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Abstract—We analyze the dependencies between the variables
involved in the source and channel coding chain. This analysis is
carried out in the framework of Bayesian networks, which provide
both an intuitive representation for the global model of the coding
chain and a way of deriving joint (soft) decoding algorithms. Three
sources of dependencies are involved in the chain: 1) the source
model, a Markov chain of symbols; 2) the source coder model,
based on a variable length code (VLC), for example a Huffman
code; and 3) the channel coder, based on a convolutional error cor-
recting code. Joint decoding relying on the hidden Markov model
(HMM) of the global coding chain is intractable, except in trivial
cases. We advocate instead an iterative procedure inspired from
serial turbo codes, in which the three models of the coding chain
are used alternately. This idea of using separately each factor of a
big product model inside an iterative procedure usually requires
the presence of an interleaver between successive components. We
show that only one interleaver is necessary here, placed between
the source coder and the channel coder. The decoding scheme we
propose can be viewed as a turbo algorithm using alternately the
intersymbol correlation due to the Markov source and the redun-
dancy introduced by the channel code. The intermediary element,
the source coder model, is used as a translator of soft information
from the bit clock to the symbol clock.

Index Terms—Bayesian network, data compression, entropy
coding, iterative decoding, joint source-channel decoding, proba-
bilistic inference, soft decoding, turbo code, variable length code.

I. INTRODUCTION

T HE ADVENT of wireless communications, often char-
acterized by narrowband and noisy channels, is creating

challenging problems in the area of coding. Design princi-
ples prevailing so far and stemming from Shannon’s source
and channel separation theorem are being reconsidered. The
separation theorem, stating that source and channel optimum
performance bounds can be approached as closely as desired by
designing independently source and channel coding strategies,
holds only under asymptotic conditions where both codes are
allowed infinite length and complexity. If the design of the
system is heavily constrained in terms of complexity or delay,
source and channel coders can be largely suboptimal.

Joint source and channel coding and decoding have therefore
gained considerable attention as viable alternatives for reliable
communication across noisy channels. For joint coding, the idea
relies often on capitalizing on source coder (SC) suboptimality,
by exploiting residual source redundancy (the so-called “excess-
rate”). As a consequence, joint source-channel decoding must
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make use of both forms of dependencies. First attempts at joint
source-channel decoding considered fixed rate source coding
systems [1]–[4]. However, the wide use of variable length codes
(VLCs) in data compression has motivated recent consideration
of variable length coded streams, focusing first on robust de-
coding of such bit streams. In [5]–[7], a Markov source (MS) of
symbols is assumed, which feeds a VLC source coder (Huffman
coder). A major weakness of VLC-coded streams comes from
the lack of synchronization between the symbol clock and the bit
clock, which makes them very sensitive to channel noise. A joint
VLC decoding relying on the residual redundancy of the MS has
been shown to reduce this effect. It is only lately that models in-
corporating both VLC-encoded sources and channel codes (CC)
have been considered [8]–[12]. The authors in [8] derive a global
stochastic automaton model of the transmitted bit stream by
computing the product of the separate models for the Markov
source (MS), the source coder (SC), and the channel coder (CC).
The resulting automaton is used to perform a MAP decoding
with the Viterbi algorithm. The approach provides the optimal
joint decoding of the chain but remains intractable for realistic
applications because of the state-complexity explosion phenom-
enon. In [10]–[13], the authors remove the memory assumption
for the source. They consider a general variable length SC fol-
lowed by a convolutional CC, these two components being sep-
arated by an interleaver. They propose a turbo-like iterative de-
coder for estimating the transmitted symbol stream, which alter-
nates channel decoding and VLC decoding. This solution has
the advantage of using one model at a time, thus avoiding the
state explosion phenomenon.

The purpose of this paper is to extend this turbo approach
to a general coding chain, encompassing as particular cases the
models of the papers above. The chain is composed of a Markov
source of symbols, followed by a variable length source coder
transforming symbols into information bits, the latter feeding
a convolutional channel coder.1 We also assume that both the
number of transmitted symbols and the corresponding number
of bits in the coded sequence are known. The former is usually
determineda priori by the transmission protocol, while the latter
can be determined at the receiver by isolating a prefix and a
postfix of the bistream. Such an assumption does not reduce the
generality of our framework. The difficulty is in the treatment of
this information. Estimation algorithms become simpler when
this information is not known.

We focus on an analysis and modeling of the dependencies
between the variables involved in the complete chain of source
and channel coding, by means of the Bayesian network for-

1The present work extends directly to semi-Markov models for the source.
Also, we consider a convolutional channel coder, but bloc codes induce the same
type of difficulties.
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malism. Bayesian networks are a natural tool to analyze the
structure both of stochastic dependencies and of constraints be-
tween variables, through a graphical representation. They are
also the relevant way of reading out conditional independence
relations in a model, which form the basis of fast estimation
algorithms (e.g., the Kalman filter, the BCJR, the Viterbi algo-
rithm, etc.). Indeed, the structure of Bayesian inference algo-
rithms, either exact or approximate, and for several criteria, can
often been derived “automatically” from the graph. We there-
fore address the problem of joint source and channel decoding
in this framework.

As in the early work of [8], our starting point is a state space
model of the three different elements in the chain: the symbol
source, the source coder, and the channel coder. These models
are cascaded to produce the bitstream sent over the channel, and
the randomness of variables is introduced by assuming a white
noise input of the cascade. The product of these three automata
induce immediately a state variable model of the bitstream:
the triple of states—one state for each model—appears to be a
Markov chain, the transitions of which generate the sequence of
output bits that are sent over the channel. The observed output
of a memoryless channel corresponds to noisy measurements
of these bits. Recovering the transmitted sequence of source
symbols from these noisy measurements is equivalent to infer-
ring the sequence of model states. Therefore we are exactly in
the HMM framework, for which fast estimation algorithms are
well known.

This nice picture suffers from two difficulties, however. First
we have, the presence oftwo time indexes: the symbol clock,
and the bit clock. The input of the source model is an i.i.d.
sequence that produces symbols with the right joint distribu-
tion (we will assume a Markov source in the sequel). Input and
output sequences are synchronous and indexed by the symbol
clock. At the other extremity, the channel coder gets a (cor-
related) sequence of useful bits, to which some redundancy is
incorporated. Input and output time indexes are proportional,
the coefficient being the rate of the error correcting code. No
difficulty here, and we define the bit clock as the index of the
channel coder input. By contrast, the central element, i.e., the
source coder, receives a sequence of (correlated) source symbols
and outputs variable length codewords. So it operates a clock
conversion with a varying rate. Actually, for a given number of
source symbols, the number of bits of the coded sequence is a
random variable, which is quite unusual. The second difficulty
is more classical; it comes from the fact thatthe state space di-
mension of the product model explodesin most practical cases,
so that a direct application of usual techniques is unaffordable,
except in trivial cases. In this paper, we thus rely on properties
evidenced by serial turbo codes to design an estimation strategy.
Instead of using the big product model, inference can be done in
an iterative way, making use of part of the global model at each
time.

