ nodes, i.e., symbols, remain in the trellis. Notice thand
solution A for connecting successive codeword trees). Let represent the same symbol in the remaining states, hence,

s = (0,1 k,n) ands’ = (o, 1/, K, ) be two states, a the state space dimension can be reduced. On that transformed
transition froms to s’ is possible iff trellis, states with identical symbol clock values define cuts
Hn =n+1, corresponding to the symbol clock model.
2) v'is aleafnode> k' =k + 1, otherwisek’ = k; Each transitions — s’ of the trellis produces one bit, say
3) V' is aleafnode= o is the corresponding symbol, oth-;7 — 4, and thus is associated to one measuremént Un.
erwiseo’ = o, Let us multiply the transition probability by the conditional like-

4) /' is a successor af on the codeword tree, ar is a [ihood P(Y;, = yn|U, = uy,). Then a MAP estimation amounts
leafnode and’ an immediate successor of the rootnodeg computing the best path of the trellis for the new transition

Rule 4 makes each terminal leafnode of a codeword tree ttwsts. By contrast, MPM estimation computes the probability of
rootnode of the next tree (solutiod). Transitions — s’ obvi- each state, for this modified transition probability, performing
ously produces bit/,,.1 which belongs to symbd¥;1, given the adequate renormalizations in successive cuts. It becomes
that thekth symbol was>. Hence, the transition likelihood is quite obvious on this representation that the bit clock model and
determined by ther — 1/ transition on the codeword tree,the symbol clock model require the same amount of computa-
equipped withP(S,+1|Sr = o) (again, ifr is a leafnode, it tions. However, states are smaller for the latter, at the expense
must be read as the rootnode). of a dense transition matrix, and states are larger for the former,

Fig. 12 gives an example of a global trellis for the paiwith a sparse transition matrix. If this sparsity is ignored, com-
MS+SC constrained to produd€ symbols in a lengthV bit plexity augments dramatically.
stream. Only thék, n) part of states is represented for clarity, As mentioned in the previous sections, the constraint on the
for codeword lengths varying between 1 and 3 bits. Let us recalimber of symbols/bits can be placed on the last state of the
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Fig. 13. Range of possible states of the trellis wiénr N is left free. The slopes of boundaries are determined by the shortest and longest codeword.

model. However, this requires visiting much more states thaence, the desireli(Y ;. |Sx, Ni) by

necessary (see Fig. 13); for example, with the bit clock model, ]

all states with a wrong number of symbols will be discarded - Pi(Sk, Ne[Y')
at time V. An alternate solution consists of taking as prior a Pi(Sy, Nk|Y’{ 1
Markov modelincludingthe constraint. Here, the drawback is

the inhomogeneity of the model. The easiest solution is a mikhe denumerator derives from the modified propagation (or pre-
ture—it keeps the original unconstrained model, but does riiction) equation (4)

visit states that will not satisfy the final constraint. This is harm- .

less since such states have a null contribution to the result. Pi( Sk, Ne[Y 771

= Z Pi(sk—la ”k—1|Y’f_l)

Sk—1,Mk—1

(33)

D. Mixed Clocks Model
Following ideas developed for the CLC case, we now con-

sider an estimation strategy using separately the MS model and PS5k, Nlst—1, i) (34)

the SC model. It offers the advantage of requiring smaller state = > Pilskon, e[V

vectors, in particular for the bit clock model of the source coder. Sk 1mh_1

Surprisingly, algorithmA4 remains valid with a VLC, up to some P(SO) - ] 35

technical modifications. (k) Dvmni () (35)
Let us recall the principle for the CLC case. The pointis to get = P(S%) - Py(Ni_1|Y ;f_l) (36)

