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ABSTRACT Sparse unmixing has attractedmuch attention in recent years. It aims at estimating the fractional

abundances of pure spectral signatures in mixed pixels in hyperspectral images. To exploit spatial-contextual

information present in the scene, the total variation (TV) regularization is incorporated into the sparse

unmixing formulation, promoting adjacent pixels having similar not only endmembers but also fractional

abundances, and thus having similar structural sparsity. It is therefore hoped to impose joint sparsity, instead

of classic single sparsity, on these adjacent pixels to further improve the unmixing performance. To this end,

we include the joint-sparse-blocks regression into the TV spatial regularization framework and present a new

unmixing algorithm, termed joint-sparse-blocks unmixing via variable splitting augmented Lagrangian and

total variation (JSBUnSAL-TV). In particular, a reweighting strategy is utilized to enhance sparsity along

lines within each block. Simulated and real-data experiments show the advantages of the proposed algorithm.

INDEX TERMS Hyperspectral images, spectral unmixing, total variation regularization, joint-sparse-blocks

regression.

I. INTRODUCTION

Spectral unmixing is an important and challenging technique

for hyperspectral images (HSIs) [1], [2]. It aims at identifying

a set of pure spectral signatures, called endmembers, and

estimating the corresponding fractions, called abundances.

Linear mixture model (LMM) has been widely adopted

for spectral unmixing due to its simplicity and analytically

tractable solutions. It assumes that the spectral collected by

the imaging spectrometer can be expressed in the form of a

linear combination of endmembers, weighted by their cor-

responding abundances. Along this line, many endmember

identification algorithms extract the pure endmembers under

the pixel purity assumption that there is at least one pure pixel

per endmember in the data [3]–[5]. Hyperspectral signatures,

however, in many cases, are highly mixed so that the pixel

purity assumption may not be valid, although it has prac-

tical advantages such as ease of implementation and flexi-

bility in diverse applications [1]. To address the issue, many

other endmember extraction algorithms have been proposed
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without assuming the presence of pure signatures in the input

data [6]–[8]. These algorithms, however, may provide virtual

endmembers with no physical meaning. Alternatively, non-

negative matrix factorization (NMF) is a popular technique

to find the endmember signatures and associated proportions

with more physical meaningful unmixing results, even if

there are no pure pixels existing and no available spectral

library [9]–[14].

Asmore spectral libraries become publicly available, a new

perspective to tackle the problems of virtual endmembers and

pure pixel assumption is to model mixed pixels observations

as linear combinations of spectra in a given (potentially very

large) spectral library. That said, each mixed pixel in HSIs

is potentially composed of only a few endmembers, com-

pared with the large and available spectral library. Sparsity

is then incorporated into spectral unmixing, leading to a

plethora of abundance estimation algorithms [15]–[22]. Also,

in Bayesian framework, suitable sparsity inducing prior dis-

tributions are adopted for fractional abundances [23]–[25].

These sparse unmixing algorithms need not extract endmem-

bers from the input data and provide abundance estimations

more accurately. Since the sparsity is imposed on each single
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pixel, we therefore call it as single sparsity to distinguish

other sparsity characters mentioned later.

Based on the overcomplete spectral dictionary, the col-

laborative (also called ‘‘joint’’ or ‘‘row’’) sparse regression

framework assumes that pixels in a region share the same

support set of endmembers. There exist several collaborative

schemes. All pixels in the data set are assumed to share the

same endmembers in [26], [27], whereas the joint sparsity

is enforced on pixels in a local window in [28], [29] and is

then applied with general segments in [11], [30]. Recently,

a joint-sparse-blocks regressionmodel imposes the joint spar-

sity on local blocks [31], which could contain fewer pixels,

compared with a small 3 × 3 local window. Assume that

somematerials in the spectral library are known to exist in the

scene, an algorithm, called the sparse unmixing using spectral

a priori information (SUnSPI), simultaneously exploits the

joint sparsity and the single sparsity [32]. In addition, a cen-

tralized collaborative framework couples the collaborative

sparse unmixing and abundance estimation error reduction

together [33].