In detail, this takes the following form. Instead of building the
Markov chain of the product model, one can directly consider
the Bayesian network corresponding to the serial connection of
the three HMMs, one for the source, one for the source coder
and one for the channel coder. This simplifies the Bayesian net-
work since “smaller” variables are involved. However, beyond
the time index difficulty, this results in a complex Bayesian net-
work with a high number of short cycles, and thus not amenable

to fast estimation algorithms. It was observed with turbo codes
[14]–[16] that efficient approximate estimators can be obtained
by running a belief propagation algorithm on acyclic Bayesian
network (which is theoretically “illegal”), provided the cycles
are long enough. The great innovation of turbo codes is that the
simple introduction of an interleaver between two models can
make short cycles become long. Adopting this principle, one can
design an iterative estimator working alternately on each factor
of the product model, with significant gain in complexity.

We use this idea in the following way, focusing first on a con-
stant length source code (CLC), in order to separate difficulties.
As it was already suggested in [10], we introduce an interleaver
between the source coder and the channel coder. The Bayesian
Network formalism shows that there is no need for a second
interleaver separating the Markov source and the source coder.
This allows the construction of an iterative soft decoder alter-
nating between the CC model and the joint model of the MS
SC,2 with the bit clock as time index. But the idea can be pushed
further. The joint MS SC model can actually be processed op-
timally by a sequential use of the SC model, followed by the
MS model. We end up with an iterative procedure between the
two sources of redundancy (the MS and the CC), where the in-
termediary SC model is used as a translator of soft information
from the bit clock to the symbol clock.

When we move to variable length source codes, a new phe-
nomenon comes into the picture: for a fixed number of symbols,
the number of output bits is random, which makes the structure
of the Bayesian network random. This difficulty remains even if
both the number of symbols and the number of bits are known,
since the segmentation of the bitstream into codewords remains
random. But surprisingly, all algorithms developed in the CLC
case extend to VLCs, which is a new result. In particular, even
in the case of VLCs, there is no need for an extra interleaver sep-
arating the MS and the SC. A successive use of these models is
optimal for joint decoding of the pair.

The rest of the paper is organized as follows. Section II de-
scribes part of the notation we use. Section III revisits briefly
classical estimation algorithms to give them a graphical inter-
pretation, on which we rely in the sequel. Section IV addresses
modeling issues in the case of constant length source codes
(CLC), in order to focus on the structure of the iterative algo-
rithm based on three models. However, we distinguish the two
time indexes. Section V relies on this material to study and solve
the extra difficulty introduced by variable length codes (VLC).
This appears to be only a technical extension, that does not
change the ideas of Section IV, but only makes them less ob-
viously applicable. Finally, experimental results are described
in Section VI, in which we observe the resynchronization prop-
erties of the algorithm.

II. NOTATIONS

Let be the sequence of source symbols, coded
into a sequence of information bits , by means
of a variable length source code (e.g., a Huffman code).and

represent generic time indexes for the symbol clock and the

2By contrast, [10] is assuming an i.i.d. source, which makes the source model
useless.
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Fig. 1. A graphical model depicting dependencies of processes
S; U; R and measurementsY and Z at the output of the channel.
This graph states that (S; U; R; Y; Z) factorizes according to
(S) � (U jS) � (RjU) � (Y jU) � (ZjR), where (U jS) and
(RjU) are singular, i.e., describe constraints.(Y jU) and (ZjR) are

defined by channel noise. White dots represent unobserved variables to
estimate, and black dots stand for observed variables.

bit clock, respectively. We denote by the codeword corre-
sponding to , so represents the bitstream

segmented into codewords. As mentioned in Section I, both
and are assumed to be known, since the difficulty is in

the treatment of this information (estimation algorithms become
simpler when one of these lengths is unknown). Observe that
the length of the information bit stream is a random variable
function of . A sequence of redundant bits is
constructed from by means of a (possibly punctured) system-
atic convolutional error correcting code. In the triple ,
all the randomness comes from, since and are deter-
ministic functions of . The bitstream is sent over a
memoryless channel and received as measurements (see
Fig. 1); so the problem we address consists of estimating
given the observed valuesand . We reserve capital letters
to random variables and small letters to values of these vari-
ables. For handling ranges of variables, we use the notation

or where is the index set
. We omit when all indexes are taken. Other

notations are defined later in the body of the paper.

III. B ACKGROUND ON ALGORITHMS

In the sequel, we analyze the structure of the coding chain in
the framework of Bayesian networks [17]. Bayesian networks
(BN) are the most natural tool to display the structure both of
stochastic dependencies and of constraints between random
variables. They also provide a powerful way of reading out
conditional independence relations in a model, and it is well
known that such relations are the key to fast estimation algo-
rithms. Indeed, the structure of Bayesian inference algorithms,
either exact or approximate, and for several criteria can been
derived “automatically” from the graphical representation
of the process. In particular, very efficient algorithms exist
as far as this graph is a tree, where efficiency refers to a
linear complexity with respect to the number of variables.
Such algorithms are obtained by combining simple primitive
operations:propagation, update,and merge(see [18] or [19,
Sec. 2]). There exist numerous ways of combining these prim-
itives, which makes the classification of estimation strategies
quite difficult, except with respect to the estimation criterion
they use. Moreover, many communities (re-)discovered in-
dependently some of these strategies, hence, we have a large
variety of names for very similar algorithms (e.g., Kalman
smoother, Raugh–Tung–Striebel algorithm, BCJR algorithm,
belief propagation, sum-product algorithm, etc.).

In this section, we briefly review some of these strategies for
a standard Markov process, which is enough for the sequel. The
classification follows: 1) the estimation criterion and 2) the gen-
eral organization of computations (either organized in sweeps
or “graph blind”). Our purpose is to gather here the equational
part of algorithms, in order to rely later on graphical arguments
to explain the organization of computations for more complex
structures.

The Markov process to estimate is . The
factorization is graphically rep-
resented by the oriented chain of Fig. 2. The processis
“hidden,” i.e., one only gets information about through the
(noisy) measurement process . Measurements
are assumed to be conditionally independent given, i.e.,

. They are also assumed to be local,
where locality means either that measures only, i.e.,

, or that measures the transition from
to , i.e., .

A. MPM Estimates

1) “Organized” Strategies: The maximum of posterior
marginals (MPM)3 is such that each is estimated individu-
ally according to

(1)

Hence, the objective is to obtain these posterior marginals. Com-
putations can be organized around the factorization

(2)

where denotes an obvious renormalization. The Markov
property allows a recursive computation of both terms of the
right-hand side. The “forward” sweep concerns the first term

(3)

where

(4)

Equation (4) is usually referred to as thepropagationor predic-
tion step. In theupdatestep (3), assumes mea-
sures ; it must be replaced by if mea-
sures the transition from to (from now on, we omit
mentioning this detail). The “backward” sweep provides the
second term in (2)

(5)

Since this quantity goes to zero as the number of measurements
augments, it is often handled in a renormalized form (over
variable ), hence, the in (5), which has no influence on

3In the image processing community, MPM is also read as “marginal posterior
modes.”
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(a) (b)

Fig. 2. A Markov processX and a measurement processY (a) on variables ofX or (b) on transitions ofX .

(2). This two-sweep organization of computations is sometimes
called the BCJR algorithm [20] and is well adapted to a defini-
tion of through transition probabilities . A
more symmetric version drops the left–right orientation in the
factorization of by relying on

(6)

which is amergeof two lateral conditional distributions on .
The second term of the numerator can be recursively obtained
by (4) and (3) with a backward factorization of . So (6)
requires and .

Remark: The posterior marginal is derived
immediately from byproducts of an MPM estimation algorithm.
For example, if factorization (2) has been chosen to base com-
putations, one has

(7)

In other words, an MPM estimation algorithm also provides the
posterior distribution ontransitionsof .