P(Sk|Y %) or more precisely*(Y 1| Sx), which serves as input Nioy=N.—£(5)
to an estimation algorithm for the MS alone (symbol clock). . .
This quantity comes as a byproduct of the forward sweep of B§Sx) is given and P;(N_,|[Y}™') comes from
MPM algorithm for the SC model (bit clock), assuming symP:(Sk—1. Ne_1]Y §~1), which concludes the first point.
bols are independent. One Hag5,|Y ) = P(S:|Y1), hence, How to ObtainP; (S}, N@|Y’f): Of course, the interest of
P(Y|Sk) o Pi(Si|Y ¥)/P(Sk). the method is to determirfe; (S, N|Y ¥) with the bit clock
Symmetrically, in the VLC case the point is to getmodel of the SC alone. This is the most natural manner of re-
P(Y:|Sk, Ni) and use it as input to a two-sweep estimatiofursively introducing measuremerits.
algorithm on the MS model (Section V-A). We now show how As in the CLC case, when symbols are independent, the SC
P(Y|Sk, Ni) derives from the forward sweep of an MPMstate variable is still a paifX,,, K, ), but X,, does not need
algorithm on the SC model fed with independent symbols. any more to keep track of the last symbol produced, hence, it
How to ObtainP(Y%|Sk, Ni): Let us assume a sourcereduces to the part. The global trellis associated to this model
of independent symbol®;(S) = [, P(Sk). As shown in reproduces the one of Section V-C, except fordtmomponent
Section V-A, the model must be augmented with a bit countef states, which disappears.
N, = L(S¥) satisfying (23). This counter is necessary to A complete MPM algorithm on this trellis computes the
recover symbol boundaries in the bit stream, and to identiBpsterior probability of each state given all measurements:
measurements associated to a given synthol Notice that P:(v, k, n[Y"). This posterior probability sums to 1 ovefl
the augmented proce$$y, Ni)x=1..x iS Not a white noise Cuts of the trellis. However, we actually need the result of the
anymore but becomes a Markov chain, precisely becausef@ward sweep only, for which this nice normalization result
recursion (23). Its transition probability is given by does not hold. Let us assume that an MPM algorithm is run
over the trellis without performing any renormalization. At
the end of the forward sweep one gétgv, k, n, Y*). The
distribution P; (S, Ni|Y *¥) we are looking for corresponds
. ) to P,;(v, k, n, Y{*) normalized over thehorizontal cut CH#
A forward sweep of an MPM algorithm on this symbolyefined byr fixed, n free, andv a leafnode of the codeword
clock model produce®; (S, Nk|Y’f) for all values ofk. A ree (see Fig. 12). But a true MPM algorithm, assuming a
“backward reading” of recursion equatlon_s provide a way Qfcursion omn, recursively normalize®; (v, k, n, Y7*) over
extractingP(Y'x[ S, V). The update equation (3) becomes  theyertical cutC! at bit timen, defined byx fixed, & free, and
v free. Therefore, either vertical normalizations are removed
Pi(Sk, Ne[Y'%) oc Pi(Sk, Ni|V 571 -P(Yi|Sk, Ni) (32) (which does not favor the stability of the MPM procedure) or

Pi(Sk, NilSk—1, Ni—1) = P(Sk) - Iny=nvi_ 1 +2(50)- (B1)
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the successive vertical renormalization factors must be storadd preserves the advantage of a bit clock recursion for the in-
in order to renormalize correctly the horizontal cas. troduction of measurements.

Soft Information onl,,: P(U,|Y): The use of a symbol
clock model for iterative decoding of the chain MSC+CC
requires the translation of posterior margin&&Sy, Ni|Y)
into posterior marginald’(77,,[Y"). To explain this proce- To evaluate the performance of the joint decoding pro-
dure, we rely on the trellis representation of Section V-Gedure, experiments have been performed on a first-order
Conditionally to measurement¥ and to the termination Gauss—Markov source with zero-mean unit-variance and
constraints, the proces§S, N) still has a Markov chain correlation factop = 0.9. The source is quantized with a 16
structure. In other words, the conditional I&y.S, N|Y') can |evels uniform quantizer (4 bits) on the intervat3, 3], and
be expanded on the global trellis with states v, k, n). Let  we consider sequences &f = 200 symbols. The VLC source
us denote byP|y- the posterior distribution 0S5, N). Then coder is based on a Huffman code, designed for the stationary
Py (U, = u, K,, = k) is determined by the probability of distribution of the source. The channel code is a recursive
transitions(o, v, k, n — 1) — (o', v/, k', n) producing bit systematic convolutional code of rate 1/2, defined by the
valuew at bit timen and inside thesth symbol. Since the bit polynomialsF'(z) = 1+ z + 22 + z* andG(z) = 1 + 2% + 2*.
value produced by transition— s" on the trellis depends only Since very few errors have been observed with rate 1/2, we have
on the corresponding transition— »’ on the codeword tree, augmented it to 3/4 by puncturing the redundant bit stream. A

