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ABSTRACT 
Joint space-frequency segmentation is a relatively new image 
compression technique that finds the rate-distortion optimal 
representation of an image from a large set of possible space-
frequency partitions and quantizer combinations. As such, the 
method is especially effective when the images to code are 
statistically inhomogeneous, which is certainly the case in the 
ultrasound modality. Unfortunately, however, the original paper 
on space-frequency segmentation neglected to use an actual 
entropy coder, but instead relied upon the zeroth-order entropy to 
guide the algorithm. In this work, we fill the above gap by 
comparing actual entropy-coding strategies and their effect on 
both the resulting segmentations as well as the rate-distortion 
performance. We then apply the resulting “complete” algorithm to 
representative ultrasound images. The result is an effective 
technique that performs significantly better than SPIHT using 
both objective and subjective measures. 

 

1. INTRODUCTION 
Many modern image compression algorithms, such as 
SPIHT [1] are based on the wavelet transform, which 
partitions the input into frequency bands whose size 
decreases logarithmically from high frequencies to low. 
This decomposition strategy works well when the input 
images are statistically homogeneous; however, when 
homogeneity cannot be assumed, more general partitions, 
or bases, may be called for. Other modern algorithms, such 
as EBCOT [2] (the basis for JPEG-2000) use more general 
frequency decompositions such as wavelet packets. 

A distinguishing feature of ultrasound images [3] is the 
oriented “speckle texture” produced by the physics 
underlying the data acquisition. Due to its orientation, the 
speckle energy is typically concentrated in certain spectral 
regions. For example, we performed a simple 1-step 
subband decomposition on a sample “liver” image and 
found that the horizontal shape of the speckle resulted in 
88% of the high-pass energy being concentrated in the LH 
subband [4]. In addition, ultrasound images (see Fig. 2) 

typically consist of an ultrasound-scanned area, which is 
often non-rectangular, against a passive background, which 
may contain text and graphics. The resulting spatial 
variation in image statistics also presents a challenge to 
coding methods that use a single partition strategy. In a 
recent study, Erickson et al. [5] compressed MRI and 
ultrasound images using both SPIHT and JPEG; they 
concluded that wavelet-based methods such as SPIHT are 
subjectively superior to JPEG and we thus use this SPIHT 
as the basis for our comparisons. 

The concept of wavelet packets extends the standard 
octave-band tree-structured filter-bank of the wavelet 
transform to include all possible binary frequency 
decompositions. To apply this partition gamut to image 
coding, a set of quantizers must be defined and a search 
done to identify the best partition-quantizer combination in 
the rate-distortion sense. Ramchandran and Vetterli [6] 
have shown how to do this search using a fast tree-based 
algorithm. 

Wavelet-packets provide an interesting approach, but the 
resulting segmentation cannot adapt to the spatial variation 
present in ultrasound images. To increase the partition 
gamut, Herley et. al. [7] generalized the wavelet packet 
technique to allow the spatial partition of  all subimages; 
they named this method joint space-frequency 
segmentation (SFS) using balanced wavelet-packet trees. 
Unfortunately, however, the algorithm presented in [7] 
simply used the zeroth-order entropy to measure the rate 
when quantizing a specific subband: no real entropy coders 
were implemented. The result of this approximation is to 
hide several issues that are important in producing an 
efficient space-frequency representation, namely learning 
and the possibility of exploiting higher-order entropy. 

In this paper, we present an investigation into the effect of 
the entropy coder on both the segmentation and the final 
rate-distortion performance obtainable using SFS. The 
resulting codecs are then applied to the compression of 
medical ultrasound images. 
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Figure 1: Time-Frequency Partition Gamut 

 

2. SPACE-FREQUENCY SEGMENTATION 
Joint space-frequency finds the optimal decomposition-
quantizer combination for a given target rate by searching 
through the partition gamut. For each possible partition, a 
second search must be done to find the quantizer set (one 
per subband in our case) that minimizes the distortion 
subject to a constraint on the overall bit rate. In our 
experiments, we defined a set of 16 different uniform 
quantizers, each with 64 output levels. The step-size 
selection for the set was tuned to the target bit rate of the 
coder. In addition, a linear variation in the step-size over 
the set was found to give generally good results. Note that 
the computational cost of the algorithm increases (linearly) 
with the number of quantizers, as does the number of bits 
required to send the quantizer information. The choice of 
16 is a reasonable trade-off, and was also used by Herley et 
al. [7]. The partition found by the algorithm tends to be 
sensitive to the target rate. 