2) Graph-Blind Strategies:The above estimation strategies
organize computations into two sweeps or recursions, thus
following closely the graph of Fig. 2. By contrast, other
message-passing algorithms only specify local computations
and leave unspecified the general organization of message
circulations on the graph. Such methods appear in the decoding
of sparse parity check codes, for example. Because no global
knowledge of the graph is necessary, we refer to this family as
“graph-blind methods.”

The idea is to reach by increasing the number
of measurements in the conditioning part of ,
where . For our Markov process, let
us define variable index sets and

. Since and are
conditionally independent given , the following merge
equation holds:

(8)

For every , the algorithm maintains incoming messages
on every edge around , where are measure-

ments located beyond that edge from the standpoint of. For
instance, the edge brings to .
These messages are updated by merge and propagation. The
message sent by to is updated by

(9)

(10)

and symmetrically for the message sent to . Equation (10)
can be generalized by leaving the inclusion ofoptional. By
monotonicity, the only stable state of the algorithm is obtained
for and for all

. So, whatever the ordering of updates, (8) finally gives the de-
sired posterior marginals. Notice that variations of the algorithm
can be obtained by defining messages and updates on other fac-
torizations than (8), e.g.,

(11)

or any other Bayesian equation.4 Notice also that the organized
algorithms presented above come out as particular orderings of
update operations for particular factorizations of .

One specific ordering of computations is worth mentioning
here, in the case where measures variables of (not
transitions). It starts by computing local posterior distributions

for every and then organizes updates in two
sweeps, from left to right and right to left. This strategy
corresponds to computing first assuming is a white
noise with distribution and then taking
correlations into account. We will refer to it as algorithmin
the sequel.

B. MAP Estimates

The MAP criterion (maximuma posteriori) corresponds to
the optimal Bayesian estimation of the whole processbased
on all available measurements

(12)

hence, the optimization is over all possiblesequences . For
an index set and , let us define

notation by

(13)

(14)

4Remark: whenY measures transitions of processX , the indexn of mea-
surementY must be counted byL(n).
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This definition drops a multiplicative constant, which is use-
less for the estimation and leaves space to renormalizations
(over ), which favors the algorithms stability. The optimal
sequence can be obtained by gathering local estimates
defined by

(15)

hence, once again the objective is to obtain these “posterior
marginals.” Bayes factorizations like (2), (6), (8), or (11) remain
valid for . For example (2) becomes

(16)

In the same way, it is straightforward to check that all compu-
tations defined on extend to provided the operator is
replaced by the max operator. Hence, all estimation strategies
designed for the MPM criterion extend directly to the MAP,
which was already mentioned by several authors [21]–[23]. For
example, the “sum–product” algorithm for the MPM becomes
the so-called “max-sum” algorithm for the MAP [23] if one uses
the logarithm of , which is usually preferred.

This theoretical result is very useful for designing estimation
strategies, but is somehow suboptimal. The final max in (12)
and some update messages can be avoided by capitalizing on
intermediary max operations. For example while updating the
message in (10), the argument of the max
over can be stored as a function of : . When

is known, one directly has . This trick
is well known and implemented in the Viterbi algorithm.

C. Extrinsic Information

This notion represents an intermediary product of a belief
propagation algorithm. It has little relevance by itself but is com-
monly used for explaining the structure of iterative algorithms.
Let be some random variable to be estimated using two mea-
surements, and . One has the decomposition

(17)

The first term is thea priori information about , the second
one the information of the first measurementabout and
the last one the remaining information carried byabout
once is known, i.e., theextrinsic information . It
is often determined by

(18)

Notice that can be handled as the conditional dis-
tribution of apseudo—measurement on . It plays
the part of the rightmost term in (2) and, hence, can be read as
a message sent back toto update an estimate. We use this in-
terpretation in the sequel.

In the context of Markov models, the extrinsic information on
is often defined as

(19)

Fig. 3. Bayesian network of a symbol clock model for the pair MS+SC, in the
case of a constant length source code. Black dots show the observed variables.

In words, it represents the extra information carried byabout
once the local measurement is known. The notion of

extrinsic information as defined by (18) extends to.

IV. JOINT SOURCE-CHANNEL DECODING FORCONSTANT

LENGTH SOURCECODES

To clarify the structure of the algorithms developed for VLC-
encoded sources, we first consider codewords of constant length
. Constant length codes (CLC) make the problem much sim-

pler; with a VLC, one must both recover symbol boundaries
and transmitted symbols in the noisy bit stream, whereas here
the segmentation is known. Although the bit clock is a multiple
of the symbol clock, we distinguish them and build models for
both time indexes, in order to prepare for the VLC case. We start
with a decoder for the pair MSSC and prove that there exists
an optimal joint decoder using first the SC model and then the
MS model. We then consider the complete chain MSSC CC,
for which this strategy fails, and propose instead an iterative pro-
cedure.

A. Decoding of the Pair Markov SourceSource Coder

1) Symbol Clock Model:For simplicity, we consider a
symbol source described by an order-one Markov process.5

Symbols are translated into codewords by a determin-
istic function. Thanks to the constant length property, one has

. Gathering measurements into ,
we have a symbol clock model for MSSC that fits exactly
Section III (Fig. 3). Thus estimation algorithms are readily
available with complexity6 , where is the
set of possible source symbols.

2) Bit Clock Model: Notice that estimating is equivalent
to estimating . To design a bit clock model for the pair
MS SC, we must focus on and analyze the structure of its
distribution. can actually be modeled as a semi-Markov
process. We have ,
so the problem amounts to factorizing further each element.

For the first term, Bayes formula
suggests a stochastic automaton

in the form of a decision tree for generating codewords
(Fig. 4); each vertex of the tree corresponds to a tuple ,
from which two transitions are possible, one for and one
for . A bit clock model for follows immediately.
Let us define as the state (i.e., vertex) reached after
transitions of this automaton. Then is a Markov process

5The results in this paper extend directly to any semi-Markov source, which
allows a longer memory forS.

6Complexities are evaluated as the number of multiplications.
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Fig. 4. Example of a stochastic automaton associated to Bayes decomposition
of (U ) = (U jU ), for l = 3 and five possible source symbols,
with probabilities (0.08, 0.12, 0.3, 0.2, 0.3). Transitions probabilities are
mentioned close to the edges. Transitions upward produceU = 1 while
transitions downward produceU = 0.

Fig. 5. Bayesian network of a bit clock model for the pair MS+SC, in the case
of a constant length source code.

and is a deterministic function of its transitions, that is of
.

To factorize the remaining terms according to
the bit clock, we must proceed in the same way, butfor every
possible value of , or equivalently of . In other words,
for , we must keep track of the last symbol produced. Let
us define the general state variable as a pair where is
the value of the last completed symbol, with , and

is the current state of the stochastic automaton describing the
construction of the next symbol, following . Once
again is a Markov process, the transitions of which produce

(Fig. 5).
The last step of the construction consists of connecting

the local bit clock models for . This amounts to
identifying each terminal state with the initial state of the
next symbol. There are two practical ways to do so. Solution
views each leafnode as a root of the next tree; this preserves
the leaves of the tree as possible values forand removes the
rootnode. Solution is an improvement. Observe that the value
of changes in the transition from to , when a new
leaf is reached. Hence, not all pairs are possible for .
When is a leaf node, then is necessarily the corresponding
symbol. In other words, knowledge ofis useless when a new
symbol terminates. We denote such terminal states by ,
where is the root node of the tree. As a result, the state space

for is the product where is the set of inner
vertices of the dyadic tree.