VI. EXPERIMENTS

one has variable size interleaver is introduced between the source coder
and the channel coder. All the simulations reported here have
Py (U, =u, K, = k) been performed assuming an additive white Gaussian channel
with a BPSK modulation. The results are averaged over 500
= Z Py (o, v, k, n—1) channel realizations.
00" w s (v—r) ) Fig. 14 provides the residual bit-error rates (BER) and
Py (o', 1 K o, v, by n— 1) 37) symbol-error rates (SER) for different channgl/Ny. On

each plot, the top curve corresponds to an ML estimation

= Z Py (v, k, n —1) of the bitstream assuming independent bits (and no channel
coding), followed by a hard Huffman decoding. On the BER

plot, the second curve corresponds to a MAP channel decoding,

v,v: (v—v )=

Py (v, Kyonly, kon = 1), (38) assuming an input of independent bits. The third one is the
result of the first iteration, where knowledge on symbol corre-
Equation (38) expresses th#ly (U, = wu, K, = k) lationand codeword structure has been introduced. Successive

requires only a compressed version of the global trellisyrves show the extra gain of iterations in the procedure, which
where memory of the last symbol produced has been depends on the degree of redundancy present on both sides of
removed. This compressed ftrellis corresponds to rde source coder (see the next experiment, assuming indepen-
placing the true distributionP,-(S5, N) = [, Py dent symbols). For a BER of 10, the joint source-channel
(Sks Ng|Sk—1, Ni—1) by ][ Py (Sk, Nk|Ni—1) = turbo decoding system based on the three models brings at the
11 Py (Sk|Nk—1) -In,=n._,+2(s,.)- In other words, only the first iteration a gain of 1 dB over the classical MAP channel
posterior marginal$®y- (Sx. Vi) are necessary to determinedecoding (with rate 3/4). An additional gain of around 2.5 dB
Py (U., K,) and consequentlyPy-(I/,,). To summarize, has been obtained between the first and the fourth iterations.
the translation of soft information on pairsS,, N;) into The same experiments have been performed assuming the
soft information onU,, can be done by: 1) decomposingsymbol source is white (Fig. 15), in order to evidence the gain
Py (Sk, Vi) into v — ¢/ transition probabilities; 2) placing introduced by the intersymbol correlation. On the BER plot, the
these probabilities on edges of the reduced trellis, composeday curve still represents the error rate without channel coding.
states(v, k, n); and 3) collecting transition probabilities cor-The second one is obtained using the CC model only (first step
responding to the production of bif,, (“vertical” summations of the first iteration). Then comes the BER after the first itera-
on Fig. 12). tion for a white noise model, which can be viewed as the BER at

Complexity: In terms of complexity, results are similar tothe output of the SC model for the Gauss—Markov source. And
the case of CLCs. The total amount of computations are idehe lowest curve is the BER at the end of the first iteration for
tical in the three strategies, up to some multiplicative constattte Gauss—Markov source. Hence, these four curves help with
Basically, all vertices of the global trellis must be visited. Thanderstanding the effect of each component in the model. As
symbol clock model works on a reduced state space but deskpected, the SC model has little influence since it uses little bit
with a dense transition matrix, whereas the bit clock model usesrrelation and mainly relies on constraints on the number of
alarger state space and involves a sparse transition matrix. Cdwits and on codeword structure. Nevertheless, this effect is suffi-
plexities remain similar as far as this sparsity is properly hanient enough to evidence some gain in the successive iterations,
dled (which is not easy to implement). But the bit clock modethen symbols are assumed to be independent. A comparison
is penalized for computinB({/,,|Y), since it requires posterior with the Markov source case shows that taking the intersymbol
transition probabilities between large states. The mixed clocgsrrelation into account brings a gain of more than 2 dB for the
model case reduces the overhead of soft information convers®ER.
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== 1o channel coding
~ MAP channel decoding
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——no channel coding
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~$— Markov source, 1st iteration

. —— no channel coding
107 | ~&— 1st iteration
—=- 2nd iteration
-7 3rd iteration
&~ 4th_iteration

] Fig. 15. Same conditions as the previous figure, except that intersymbol
1 correlation is not taken into account (a white source is assumed).