Besides the sparsity assumption, spatial information

between each pixel and its neighbors is exploited to further

improve spectral unmixing performance [9], [34]–[37]. Typi-

cally, the total variation (TV) spatial regularization promotes

piecewise constant transitions in each abundance map for the

same endmember among neighboring pixels [12]–[14], [21],

[27], [34], [38]–[41]. Also, using a low-rankness constraint

is another stimulating way to exploit the spatial informa-

tion of HSIs [28], [31], [42]–[44]. The spatial correlation

among pixels translates into a linear dependence among their

corresponding abundance vectors. This follows a low-rank

abundance matrix. The low-rankness constraint has been

incorporated with the TV constraint [45], or with the single

sparsity [42], or jointly with the row sparsity and the TV spa-

tial regularizer for unmixing problem [46]. Recently, the low-

rankness constraint and the joint-sparse-blocks structure have

been simultaneously imposed on abundances in [31]. Multi-

ple constraints simultaneously enforced on abundances have

greatly improved the unmixing performance.

In this paper, we propose to simultaneously enhance the

spatial consistency by using the TV regularizer and enhance

the structural sparsity by using the joint-sparse-blocks rep-

resentation for the hyperspectral unmixing problem. Recall

that the TV term promotes piecewise smooth in abundance

maps, following that adjacent pixels have both similar mix-

ing endmembers and similar abundance fractions. It leads

to similar sparsity pattern in these adjacent pixels. Thus,

imposing the local joint sparsity, instead of the classic single

sparsity as in [34], on these pixels is expected to better

describe the sparsity structure and therefore, to improve

unmixing performance. Following this line, we adopt the

joint-sparse-blocks regression framework and introduce a

new unmixing algorithm called joint-sparse-blocks unmix-

ing via variable splitting augmented Lagrangian and total

variation (JSBUnSAL-TV). The algorithm is under the clas-

sic alternating direction method of multipliers (ADMM)

framework. In particular, we adopt a two-level reweighting

strategy to enhance the sparsity on lines within each block,

similarly as in [31]. Simulated and real-data experiments

demonstrate the effectiveness of the proposed algorithm.

Finally, we note that both JSBUnSAL-TV and the algo-

rithm in [31] exploit the local joint sparsity property. In

addition, the former via TV promotes the piecewise constant

transitions in the fractional abundance of the same endmem-

ber among neighboring pixels. Instead the latter adopts the

low-rank representation, assuming that the correlation among

pixels’ spectral signatures is reflected as linear dependence

among their abundance vectors. Apparently, the TV regular-

izer is imposed on each abundance map reshaped from one

row of the whole abundance matrix, whereas the low-rank

constraint is imposed on local abundance matrices corre-

sponding to small sliding square windows. Here we mainly

adopt the TV regularizer to impose spatial consistency on

each abundance map.

The rest of the paper is organized as follows. Section II

briefly reviews sparse unmixing models. In section III we

derive our unmixing algorithm called JSBUnSAL-TV. The

effectiveness of the proposed algorithm is demonstrated by

both simulated experiments in section IV-B and a real-data

experiment in section IV-C. Finally, section V gives some

concluding remarks.

II. SPARSE UNMIXING MODEL

Let Y ∈ R
L×n denote the observed matrix of a hyperspectral

image with L spectral bands and n pixels. Let A ∈ R
L×m

denote the dictionary with m spectral signatures. The LMM

can be described as follows:

Y = AX + N, (1)

where X ∈ R
m×n is the fractional abundance matrix whose

columns correspond with the abundance vectors of n pix-

els, and N ∈ R
L×n is an independent and identically dis-

tributed (i.i.d.) zero-mean Gaussian noise matrix. Due to

physical background, the so called abundance nonnegativity

constraint (ANC) and the abundance sum-to-one constraint

(ASC), i.e.,

X ≥ 0, 1TX = 1T , (2)

respectively, are often imposed on the abundance coefficients

in X [47]. We note that X ≥ 0 is considered elementwise

and 1 is a column vector of 1’s. Nevertheless, we relax the

ASC to focus on the exploitation of structural characters of

X, similarly as in [26], [34], [42]; see more details in [15].

The classic sparse regression model for hyperspectral

unmixing problem is as follows:

min
X

1

2
‖Y − AX‖2F + λ ‖X‖1,1 ,

subject to X ≥ 0, (3)

where ‖X‖1,1 =
∑m

i=1

∑n
j=1 |xi,j| is the ℓ1 norm of X,

xi,j denotes the (i, j)th element of X, and λ ≥ 0 is the
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regularization parameter. A sparse unmixing by variable

splitting and augmented Lagrangian (SUnSAL) algorithm is

introduced to solve the above model in [15].