The resulting Bayesian network of Fig. 5 is again amenable
to algorithms of Section III. The state space is larger:

, which requires more memory and means that a blackbox
algorithm for this model will result in complexity

. But the complexity cannot be evalu-
ated so loosely because the transition matrix is very sparse. Let
us consider steps together; with a rapid evaluation, from each

there are decisions to take to reach the next symbol,
which yields complexity . Hence, acareful
handling of this product model for MSSC reaches the same
performance as an estimation algorithm for MS alone.

3) Mixed Clocks Model:Following ideas that appeared in
iterative decoding, one could imagine estimating the symbol
stream by using the two models MS and SC alternatively,
provided an interleaver is inserted between the source and the
source coder. This idea is misleading here. We now prove that
performing first a CLC decoding and injecting its soft output
into an estimation algorithm for the MS model is an optimal
strategy. This is due to the pointwise translation of symbols
into codewords.

Let us reconsider the symbol clock model (Fig. 3). Algorithm
applied to and corresponds to the following7 :

1) computing posterior marginals [or the ratio
];

2) using these quantities as input of a two sweep procedure
yielding .

As mentioned earlier, operation 1 amounts to estimating,
i.e., computing , assuming symbols are independent
(hence, notation ), and operation 2 is in charge of incorpo-
rating the extra knowledge on intersymbol correlation.

Although the symbol clock model looks natural for these two
operations, it may be interesting to perform the first one with a
bit clock model. This first operation corresponds to estimating
assuming , which can be done as in the pre-
vious section, on a bit clock basis. Symbol independence brings
some simplifications into the picture. The state variabledoes
not need any more to keep track of the last symbol produced.
So reduces to a simple vertexof the dyadic tree, and the
connection of local models is done with solution. One point
remains to be solved: how to get soft information onfrom
this model? The solution is straightforward: there is no need to
estimate bits nor codewords , it suffices to estimate the
state process . Indeed, corresponds to the desired

since the possible values for are the leaves of the
dyadic tree, i.e., possible symbols at time. Hence, the transla-
tion is immediate. By the way, notice that is readily
obtained with one single sweep, since symbol independence in-
duces .

Operation 1 in algorithm relies only on the inner codeword
redundancy. If a (constant length) Huffman code is used, this
represents at most 1 bit of redundancy per codeword, which is
quite low. Anyway, the interest of algorithm is to separate the
use of the SC model and of the MS model. The SC model incor-
porates information on thestructureof codewords (constraints
in some sense) and is used to translate soft information from the
bit clock to the symbol clock. The MS model incorporates the
major part of source redundancy.

In terms of complexity, operation 1 amounts to estimating
, so its complexity is negligible compared

to the complexity of operation 2, .

7MPM is assumed, but the argument remains valid with.
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Fig. 6. Bayesian network of a bit clock model for the complete chain
MS+SC+CC, in the case of a constant length source code. MeasurementsY

andZ are not represented for the sake of clarity.

B. Joint Decoding of the Complete Chain

While the SC removes some redundancy of the source (gener-
ally the intra-symbol redundancy), the CC reintroduces redun-
dancy in the bit stream. Hence, the joint use of the two sources
of information MS and CC must be done with care. In this paper
we consider a systematic convolutional channel code which, we
believe, captures the structural difficulty of the joint decoding
problem. Small block-codes are easy to handle as far as they
cover one (or an integer number of) source symbol(s), since
the Bayesian network incorporating redundant bitsremains
(close to) a tree. In the general case, and in particular after VLC
coding, the intersymbol correlation due to block-codes brings
the same difficulties as convolutional codes, since we come up
with a very loopy BN, as shown below.

We rely on a trellis representation for the channel code
(which could also capture the case of block-codes), so the CC
has a state-space representation, with as state variable.
Without loss of generality, we assume a bit clock recursion
for the state equation. The CC takes information bits one
at a time and yields a number of redundant bits, possibly
none. The Bayesian network incorporating the complete chain
MS SC CC is depicted on Fig. 6. The top part represents
the bit clock product model for MSSC, and the bottom part
represents the serial concatenation of a convolutional encoder.
Variables of are depicted as functions of the coder state
but could as well be functions of state transitions. Pointwise
measurements and on and are not represented for
clarity.

This BN is not a tree, hence, algorithms of Section III, which
are optimal for trees only, do not apply directly. A first solution
to get back to a tree diagram is by means of “node aggregation.”
It consists of grouping nodes in order to remove all the cycles.
Observe that the pair forms a Markov process and that

is a function of the transition from
to . So, by adopting this node aggregation, we are
back to the standard framework of Section III at the expense of
a dramatic state augmentation, however, since now
gathers the last symbol of the source, the state of the source
coder, and the state of the channel coder. This construction of a
product model for the coding chain has been advocated in very
simple cases by some authors [8] but is unaffordable in practical
situations. A reasonable source alphabet satisfies or
more, and usual convolutional coders need 5 bits of memory,
hence, a state space dimension of or more.

An alternate solution to node aggregation is suggested by (se-
rial) turbo codes. It was observed that the simple introduction of

Fig. 7. Introduction of an interleaver to make short cycles long in the joint BN.
EachR may contain 0,1, or several redundant bits.

an interleaver between the pair MSSC and the channel coder
makes short cycles of the BN become long (Fig. 7). A graph-
ical model containing only long cycles can be locally approx-
imated by a tree, around a given variable, taking into account
that the correlation decays exponentially fast with the distance.
Therefore, estimation algorithms designed for trees give good
approximations on graphs with long cycles.

The easiest strategies to implement on a BN with loops be-
long to the “graph blind” family, as far as there is no obvious or-
ganization of message circulations. Updating all edge messages
at a time amounts to collecting measurements lying at distance
1, then 2, and so on around each node, which provides a simple
way to tune the tree approximation by defining a horizon to mea-
surements involved in the estimates. In the case of concatenated
Markov models, it is generally preferred to organize computa-
tions, for matters of simplicity in the decoding. The usual (turbo)
strategy follows an iterative scheme alternating the use of the
two models. It completes message circulations in one model
(two sweeps) before updating messages toward the other model,
which is processed in the same way. This iterative procedure
offers the advantage of isolating two soft decoders, which min-
imizes cultural changes with respect to the separate decoding
approach and allows some interpretation of the approximations
made, as shown below.

1) Iterative Scheme With Two Models:Here, we stick to this
traditional architecture of turbo algorithms and design an iter-
ative scheme alternating uses of the CC model and of the joint
MS SC model.

We consider the MPM criterion and rely on Fig. 1 to
give a macroscopic view of the procedure. Ideally, the
first step computes using the CC model,
assuming some distribution on the input . Ob-
serve that is in-
sensitive to the choice of distribution on since

; hence, can be
chosen so as to make a white noise. The second step uses

in conjunction with , as input to an estimation
of based on the true distribution , as described by the
MS CC model.

This picture suffers from a severe difficulty;
is too complex to be handled globally because bits of
are correlated given . In particular, could not
be used as input to the Markov model of the pair MSSC
since it is not homogeneous to a pointwise measurement
process on . Therefore an approximation is made after
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Fig. 8. Computing extrinsic information with the CC model. Primed lettersU ; Y andE stand for interleaved versions ofU; Y andE . E represents
Ext (Y; ZjY ). The equivalence sign means that the posterior distribution onU givenY andE is identical to the posterior distribution givenY andZ and
based on the CC model.