PO U S R B the end. Observe that our algorithm ensures resynchronization
L - A at the end of the sequence; this property is given for free and
(b) does not need to be based on a “reversibility” property of the
Fig. 14. (a) Residual BER and (b) SER for differdnif/N,, for successive VL.C' Not|c_e that although the Symbo.l counter is not correctly
iterations (with a maximum of four iterations), for a Gauss—Markov source @fsnmated in the central part of the bit stream, symbol bound-
200 symbols quantized on 4 bits. The results are averaged over 500 AwW@Kes are correct. This is due to the so-called “resynchronization”
channel realizations. property of VLCs. As a consequence, the estimated bit stream
is correctin this area. This is evidenced by the central curve that
The synchronization losses have also been estimated. Tthisplays the true symbol sequence and the estimated sequence,
phenomenon is illustrated on Fig. 16 for a sequence of 60 syfaHowing the bit clock [each symbol valueis repeated times
bols. The top curve displays symbol lengths, alternating whiite£(s) = I]. However, the desynchronization becomes obvious
and black patches. The upper sequence represents the estinaidde symbol clock axis (bottom curve). These curves illustrate
symbols and the lower sequence the actual values. A desynclhihe-fact that a reasonable BER may nevertheless lead to a dra-
nization occurs at symbols 11 and 12 and is not corrected untilatic SER.
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! ) Fig. 18. Concentration of{,, on the trellis. The logarithm dP(K,,|Y") is
0 . . . ‘ ‘ :

o 10 20 20 m 50 50 70 displayed in gray scale for a 200-symbol sample path of the Gauss—Markov
source andz, /No = 0 dB.

Fig. 16. lllustration of synchronization losses. The black and white patches
on the top curve display symbol lengths for a sequence of 60 symbols. The . . ) .
estimated sequence is on top, the true one below. The symbol correspond@@iatral part of the trellis. Fig. 18 displays the logarithm of the

is also represented. The two other curves show the difference between dgsterior distributiorP?(K,,|Y") for each value ofi, assuming
estimated (dashed) and actual (solid) symbol values for each instant of the bit h | . level 7\7 — 0 dB. Simil '

clock (center) and of the symbol clock (bottom). a channe _nOISE ev b/ 0 = - oImi _ar curves ap_pe_ar
also for white sources (although the beam is larger). This figure
evidences that the complexity of estimation algorithms can be
significantly reduced by pruning methods, which would not ex-
plore all nodes of the trellis. Preliminary results show that the
complexity can be reduced by 50% to 90% without significant
loss in BER.

1st iteration

VIl. CONCLUSION

We have proposed a methodology for modeling a general
coding chain composed of three elements: a Markov source, a
variable length source coder, and a channel coder. This model
is studied in the formalism of Bayesian networks from which
estimation (i.e., decoding) algorithms derive immediately. The
optimal joint decoding algorithms must be based on a product
model gathering state representations of the three elements of
the chain. This product model is too large to have any practical
25 s use except in trivial cases. However, following properties evi-

denced in serial turbo-codes, joint decoding can be performed
Fig. 17. Amplitude of desynchronizations at the different iterations of thitQ an iterative procedure considering one factor of the product
joint source-channel turbo decoding. The results have been obtained fom@del at a time. This procedure usually requires the insertion of
Gauss—-Markov source of 200 symbols quantized on 4 bits. They have beghinterleaver between the components (or factors) of the model
averaged over 500 AWGN channel realizations. . .
that will be processed separately and is based on the exchange of
soft information between the dedicated decoders. In the present

We have studied the resynchronization power of our iteraase, one interleaver must be placed between the source coder
tive joint decoder by summing over the difference between and the channel coder, which brings some light technical diffi-
the true value of(,, and the estimated one. The result is dieulty since this interleaver must also be “variable length.” But,
vided by the number of bits in the sequence, which expressesprisingly, the Markov source and the source coder need not
the average desynchronization in symbols per bit. For the soubmeseparated by another interleaver. Actually, it can be proved
model we considered (with high intersymbol correlation), itethat a soft source decoding followed by a symbol stream esti-
ations are crucial for the resynchronization. At the fourth itemation is an optimal strategy. This result is straightforward for
ation, no desynchronizations were found /Ny > 1 dB, constant length source codes, and it is quite surprising that it
while symbol errors still remain. still holds for variable length source codes.

Finally, let us mention that the effect of constraints on the The scheme proposed in the present paper can be read as a
numbers of symbols and bits appears mostly at the extremitiedurfoo algorithm alternating the use of the Markov symbol source
the bit stream, where the trellis becomes narrow. Neverthelesgdel and the channel coder model, which both introduce re-
even at low SNRs, the uncertainty on the valugf remains dundancy in the bit stream sent over the channel. The soft de-
reasonably concentrated around its optimal value, even in ttwers for these extremal components communicate through the