The collaborative sparse regression framework has been

presented in [26] to encourage that all pixels in the data set

share the same support set. The optimization model is as

follows:

min
X

1

2
‖Y − AX‖2F + λ ‖X‖2,1 ,

subject to X ≥ 0, (4)

where ‖X‖2,1 =
∑m

i=1

∥

∥x
[i]
∥

∥

2
is the ℓ2,1 norm ofX, x[i] is the

ith row of X, and λ ≥ 0 is the regularization parameter. The

model is solved by the collaborative SUnSAL (CLSUnSAL)

algorithm in [26].

The SUnSPI model assumes that some materials in the

spectral library are known to exist in the hyperspectral

scene and others may or may not be active. Suppose that

S = {1, · · · ,m} is the set of the indices of all the spec-

tral signatures in the spectral library, P ⊂ S is the set

of the indices corresponding to the known materials, and

S/P = {i ∈ S|i /∈ P}. Then the SUnSPI model simultane-

ously imposes sparsity on X and joint sparsity on XS/P and

leads to an optimization model as follows:

min
X≥0

1

2
‖Y − AX‖2F + λS ‖X‖1,1 + λP

∑

i∈S/P

∥

∥

∥
x
[i]
∥

∥

∥

2
, (5)

where λS ≥ 0 and λP ≥ 0 are regularization parameters.

A joint-sparse-blocks regression model assumes that the

ℓ2,1 prior only promotes sparsity in the activation of the end-

members within each block [31]. For this purpose, the frac-

tional abundance matrix is first partitioned as

X = [X1, . . . ,Xs] , (6)

where each column block Xj ∈ R
m×dj , for j = 1, . . . , s,

∑s
j=1 dj = n, and block number s is a positive integer for

1 ≤ s ≤ n. Then each Xj is assumed joint-sparse. The

resulting ℓ2,1-blocks regularized model becomes:

min
X≥0

1

2
‖Y − AX‖2F + λ

s
∑

j=1

∥

∥Xj

∥

∥

2,1
, (7)

where λ ≥ 0 is the regularization parameter. Clearly,

the model reduces to the SUnSAL model in (3) if s = n and

reduces to the CLSUnSAL model in (4) if s = 1.

III. THE JSBUNSAL-TV ALGORITHM

A. JOINT-SPARSE-BLOCKS REGRESSION FOR TV

REGULARIZED UNMIXING

Besides exploiting sparsity in abundances, simultaneously

taking spatial correlation between each pixel and its neigh-

bors into account further improves the abundance estimation

performance. The TV spatial regularization is incorporated

into classic sparse unmixing scheme and provides promising

abundance estimation results [12], [21], [27], [34], [38]–[40],

[48]. It promotes spatial homogeneity of the same endmem-

ber among neighboring pixels. Therefore, it is hoped to

impose a joint sparse structure on these pixels to improve the

unmixing performance. Notice that the joint-sparse-blocks

structure encourages that pixels in each local block share

the same sparse structure, taking both sparsity and spatial

information into consideration. Thus, we propose to include

the joint-sparse-blocks regression into the TV regularization

for abundance estimation. The optimization problem can be

written as

min
X≥0

1

2
‖Y − AX‖2F + λ

s
∑

j=1

∥

∥Xj

∥

∥

2,1
+ λTVTV (X), (8)

where

TV (X) ≡
∑

{i,j}∈ǫ

‖xi − xj‖1, (9)

xi (respectively, xj) denotes the ith (respectively, jth) column

of X, ǫ denotes the set of horizontal and vertical neighbors

in the image, and λ ≥ 0 and λTV ≥ 0 are regularization

parameters.

Let Hh : Rm×n → R
m×n and Hv : Rm×n → R

m×n be the

corresponding discrete gradient operators in the horizontal

and vertical directions, respectively. Here we assume periodic

boundaries when computing the differences. Define

HX ≡

(

HhX

HvX

)

, (10)

then clearly TV (X) = ‖HX‖1,1. In addition, to enhance

sparsity along rows in each block in (8), we replace the ℓ2,1
norm of Xj by a weighted ℓ2,1 norm defined as

∥

∥Xj

∥

∥

wj,2,1
=

m
∑

i=1

wi,j

∥

∥

∥
X
[i]
j

∥

∥

∥

2
, (11)

X
[i]
j is the ith row of the jth block of X, wj =

[w1,j, . . . ,wm,j]
T ∈ R

m is a nonnegative weighting vector,

for i = 1, . . . ,m, j = 1, . . . , s, and as is usual, T denotes the

transposition. With the above-mentioned two replacements,

the model in (8) becomes

min
X≥0

1

2
‖Y−AX‖2F+λ

s
∑

j=1

∥

∥Xj

∥

∥

wj,2,1
+λTV ‖HX‖1,1, (12)

Clearly, the weighted ℓ2,1 norm is always convex for nonneg-

ative wi,j and thus the model in (12) is convex.