Fig. 9. Computing extrinsic information with the MS+SC model.E representsExt (Y jY ). The equivalence sign means that the posterior distribution on
U givenY ; E andE is identical to the posterior distribution givenY andE and based on the MS+SC model.

the first step. One introduces the white noise approximation
which yields

(20)

This has a double advantage.

• Firstly, each of the local extrinsic information
can now be used as a local measurement

on , thus allowing the use of the joint Markov model
for MS SC to get , an approximation of the
true .

• Secondly, the assumption of a white noise initial distribu-
tion for allows the use of the CC
Markov model to obtain .

Unfortunately, unlike the global extrinsic information, this local
extrinsic information depends on the choice of. The better the
neighbors of are estimated, the better the extrinsic informa-
tion on . Hence, one should inject as much prior information
as possible in the distribution, still keeping the white noise
assumption. This suggests the use of for , from
which the effect of local measurementsand
must be removed. Let us define8

(21)

We replace the prior at the input of the CC decoder by the
new prior

(22)

which closes the first loop of the iterative procedure.
Once again, this architecture rephrases the turbo algorithm

for serial turbo codes and is nothing more than one possible

8Finding a good notation is difficult for this quantity, that depends both on
Y andZ. The correct notation should beExt (Y; Ext jY ; Ext ). We
choose to focus on the dependence onY

organization of message circulations on the (loopy) BN of the
joint model. Figs. 8 and 9 illustrate the two steps of one it-
eration, incorporating also the interleaver. Local extrinsic in-
formations are represented as grey patches, indicating they be-
have as pointwise measurements. Fig. 8 represents the result of
soft decoding with the CC model, and appears
as a grey square close to each. Fig. 9 depicts the second
step, making use of the MSSC Markov model, with and

as local measurements. The resulting extrinsic in-
formation is represented as a grey triangle close
to each .

Remarks:

• At the second step of each iteration (Fig. 9), one needs the
posterior distribution on , which follows from the pos-
terior distribution on pairs . This increases
the computational complexity and is in favor of a small
state space .

• Stopping the algorithm at the first iteration amounts to
performing a soft channel decoding followed by source
decoding.

• At the last iteration, one should not keep an MPM esti-
mate of the bit stream , since a bit-by-bit MPM estima-
tion may very well yield nonvalid codewords. Instead, the
MPM estimates of symbols must be read out of the
MPM estimate of the state process: gives .

• Finally, notice that the final MPM estimation of the useful
bitstream with the MS SC model can be replaced by
a MAP estimation, considering extrinsic information as
extra measurements. The MAP estimate of the bitstream

necessarily gives valid codewords, since it corresponds
to the MAP estimate of the symbol stream.

2) Iterative Scheme with Three Models:With no additional
complexity, the decoding of the MSSC pair (second step of
each iteration) can be performed with the mixed clocks model.
This amounts to estimating the bit streamusing first the
intracodeword redundancy (i.e., the SC model alone), exactly
as above (Section IV-B1). More precisely, the state process
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Fig. 10. With constant length source codes, the interleaver can be defined on
symbols instead of bits and placed either before or after the source coder.

of the SC model is estimated. Then the symbol stream can in
turn be estimated using the intersymbol correlation (i.e., the
MS model), as was shown in Section IV-A3. To prepare for the
next iteration, the resulting posterior distributions
must be transformed back into , which is the only
novelty. This “clock conversion” is straightforward, as shown
in Section IV-A2, and is much simpler than in Section IV-B1
since no posterior distribution on pairs is neces-
sary (see the first remark there).

This last approach results in a completely separate use of
the three models in the chain, provided one interleaver is in-
troduced. We have chosen an architecture where the interleaver
is placed between the SC and the CC. Notice that the same ap-
proach remains valid with the interleaver placed between the
MS and the SC. This requires us to design a symbol clock model
of the CC, which can be done by aggregatingconsecutive states
of the CC (Fig. 10). The advantage lies in a better white noise ap-
proximation , hence, a better
treatment of the extrinsic information of the CC than in (20).
This is done, however, at the expense of a more complex soft
channel decoder.

V. JOINT SOURCE-CHANNEL DECODING FORVARIABLE

LENGTH SOURCECODES

This section addresses the central purpose of the paper, the
general case of VLC encoded sources. Lengthsand , of
the symbol stream and of the bit stream, are supposed to be
known; we will indicate how algorithms simplify when one of
these information is missing. We focus on the joint decoding
of the pair MS SC, since the introduction of the CC follows
the same lines as before, either an unrealistic product model is
constructed or an iterative approach is chosen. The difficulty
of VLCs comes from the lack of synchronization between the
symbol clock and the bit clock. In other words, the estimation of
the transmitted bit stream must be performed jointly with itsseg-
mentation. This makes VLCs less robust to transmission noise,
since more information must be recovered for their decoding. To
estimate the segmentation of the received bit stream into code-
words, one must determine the value of the symbol clock at
each bit instant , when a bit clock model is used for estimation.
Conversely, when a symbol clock model is used, one must de-
termine the value of the bit clock at each symbol instant.

Fig. 11. Bayesian network of a symbol clock model for the pair MS+SC,
in the case of a variable length source code. The tree-shaped BN is random;
connections depend on values ofS.

We therefore review the models developed in the previous sec-
tion in order to introduce these clock variables and show how
algorithms adapt.

A. Symbol Clock Model

Let us define as the number of bits in the VLC coding of
symbols . Starting with , one has the recursion

(23)

where is the length of the codeword associated to
. We still assume is a Markov chain, hence, the extended

process composed of pairs remains a Markov
chain.9 The Bayesian network of Fig. 3 transforms into the
one of Fig. 11, where the codeword has been further ex-
panded to display its internal bits . The simi-
larity is both inspiring and misleading. Apparently one still has
a tree-shaped graphical representation, which is favorable to es-
timation algorithms. But a closer look reveals that the tree struc-
ture israndom! Indeed, the connection from to is
actually a connection to a variable number of bits, at a variable
position in the bitstream. Therefore the tree structure varies with
the values of process .

Nevertheless, we now demonstrate a striking property,the es-
timation of can be performed exactly as before, just ig-
noring this random BN phenomenon. More precisely, the orga-
nized estimation strategies of Section III-A1 remain valid. For
simplicity, we do not develop a full theoretical argument, which
would go beyond the scope of this paper. Instead, we show that
factorization (2) still holds under the form

(24)

where is defined below, from which one can easily check
that all other formulas of Section III-A1 hold also. Quotation
marks should appear around the right-hand-side term, to
indicate that a quantity like is not a correct
conditional distribution on . The conditioning variable

varies with values of . However,
handling this object as a regular conditional distribution allows
a correct computation of , which is properly
defined.

9With our conventions, notationN stands either for process(N ) or for the
length of the bitstream. But the context generally solves any ambiguity on the
meaning ofN .
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Let us start with the definition of . The ran-
domness of the tree structure is due to. Given process , and
thus process , the tree structure is fixed, so we have

(25)

(26)

(27)

Equation (27) holds because for every value
of the pair , vectors and

are perfectly defined and are
conditionally independent. Hence, the required conditional
distributions on given are properly defined. We
can further define

(28)

which sums to one as an ordinary distribution, as far as we start
summations by the part.