2nd Neartion

3rd iteration

Average amplitude of de—synchronizations in #symbols/bit

©4th iteration

10° L
0 0.5 1

15
Eb/NO (08)
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source decoder, which can be read as a translator of soft inforfo]
mation from the bit clock to the symbol clock. This soft source
decoder relies on two kinds of information: the residual intra|;,
codeword redundancy (which is quite low in the case of entropy
coding) and mostly the length constraint for the bitstream. Th?ll]
latter ensures that th& symbols sequences produced by the
source model do match th¥€ bits sequences proposed by the
channel decoder. The role of this constraint is crucial for vari{12]
able length codes as noisy channels tend to “desynchronize” the
bit clock and the channel clock. Errors in the estimation of codef13]
word boundaries result in dramatic symbol error rates at the
receiver. Reversible variable length codewords have been dfy,
signed against this phenomenon. This reversibility property is
useless for the algorithm we propose, since synchronization %]
ensured both at the beginniagd at the enaf the bit stream.
Hence, only the augmented internal redundancy of reversiblge]
codes is useful against desynchronizations. Nevertheless, the
problem can be addressed directly by inserting dummy symbol[§7]
in the symbol stream, at some known positions, which serve as
anchors for source decoding. This “soft synchronization ideaf18l
is currently being investigated and has proved to augment CORrg;
siderably the autosynchronization power of the coding chain for
very reasonable losses in information rate. [20]
Finally, let us stress the parallel of variable length decoding
of Markov sources and speech recognition. Symbols can be ag4]
sociated to words of a sentence, satisfying a Markov model,
and variable length codewords can be compared to the variab[lgz]
number of acoustic segments in the pronunciation of a given
word. The same problems of joint segmentation and word est{23]
mation have been addressed in the literature (see [24] and rq§4]
erences therein), mainly with dynamic time warping (DTW) al-
gorithms. The connection could be inspiring, in particular for
pruning techniques and for the availability of specialized chipézs]
implementing these algorithms. [26]

(27]

28
REFERENCES (28]

[1] K. Sayood and J. C. Borkenhagen, “Use of residual redundancy in the
design of joint source-channel coderdEEEE Trans. Communvol. 39,

pp. 838—-846, June 1991.

F. Alajaji, N. Phamdo, and T. Fuja, “Channel codes that exploit the
residual redundancy in celp-encoded speedBEE Trans. Speech
Audio Process.vol. 4, pp. 325-336, Sept. 1996.

N. Phamdo and N. Farvardin, “Optimal detection of discrete Marko
sources over discrete memoryless channels—Applications to comb
source-channel coding,/[EEE Trans. Inform. Theoryvol. 40, pp.
186-193, Jan. 1994.

K. Sayoodet al, “A constrained joint source-channel coder design,
IEEE J. Select. Areas Communwol. 12, pp. 1584-1593, Dec. 1994.

K. P. Subbalakshmi and J. Vaisey, “Joint source-channel decoding of en-
tropy coded Markov sources over binary symmetric channel$tac.

Int. Conf. Commun., ICQMar. 1998, p. session 12.

D. J. Miller and M. Park, “A sequence-based approximate MMSE

(2]

(3]

»

[4]
(5]

(6]

1695

N. Demir and K. Sayood, “Joint source-channel coding for variable
length codes,” inProc. IEEE Data Compression Conf. DC®/ar.
1998, pp. 139-148.

R. Bauer and J. Hagenauer, “Iterative source-channel decoding using re-
versible variable length codes,” Rroc. IEEE Data Compression Conf.
DCC, Mar. 2000, pp. 93-102.

——, “Turbo fec/vlc decoding and its application to text compression,”
in Proc. Conf. Information Theory and Systenidar. 2000, pp.
WAB.6-WA6.11.

——, “Iterative source/channel decoding based on a trellis representa-
tion for variable length codes,” iRroc. Int. Symp. Information Theory,
ISIT, June 2000, p. 238.

, “Symbol-by-symbol map decoding of variable length codes,” in
Proc. 3rd ITG Conf. Source and Channel Codidgnuary 2000, pp.
111-116.

C. Berrou and A. Glavieux, “Near optimum error correcting coding and
decoding: Turbo-codes|EEE Trans. Commun.vol. 44, Oct. 1996.

B. J. Frey and D. J. C. MacKay, “A revolution: Belief propagation in
graphs with cycles,” ifProc. Neural Inform. Processing Systems Conf.
Dec. 1997.

R.J. McEliece, D. J. C. MacKay, and J.-F. Cheng, “Turbo decoding as an
instance of pearl’s belief propagation algorithfEEE J. Select. Areas

in Commun.vol. 16, pp. 140-152, Feb. 1998.