B. JSBUNSAL-TV ALGORITHM

We now solve the proposed model in (12) under the ADMM

framework. We note that ADMM has been widely adopted in

many areas such as machine learning and image processing,

see, e.g., [49]–[53] and references therein. To begin, we par-

tition X with s blocks as in (6). Introducing three variables
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V1, V2, and V3 and partitioning V2 =
[

V2,1, . . . ,V2,s

]

as X,

we transform (8) to an equivalent model

min
X,V1,V2,V3,V4,V5

1

2
‖Y − V1‖

2
F + λ

s
∑

j=1

∥

∥V2,j

∥

∥

wj,2,1

λTV ‖V4‖1,1 + ιR+ (V5),

subject to AX = V1, X = V2, X = V3,

HV3 = V4, X = V5, (13)

where ι� is the indicator function of a set �, i.e., ι�(x) = 0

if x ∈ � and ι�(x) = +∞ otherwise.

To make notations more concisely, we define

G =













A

I

I

0

I













, B =













−I 0 0 0 0

0 −I 0 0 0

0 0 −I 0 0

0 0 H −I 0

0 0 0 0 −I













,

3 =













31

32

33

34

35













, V =













V1

V2

V3

V4

V5













, (14)

and let

g(X,V) =
1

2
‖Y − V1‖

2
F + λ

s
∑

j=1

∥

∥V2,j

∥

∥

wj,2,1

+λTV ‖V4‖1,1 + ιR+ (V5). (15)

Then we obtain a compact form of (13):

min
X,V

g(X,V)

subject to GX + BV = 0. (16)

Define

Lµ(X,V; 3) = g(X,V) +
µ

2
‖GX + BV − 3‖2F , (17)

whereµ > 0 is the augmented Lagrangian penalty parameter.

Then the ADMM framework is derived










Xk+1 = argmin X Lµ(X,Vk ; 3
k ),

Vk+1 = argmin V Lµ(X
k+1,V; 3

k ),

3
k+1 = 3

k − (GXk+1 + BVk+1).

(18)

We now show how to solve (18). To begin, the X-

subproblem, after dropping constant terms, is equivalent to

solve

Xk+1 = argmin
X

g(X,Vk ) +
µ

2

∥

∥

∥
GX + BVk − 3

k
∥

∥

∥

2

F

= argmin
X

∥

∥

∥
AX − Vk

1 − 3
k
1

∥

∥

∥

2

F
+

∥

∥

∥
X − Vk

2 − 3
k
2

∥

∥

∥

2

F

+

∥

∥

∥
X − Vk

3 − 3
k
3

∥

∥

∥

2

F
+

∥

∥

∥
X − Vk

5 − 3
k
5

∥

∥

∥

2

F
. (19)

It is a least squares problem. A simple calculation gives

Xk+1 =
(

ATA + 3I
)−1

(

AT
(

Vk
1 + 3

k
1

)

+Vk
2 + 3

k
2 + Vk

3 + 3
k
3 + Vk

5 + 3
k
5

)

. (20)

We decouple the V-subproblem of (18) to three indepen-

dent subparts with respect to V1, V2, V5, and a single opti-

mization with respect to V3 and with respect to V4. For V1-

subproblem, after dropping constant terms, we obtain

Vk+1
1 =argmin

V1

1

2
‖Y − V1‖

2
F+

µ

2

∥

∥

∥
AXk+1−V1−3

k
1

∥

∥

∥

2

F
.

(21)

Thus,

Vk+1
1 =

1

1 + µ

(

Y + µ

(

AXk+1 − 3
k
1

))

. (22)

The V2-subproblem is to solve

Vk+1
2 =argmin

V2

λ

s
∑

j=1

∥

∥V2,j

∥

∥

wj,2,1
+

µ

2

∥

∥

∥
Xk+1−V2−3

k
2

∥

∥

∥

2

F
.