Pushing further, the procedure to define and then
fails. There is no simple way to give a meaning

to by summing over , because the very
definition of requires the knowledge of .
We proceed in another way. Equations (27) and (28) yield

(29)

In practice, one sampleof the measurement processis avail-
able, as input to the estimation algorithm, and

is obtained by renormalizing . Let us de-
fine for that particular value as

(30)

where stands for a renormalization over . Then (24)
holds for that particular value, which is all we need in prac-
tice for estimating . One easily checks that recursions of
Section III-A-1 also hold10 with this definition of .

As a consequence, symbol clock based decoding algorithms
developed for CLC encoded sources remain valid for VLCs. The
only (light) difference lies in the computation of ,
which requires us to pick measurements at the right place in
the received bitstream. A direct computation of
is possible but seems inappropriate because it does not follow
the natural time index of measurements, which is the bit clock.
An alternate solution is proposed in Section V-D, with similar
complexity.

Soft Information on Bits:The use of a symbol clock model
for iterative decoding of the chain MSSC CC requires the
translation of posterior marginals into posterior
marginals . This point is developed in Section V-D.

10No big mystery in the above developments—estimation algorithms rely on
the factorization properties of the distribution(S; N; Y ); renormalizations
appearing in computations are generally harmless and mainly meant to favor the
stability of algorithms. Hence, a proper definition of conditional probabilities is
useless.

Constraints on the Number of Bits/Symbols:An estimation
algorithm based on the symbol clock model defined so far yields
an optimal sequence of pairs . In other words, the best
sequence of symbols is chosen regardless of its length in
number of bits. The easiest way to incorporate knowledge on
the number of bits is to add one extra measurement node on
the last pair stating that equals the required
number of bits. This measurement node is particular since there
is no observation noise in the measurement; it actually encodes
a constraint. Another strategy consists of computing a model for
process conditionally to the fact that the last value
is the required number of bits. It can be shown that this model
is still a Markov chain, but homogeneity is lost.

When the number of bits is known, and the number of sym-
bols is left free, the Markov model on process
must be modified. First, must be large enough to allow all
symbol sequences of bits. Then, once reaches the required
length, the model must enter and remain in a special state for
which all future measurements are noninformative.

B. Bit Clock Model

The procedure to build a bit clock model for the pair MSSC
follows the lines of Section IV-A2. We have the factorization

, the terms of which must be decom-
posed further to display a bit clock recursion.

The decomposition of each term can be done
as before, by mapping this conditional distribution on the tree
representation of codewords. In usual entropy-coding schemes,
it corresponds to a Huffman tree for the stationary distribution
of the symbol source. Again, this yields a stochastic automaton
construction of the th codeword, which can be put in state
space form. The state variable is a pair , where is
the last symbol produced anda vertex of the codeword tree.
By contrast with the fixed length case, knowing the bit index
is not sufficient to determine the rankof the symbol being
constructed, i.e., to determine what probability
governs the next transition. Therefore, this information must be
available jointly with the state variable . Let us denote by
the number of achieved symbols at time. The connection of
local models now amounts to defining a Markov chain distribu-
tion on pairs . For what concerns the part, trees are
connected one to the other like in the CLC case (Section IV-A2),
with either solution or solution . The transition probability
from to is thus determined by . For
the part, each time a new symbol is
achieved by , i.e., each time reaches a new leafnode,
otherwise .

To ensure that the last bit of the chain terminates a symbol,
an extra measurement (or constraint) node can be added on
the last state . This measurement takes the form

if is a leafnode, and 0 otherwise (normal-
ization is useless).

In terms of complexity, the symbol clock model and the
bit clock model are equivalent, as in the CLC case, provided
the sparse transition matrix of the latter is handled properly.
This will become clear in the next section. Again, if black
box algorithms are used, the state space size favors the
symbol clock model. Notice also that extracting posterior
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marginals requires the transition posterior marginals
, which is a large object and

penalizes this model.
Constraints on the Number of Bits/Symbols:The bit clock

model as defined above imposes no constraint on the number of
symbols. The symbol counter only helps selecting the right
transition probability on symbols. So when is a stationary
Markov chain, becomes useless and can be removed. An
estimation algorithm based on this model will yield the best
decoding of the sequence of bits, regardless of the number
of symbols.

If the number of symbols is known, this information can be
incorporated as before, by adding an extra measurement on the
last state of the bit clock model, constraining the
value of .

Symmetrically to the symbol clock model, for the case of a
fixed number of symbols and a free number of bits, the model
must be modified. must be set large enough to capture the
longest bit stream. And when the right number of symbols is
reached in some , the model must enter and remain in
a special state for which all future measurements are noninfor-
mative.

C. Trellis for Joint Decoding

The relationship between the symbol clock model and the bit
clock model is best evidenced using a global trellis representa-
tion, as suggested in [12], [13]. Actually, the trellises of the two
models are almost identical; models essentially differ by the def-
inition of state variables that involve different cuts of the trellis.

Let us define astate of the global trellis as a 4-tuple
where

last completed symbol;
vertex of the Huffman tree;
number of completed symbols;
length of the bit stream up to that state.

Hence, the two clock indexes appear in this definition of a
state. Transitions are defined in the following way (we adopt
solution for connecting successive codeword trees). Let

and be two states, a
transition from to is possible iff

1) ;
2) is a leafnode , otherwise ;
3) is a leafnode is the corresponding symbol, oth-

erwise ;
4) is a successor of on the codeword tree, or is a

leafnode and an immediate successor of the rootnode.

Rule 4 makes each terminal leafnode of a codeword tree the
rootnode of the next tree (solution). Transition obvi-
ously produces bit which belongs to symbol , given
that the th symbol was . Hence, the transition likelihood is
determined by the transition on the codeword tree,
equipped with (again, if is a leafnode, it
must be read as the rootnode).

Fig. 12 gives an example of a global trellis for the pair
MS SC constrained to produce symbols in a length bit
stream. Only the part of states is represented for clarity,
for codeword lengths varying between 1 and 3 bits. Let us recall

Fig. 12. Global trellis of the pair MS+SC, constrained to produceK symbols
onN bits. Only the(k; n) part of states is represented. Vertical cuts define the
bit clock model, and horizontal cuts (after some state elimination) define the
symbol clock model.

some obvious properties of trellises. Each path from the initial
state (bottom-left) to a final state (top-right) corresponds to one
possible sequence of symbols and bits. The probability of a path
is naturally the product of all transition probabilities, and over
all possible paths that probability sums to 1. The probability
of a state is the sum of path probabilities over all paths going
through that state. States can be removed from the trellis, for
a model reduction purpose, for example. Whenis removed,
each predecessor must be connected to all successors,
and path probabilities follow accordingly. Acut of the trellis
is a set of states such that none of them is a successor of
another and such that every path of the trellis goes through one
(unique) state of that set. As a consequence, the sum of state
probabilities over a cut is 1. Successive cuts allow us to define
state variables and consequently a state space representation
of the trellis. For example, states with the
same value form a cut at bit time . Let us define as the
random variable taking values in that cut, then one recovers the
bit clock model in the Markov chain . The symbol
clock model can be recovered in a similar manner. Let us first
remove all states for which is an internal
node of the codeword tree. Then only states corresponding to
leaf nodes, i.e., symbols, remain in the trellis. Notice thatand

represent the same symbol in the remaining states, hence,
the state space dimension can be reduced. On that transformed
trellis, states with identical symbol clock values define cuts
corresponding to the symbol clock model.