In SFS, both space and frequency partitions produce four ¼ 
size subimages: a space partition simply splits the image 
region into four quadrants, while a frequency partition 
filters the image region into four critically sampled 
subbands using a 2D perfect reconstruction filter bank. The 
gamut of possible partitions is created by recursively 
partitioning all of the subimages down to a “maximum 
decomposition depth”, which we set at five. Lowering this 
parameter significantly speeds up the algorithm by 
shrinking the partition gamut, but there is a penalty in the 
resulting fidelity. The partition gamut for the 1D case is 
shown above in Figure 1, with the wavelet-packet case 
shown by bold boxes: data blocks are split into 2 at each 
step, using a time or a frequency split. 

Space-frequency segmentation searches a larger gamut of 
possible bases than the wavelet packet algorithm. In all 
cases, the filter set used to perform the decompositions is 
the “standard” 9-7 biorthogonal filter set [8] and symmetric 
extension is used to handle the block-boundaries. Other 
filter sets were tried, but the 9-7 set was confirmed to be a 
good overall choice, even for ultrasound images [4]. 

3. ENTROPY CODING STRATEGIES 
In determining the best sub-image size, the SFS algorithm 
runs into conflicting demand from the quantizer and the 
entropy coder. In an ideal world, both the decoder and the 
encoder have implicit knowledge of the source statistics; 
however, in reality, this information has to be 
communicated. One possibility is to simply do an initial 
pass through each subband to estimate statistics, which can 
then be sent as side information. Unfortunately, this side-
information requires too many bits when there are many 
subbands to code (as in SFS). An alternative procedure is 
to make the encoder and decoder adaptive so that statistics 
are estimated on the fly using previously coded data. Since 
this information is available at both ends of the channel, no 
side-information need be sent. Problems still exist, 
however, since the performance is limited by the accuracy 
of the estimate and how well the coder can adapt depends 
on the alphabet size and the sequence length. A small 
alphabet combined with a large sequence means that the 
coder acquires a good estimate of source statistics 
relatively quickly, and produces an efficient code. On the 
other hand, small subbands, or those with large alphabets, 
are not coded well by the entropy coder and thus are not 
good choices overall.  Herley [7] avoided this problem by 
using the zeroth-order entropy to estimate the rate, which is 
optimistic (and in fact results in different partitions). 
Nonetheless, making this choice results in a reduction in 
the algorithm’s execution time by approximately a factor of 
eight in our implementation. 

In this paper, we consider two techniques as candidates for 
entropy coding: direct arithmetic coding [9] and stack-run 
coding [10]. For long sequences, the former method 
typically gives results close to the zeroth-order entropy, 
while the second is effectively a higher-order entropy coder 
that exploits that fact that large runs of zeros are common 
in quantized high-pass image subbands.  

Huffman coding is not a good candidate here, since it is too 
expensive to use one bit per symbol for all of the zeros and 
is difficult to make adaptive. Other types of entropy coders, 



 

 

Figure 2: Image U1 and Its Partition 

 

such as those that use expanded contexts [11] are good 
candidates for future improvements. 

4. RESULTS 
In the experiments reported below, we implemented the 
full SFS algorithm and wrote a binary file to disk to 
measure the coded image size. In addition, we set the target 
rate to 0.5bpp with the intent of producing good quality 
ultrasound images, containing sufficient visible 
impairments to allow for subjective comparisons. The 
appropriateness of this target rate was confirmed by a 
radiologist [4]. 