S. L. Lauritzen, “Graphical models,” Oxford University Press, Tech.
Rep., Oxford Statistical Science Series 17, 1996.

J. Pearl, “Fusion, propagation, and structuring in belief networkdj*

ficial Intelligence vol. 29, pp. 241-288, 1986.

E. Fabre, “New fast smoothers for multiscale systenSZE Trans. on
Signal Processingvol. 44, no. 8, pp. 1893-1911, August 1996.

L. R.Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error ratelEEE Trans. on Information
Theory vol. 20, pp. 284-287, March 1974.

A. Benveniste, B. C. Levy, E. Fabre, and P. Le Guernic, “A calculus of
stochastic systems: Specification, simulation, and hidden state estima-
tion,” Theoretical Computer Sciengeo. 152, pp. 171-217, 1995.

N. Wiberg, “Codes and decoding on general graphs,” Tech. Rep., Ph.D.
dissertation, Dept. Elec. Eng., Linkdping Univ., 1996.

R. J. McEliece and S. M. Aji, “The generalized distributive la¥gEE
Trans. Inform. Theonywol. 46, pp. 325-343, Mar. 2000.

M. Ostendorf, V. Digilakis, and O. A. Kimball, “From hmm to segment
models: A unified view of stochastic modeling for speech recognition,”
IEEE Trans. Speech Audio Processl. 4, pp. 360-378, Sept. 1996.

D. J. C. MacKay, “Good error-correcting codes based on very sparse
matrices,lEEE Trans. Inform. Theoryol. 45, pp. 399-431, Mar. 1999.

F. R. Kschischang and B. J. Frey, “Iterative decoding of compound codes
by probability propagation in graphical model$£EE J. Select. Areas
Commun,.vol. 16, pp. 219-230, Feb. 1998.

Y. Takishima, M. Wada, and H. Murakami, “Reversible variable length
codes,”|IEEE Trans. Communvol. 43, pp. 158-162, Apr. 1995.

L. Guivarch, J. C. Carlach, and P. Siohan, “Joint source-channel soft de-
coding of Huffman codes with turbo codes,”Rtoc. IEEE Data Com-
pression Conf. DCCMar. 2000, pp. 82-92.

Arnaud Guyader graduated in mathematics from the University of Bretagne
Yccidentale (Brest) in 1997 and received the M.Sc. degree in probability and
&tistics from the University of Rennes in 1998. Since 1998, he has been a
Ph.D. student at the University of Rennes.

His current research interests include coding theory.

(71

decoder for source coding over noisy channels using discrete hidderic Fabre graduated from Ecole Nationale Supérieure des Télécommunica-
Markov models,”IEEE Trans. Communvol. 46, pp. 222-231, Feb. tions (Paris) in 1990 and received the M.Sc. degree in probability and statistics
1998. from the University of Rennes in 1993 and the Ph.D. degree in electrical engi-
M. Park and D. J. Miller, “Decoding entropy-coded symbols over noispeering in 1994.

channels by MAP sequence estimation for asynchronous HMMs,” in In 1995, he was a Postdoc Researcher at the Laboratory of System Theory and
Proc. Conf. Inform. Sciences Sysilay 1998. Bioengineering (LADSEB-CNR), Padua, ltaly. Since 1996, he has been with

[8] A.H.Murad and T. E. Fuja, “Joint source-channel decoding of variablihe Institut National de Recherche en Informatique et Automatique (INRIA),

length encoded sources,” Rroc. Inform. Theory Workshop, ITWune Rennes, France. His research interests include multiresolution signal and image
1998, pp. 94-95. processing, belief networks, and information theory.



1696 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 9, SEPTEMBER 2001

Christine Guillemot received the Ph.D. degree from Ecole Nationaléatthias Robert received the M.Sc. degree in electrical engineering from the
Supérieure des Télécommunications (ENST) Paris. University of Rennes, France, in 2000.
From 1985 to October 1997, she was with France Telecom/CNET, where shéle is currently with IRISA-INRIA, France.
was involved in various projects in the domain of coding for TV, HDTV, and
multimedia applications. From January 1990 to 1991, she worked at Bellcore,
USA, as a Visiting Scientist. She is currently Director of Research at INRIA, in
charge of a research group dealing with image modeling, processing, and video
communication. Her research interests include signal and image processing,
video coding, and joint source and channel coding for video transmission over
the Internet and over wireless networks.
Dr. Guillemot is serving as an Associate Editor for IEERANSACTIONS ON
IMAGE PROCESSING