Each transition of the trellis produces one bit, say
, and thus is associated to one measurement, .

Let us multiply the transition probability by the conditional like-
lihood . Then a MAP estimation amounts
to computing the best path of the trellis for the new transition
costs. By contrast, MPM estimation computes the probability of
each state, for this modified transition probability, performing
the adequate renormalizations in successive cuts. It becomes
quite obvious on this representation that the bit clock model and
the symbol clock model require the same amount of computa-
tions. However, states are smaller for the latter, at the expense
of a dense transition matrix, and states are larger for the former,
with a sparse transition matrix. If this sparsity is ignored, com-
plexity augments dramatically.

As mentioned in the previous sections, the constraint on the
number of symbols/bits can be placed on the last state of the
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Fig. 13. Range of possible states of the trellis whenK orN is left free. The slopes of boundaries are determined by the shortest and longest codeword.

model. However, this requires visiting much more states than
necessary (see Fig. 13); for example, with the bit clock model,
all states with a wrong number of symbols will be discarded
at time . An alternate solution consists of taking as prior a
Markov modelincluding the constraint. Here, the drawback is
the inhomogeneity of the model. The easiest solution is a mix-
ture—it keeps the original unconstrained model, but does not
visit states that will not satisfy the final constraint. This is harm-
less since such states have a null contribution to the result.

D. Mixed Clocks Model

Following ideas developed for the CLC case, we now con-
sider an estimation strategy using separately the MS model and
the SC model. It offers the advantage of requiring smaller state
vectors, in particular for the bit clock model of the source coder.
Surprisingly, algorithm remains valid with a VLC, up to some
technical modifications.

Let us recall the principle for the CLC case. The point is to get
or more precisely , which serves as input

to an estimation algorithm for the MS alone (symbol clock).
This quantity comes as a byproduct of the forward sweep of an
MPM algorithm for the SC model (bit clock), assuming sym-
bols are independent. One has , hence,

.
Symmetrically, in the VLC case the point is to get

and use it as input to a two-sweep estimation
algorithm on the MS model (Section V-A). We now show how

derives from the forward sweep of an MPM
algorithm on the SC model fed with independent symbols.

How to Obtain : Let us assume a source
of independent symbols . As shown in
Section V-A, the model must be augmented with a bit counter

satisfying (23). This counter is necessary to
recover symbol boundaries in the bit stream, and to identify
measurements associated to a given symbol. Notice that
the augmented process is not a white noise
anymore but becomes a Markov chain, precisely because of
recursion (23). Its transition probability is given by

(31)

A forward sweep of an MPM algorithm on this symbol
clock model produces for all values of . A
“backward reading” of recursion equations provide a way of
extracting . The update equation (3) becomes

(32)

hence, the desired by

(33)

The denumerator derives from the modified propagation (or pre-
diction) equation (4)

(34)

(35)

(36)

is given and comes from
, which concludes the first point.

How to Obtain : Of course, the interest of
the method is to determine with the bit clock
model of the SC alone. This is the most natural manner of re-
cursively introducing measurements.

As in the CLC case, when symbols are independent, the SC
state variable is still a pair , but does not need
any more to keep track of the last symbol produced, hence, it
reduces to the part. The global trellis associated to this model
reproduces the one of Section V-C, except for thecomponent
of states, which disappears.

A complete MPM algorithm on this trellis computes the
posterior probability of each state given all measurements:

. This posterior probability sums to 1 overall
cuts of the trellis. However, we actually need the result of the
forward sweep only, for which this nice normalization result
does not hold. Let us assume that an MPM algorithm is run
over the trellis without performing any renormalization. At
the end of the forward sweep one gets . The
distribution we are looking for corresponds
to normalized over thehorizontal cut
defined by fixed, free, and a leafnode of the codeword
tree (see Fig. 12). But a true MPM algorithm, assuming a
recursion on , recursively normalizes over
theverticalcut at bit time , defined by fixed, free, and

free. Therefore, either vertical normalizations are removed
(which does not favor the stability of the MPM procedure) or



1692 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 9, SEPTEMBER 2001

the successive vertical renormalization factors must be stored,
in order to renormalize correctly the horizontal cuts.

Soft Information on : : The use of a symbol
clock model for iterative decoding of the chain MSSC CC
requires the translation of posterior marginals
into posterior marginals . To explain this proce-
dure, we rely on the trellis representation of Section V-C.
Conditionally to measurements and to the termination
constraints, the process still has a Markov chain
structure. In other words, the conditional law can
be expanded on the global trellis with states . Let
us denote by the posterior distribution on . Then

is determined by the probability of
transitions producing bit
value at bit time and inside the th symbol. Since the bit
value produced by transition on the trellis depends only
on the corresponding transition on the codeword tree,
one has

(37)

(38)

Equation (38) expresses that
requires only a compressed version of the global trellis,
where memory of the last symbol produced has been
removed. This compressed trellis corresponds to re-
placing the true distribution

by
. In other words, only the

posterior marginals are necessary to determine
and consequently . To summarize,

the translation of soft information on pairs into
soft information on can be done by: 1) decomposing

into transition probabilities; 2) placing
these probabilities on edges of the reduced trellis, composed of
states ; and 3) collecting transition probabilities cor-
responding to the production of bit (“vertical” summations
on Fig. 12).

Complexity: In terms of complexity, results are similar to
the case of CLCs. The total amount of computations are iden-
tical in the three strategies, up to some multiplicative constant.
Basically, all vertices of the global trellis must be visited. The
symbol clock model works on a reduced state space but deals
with a dense transition matrix, whereas the bit clock model uses
a larger state space and involves a sparse transition matrix. Com-
plexities remain similar as far as this sparsity is properly han-
dled (which is not easy to implement). But the bit clock model
is penalized for computing , since it requires posterior
transition probabilities between large states. The mixed clocks
model case reduces the overhead of soft information conversion

and preserves the advantage of a bit clock recursion for the in-
troduction of measurements.

VI. EXPERIMENTS

To evaluate the performance of the joint decoding pro-
cedure, experiments have been performed on a first-order
Gauss–Markov source with zero-mean unit-variance and
correlation factor . The source is quantized with a 16
levels uniform quantizer (4 bits) on the interval [3, 3], and
we consider sequences of symbols. The VLC source
coder is based on a Huffman code, designed for the stationary
distribution of the source. The channel code is a recursive
systematic convolutional code of rate 1/2, defined by the
polynomials and .
Since very few errors have been observed with rate 1/2, we have
augmented it to 3/4 by puncturing the redundant bit stream. A
variable size interleaver is introduced between the source coder
and the channel coder. All the simulations reported here have
been performed assuming an additive white Gaussian channel
with a BPSK modulation. The results are averaged over 500
channel realizations.

Fig. 14 provides the residual bit-error rates (BER) and
symbol-error rates (SER) for different channel . On
each plot, the top curve corresponds to an ML estimation
of the bitstream assuming independent bits (and no channel
coding), followed by a hard Huffman decoding. On the BER
plot, the second curve corresponds to a MAP channel decoding,
assuming an input of independent bits. The third one is the
result of the first iteration, where knowledge on symbol corre-
lation and codeword structure has been introduced. Successive
curves show the extra gain of iterations in the procedure, which
depends on the degree of redundancy present on both sides of
the source coder (see the next experiment, assuming indepen-
dent symbols). For a BER of 10, the joint source-channel
turbo decoding system based on the three models brings at the
first iteration a gain of 1 dB over the classical MAP channel
decoding (with rate 3/4). An additional gain of around 2.5 dB
has been obtained between the first and the fourth iterations.