Our study also focuses on the compression of scan-
converted ultrasound images that have been interpolated 
from the original image data by the imaging equipment. 
We focus on the post scan-conversion case, since this is the 
display domain and we want to avoid the introduction of 
“uncontrolled” artifacts through the combination of 
quantization and interpolation. In addition, issues like bit 
allocation become difficult to deal with in the pre scan-
converted domain, since the interpolation process may 
cause some quantization errors to be magnified more than 
others. Studies on compression in the pre scan-converted 
domain are left for future work. 

The test images that we used in our experiments were the 
standard “natural” 512 512×  image, Barb, as well as two 
640 480× ultrasound “liver” images, U1 (shown in Fig. 2) 
and U2, that were chosen to represent a range of 
compression “difficulty”, while still being typical. In the 
partition part of the figure, white lines indicate that a space 
partition was chosen and black lines indicate that a 
frequency partition was used. Note that the non-ultrasound 
area of the image tends to avoid frequency partitions.  

The harder case, U1, is an image of a normal liver that 
shows high contrast and significant fine detail, particularly 
in the upper central area. There is also low-resolution detail 
present in the low-contrast dark areas across the center of 
the image. An unusual feature in U1 is the icon in the upper 
left indicating the organ being scanned. The easier case to 
compress, U2, contains a liver lesion. At the time of 
capture, the contrast was adjusted to highlight the lesion, so 
the overall image is quite dark and low contrast.   

The PSNR results for Barb are shown in Table 1, where the 
SFS-entropy codec uses entropy to do the partitions and 
also uses this number to compute the final rate. It is seen 
that the “entropy” only result is overly optimistic, and 
results in a significantly inflated PSNR at the target rate. 
Indeed, the problems with the “entropy” are quite severe 
for the smaller subbands, where there is insufficient data 
for the coder to adapt to the local statistics. The penalty is 
thus a function of the maximum decomposition depth. 

In the case of the ultrasound images, it was found best to 
use stack-run entropy coding for all subbands containing 
frequency partitions and to use arithmetic coding for the 
remainder. Stack-run coding does not work well on space-
only partitions, since the runs of zeros are not large enough 
and there may be large magnitude coefficients that penalize 
the stack-run method. The PSNR results for the ultrasound 
images are shown below in Table 2. 

In a 12-image subjective test with two radiologists from the 
Vancouver Hospital and Health Sciences Centre (VHHSC) 
[4], the SFS images were consistently ranked above the 
SPIHT ones, which confirms the PSNR results. In general, 
SPIHT images tend to suffer from more blurring than SFS 
ones. Low contrast regions also seem to pose more of a 
problem with SPIHT. 



 

 
Figure 3: Ultrasound-Only Partitions 

 

Table 1: Results for Barb 

codec Rate [bpp] PSNR [dB] 

SFS - entropy 0.500 32.47 

SFS - stack-run 0.496 31.92 

SFS - arithmetic 0.497 31.67 

SPIHT 0.500 31.40 

 

Table 2: Results for Ultrasound Images 

Image  Codec Rate [bpp] PSNR [dB] 

U1 SFS 0.501 33.00 

U1 SPIHT 0.500 32.26 

U2 SFS 0.499 38.60 

U2 SPIHT 0.500 37.10 

 
It is also interesting to see the “optimal” SFS partitions 
when only operating on ultrasound data. It turns out that 
these partitions are quite consistent, as is shown in the 
0.5bpp examples in Figure 3, all of which have been 
extracted from different images. These results indicate that 
it may be possible to use fixed partitions for ultrasound 
images when the scanning orientation is similar: a different 
orientation of the ultrasound transducer would rotate the 
major axis of the speckle spot. We also observe that space-
partitions are rare, which is likely due to the homogeneity 
of the images. 

5. CONCLUSIONS 
In this paper, we extended the work of Herley et al. [7] by 
studying the effect on the algorithm performance of using 
real entropy coders instead of simply an estimate of the 
entropy. It was found that stack-run coding is, in general, 
superior to single context arithmetic coding, but that it is 
sometimes advantageous to key the choice of entropy 
coding method to the subband being coded. The final codec 
was applied to the compression of ultrasound images, with 

results that are both subjectively and objectively superior to 
those possible with SPIHT. 
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