The same experiments have been performed assuming the
symbol source is white (Fig. 15), in order to evidence the gain
introduced by the intersymbol correlation. On the BER plot, the
top curve still represents the error rate without channel coding.
The second one is obtained using the CC model only (first step
of the first iteration). Then comes the BER after the first itera-
tion for a white noise model, which can be viewed as the BER at
the output of the SC model for the Gauss–Markov source. And
the lowest curve is the BER at the end of the first iteration for
the Gauss–Markov source. Hence, these four curves help with
understanding the effect of each component in the model. As
expected, the SC model has little influence since it uses little bit
correlation and mainly relies on constraints on the number of
bits and on codeword structure. Nevertheless, this effect is suffi-
cient enough to evidence some gain in the successive iterations,
when symbols are assumed to be independent. A comparison
with the Markov source case shows that taking the intersymbol
correlation into account brings a gain of more than 2 dB for the
SER.
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(a)

(b)

Fig. 14. (a) Residual BER and (b) SER for differentE =N , for successive
iterations (with a maximum of four iterations), for a Gauss–Markov source of
200 symbols quantized on 4 bits. The results are averaged over 500 AWGN
channel realizations.

The synchronization losses have also been estimated. This
phenomenon is illustrated on Fig. 16 for a sequence of 60 sym-
bols. The top curve displays symbol lengths, alternating white
and black patches. The upper sequence represents the estimated
symbols and the lower sequence the actual values. A desynchro-
nization occurs at symbols 11 and 12 and is not corrected until

(a)

(b)

Fig. 15. Same conditions as the previous figure, except that intersymbol
correlation is not taken into account (a white source is assumed).

the end. Observe that our algorithm ensures resynchronization
at the end of the sequence; this property is given for free and
does not need to be based on a “reversibility” property of the
VLC. Notice that although the symbol counter is not correctly
estimated in the central part of the bit stream, symbol bound-
aries are correct. This is due to the so-called “resynchronization”
property of VLCs. As a consequence, the estimated bit stream
is correct in this area. This is evidenced by the central curve that
displays the true symbol sequence and the estimated sequence,
following the bit clock [each symbol valueis repeated times
if ]. However, the desynchronization becomes obvious
on the symbol clock axis (bottom curve). These curves illustrate
the fact that a reasonable BER may nevertheless lead to a dra-
matic SER.
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Fig. 16. Illustration of synchronization losses. The black and white patches
on the top curve display symbol lengths for a sequence of 60 symbols. The
estimated sequence is on top, the true one below. The symbol correspondence
is also represented. The two other curves show the difference between the
estimated (dashed) and actual (solid) symbol values for each instant of the bit
clock (center) and of the symbol clock (bottom).

Fig. 17. Amplitude of desynchronizations at the different iterations of the
joint source-channel turbo decoding. The results have been obtained for a
Gauss–Markov source of 200 symbols quantized on 4 bits. They have been
averaged over 500 AWGN channel realizations.

We have studied the resynchronization power of our itera-
tive joint decoder by summing over the difference between
the true value of and the estimated one. The result is di-
vided by the number of bits in the sequence, which expresses
the average desynchronization in symbols per bit. For the source
model we considered (with high intersymbol correlation), iter-
ations are crucial for the resynchronization. At the fourth iter-
ation, no desynchronizations were found for dB,
while symbol errors still remain.

Finally, let us mention that the effect of constraints on the
numbers of symbols and bits appears mostly at the extremities of
the bit stream, where the trellis becomes narrow. Nevertheless,
even at low SNRs, the uncertainty on the value of remains
reasonably concentrated around its optimal value, even in the

Fig. 18. Concentration ofK on the trellis. The logarithm of (K jY ) is
displayed in gray scale for a 200-symbol sample path of the Gauss–Markov
source andE =N = 0 dB.

central part of the trellis. Fig. 18 displays the logarithm of the
posterior distribution for each value of , assuming
a channel noise level dB. Similar curves appear
also for white sources (although the beam is larger). This figure
evidences that the complexity of estimation algorithms can be
significantly reduced by pruning methods, which would not ex-
plore all nodes of the trellis. Preliminary results show that the
complexity can be reduced by 50% to 90% without significant
loss in BER.

VII. CONCLUSION

We have proposed a methodology for modeling a general
coding chain composed of three elements: a Markov source, a
variable length source coder, and a channel coder. This model
is studied in the formalism of Bayesian networks from which
estimation (i.e., decoding) algorithms derive immediately. The
optimal joint decoding algorithms must be based on a product
model gathering state representations of the three elements of
the chain. This product model is too large to have any practical
use except in trivial cases. However, following properties evi-
denced in serial turbo-codes, joint decoding can be performed
in an iterative procedure considering one factor of the product
model at a time. This procedure usually requires the insertion of
an interleaver between the components (or factors) of the model
that will be processed separately and is based on the exchange of
soft information between the dedicated decoders. In the present
case, one interleaver must be placed between the source coder
and the channel coder, which brings some light technical diffi-
culty since this interleaver must also be “variable length.” But,
surprisingly, the Markov source and the source coder need not
be separated by another interleaver. Actually, it can be proved
that a soft source decoding followed by a symbol stream esti-
mation is an optimal strategy. This result is straightforward for
constant length source codes, and it is quite surprising that it
still holds for variable length source codes.

The scheme proposed in the present paper can be read as a
turbo algorithm alternating the use of the Markov symbol source
model and the channel coder model, which both introduce re-
dundancy in the bit stream sent over the channel. The soft de-
coders for these extremal components communicate through the
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source decoder, which can be read as a translator of soft infor-
mation from the bit clock to the symbol clock. This soft source
decoder relies on two kinds of information: the residual intra-
codeword redundancy (which is quite low in the case of entropy
coding) and mostly the length constraint for the bitstream. The
latter ensures that the symbols sequences produced by the
source model do match the bits sequences proposed by the
channel decoder. The role of this constraint is crucial for vari-
able length codes as noisy channels tend to “desynchronize” the
bit clock and the channel clock. Errors in the estimation of code-
word boundaries result in dramatic symbol error rates at the
receiver. Reversible variable length codewords have been de-
signed against this phenomenon. This reversibility property is
useless for the algorithm we propose, since synchronization is
ensured both at the beginningand at the endof the bit stream.
Hence, only the augmented internal redundancy of reversible
codes is useful against desynchronizations. Nevertheless, the
problem can be addressed directly by inserting dummy symbols
in the symbol stream, at some known positions, which serve as
anchors for source decoding. This “soft synchronization idea”
is currently being investigated and has proved to augment con-
siderably the autosynchronization power of the coding chain for
very reasonable losses in information rate.

Finally, let us stress the parallel of variable length decoding
of Markov sources and speech recognition. Symbols can be as-
sociated to words of a sentence, satisfying a Markov model,
and variable length codewords can be compared to the variable
number of acoustic segments in the pronunciation of a given
word. The same problems of joint segmentation and word esti-
mation have been addressed in the literature (see [24] and ref-
erences therein), mainly with dynamic time warping (DTW) al-
gorithms. The connection could be inspiring, in particular for
pruning techniques and for the availability of specialized chips
implementing these algorithms.
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