(23)

PartitionXk+1 =
[

Xk+1
1 , . . . ,Xk+1

s

]

,V2=
[

V2,1, . . . ,V2,s

]

,

and correspondently,3k
2 = [3k

2,1, . . . ,3
k
2,s]. Since the object

function of (23) is proper, strictly convex, and separable,

we equivalently decouple it to s sub-problems

min
V2,j

λ
∥

∥V2,j

∥

∥

wj,2,1
+

µ

2

∥

∥

∥
Xk+1
j − V2,j − 3

k
2,j

∥

∥

∥

2

F
, (24)

for j = 1, . . . , s. From [54], each sub-problem clearly admits

a unique block solution, and we obtain the ith row of the jth

block of Vk+1
2 , i.e.,

(

Vk+1
2,j

)[i]
= vect_soft λ

µ
wi,j

(

(

Xk+1
j − 3

k
2,j

)[i]
)

, (25)

for i = 1, . . . ,m, j = 1, . . . , s. Here vect_softα(·) is a

nonlinear operator defined by

vect_softα(x)=x
max{‖x‖2−α, 0}

max{‖x‖2− α, 0}+α
, (26)

for ∀ x ∈ R
N and α > 0.

For V3-subproblem, we equivalently solve the following

minimization problem

Vk+1
3 = argmin

V3

∥

∥

∥
Xk+1−V3−3

k
3

∥

∥

∥

2

F
+

∥

∥

∥
HV3−Vk

4−3
k
4

∥

∥

∥

2

F
,

(27)

and obtain

Vk+1
3 = (HTH + I)−1

(

Xk+1 − 3
k
3 + HT

(

Vk
4 + 3

k
4

))

.

(28)

To compute Vk+1
4 , we solve the optimization problem

Vk+1
4 = argmin

V4

λTV ‖V4‖1,1 +
µ

2

∥

∥

∥
HVk+1

3 − V4 − 3
k
4

∥

∥

∥

2

F
,

(29)
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and derive

Vk+1
4 = soft λTV

µ

(

HVk+1
3 − 3

k
4

)

. (30)

Here we define softα(·) be a nonlinear soft-thresholding oper-

ator defined componentwise by

(

softα(x)
)

i
= xi

max{|xi| − α, 0}

max{|xi| − α, 0} + α
, (31)

for ∀ x = [x1, . . . , xN ]
T ∈ R

N and α > 0.

For V5-subproblem, we have

Vk+1
5 = argmin

V5

ιR+ (V5) +
µ

2

∥

∥

∥
Xk+1 − V5 − 3

k
5

∥

∥

∥

2

F
. (32)

It is easy to obtain that

Vk+1
5 = max

(

Xk+1 − 3
k
5, 0

)

. (33)

Finally, we update the multipliers






























3
k+1
1 = 3

k
1 − (AXk+1 − Vk+1

1 )

3
k+1
2 = 3

k
2 − (Xk+1 − Vk+1

2 )

3
k+1
3 = 3

k
3 − (Xk+1 − Vk+1

3 )

3
k+1
4 = 3

k
4 − (HVk+1

3 − Vk+1
4 )

3
k+1
5 = 3

k
5 − (Xk+1 − Vk+1

5 ).

(34)

To make it more clearly, we summarize the proposed joint-

sparse-blocks unmixing via variable splitting augmented

Lagrangian and total variation (JSBUnSAL-TV) algorithm in

the following.

Algorithm 1 Pseudocode of JSBUnSAL-TV

1. Input: Y, A.

2. Selected parameters: λ, λTV , µ, maximum iteration,

dj, wi,j, for i = 1, . . . ,m, j = 1, . . . , s.

3. Initialization: 3
0
l , V

0
l , l = 1, 2, . . . , 5, and set k = 0.

4. Repeat:

5. Compute Xk+1 by (20).

6. Compute Vk+1
1 by (22).

7. Compute Vk+1
2 by (25).

8. Compute Vk+1
3 by (28).

9. Compute Vk+1
4 by (30).

10. Compute Vk+1
5 by (33).

11. Update Lagrange multipliers 3
k+1
l by (34),

for l = 1, . . . , 5.

12. until some stopping criterion is satisfied.

13. Output: X̂ = Xk+1.

We note that the proposed JSBUnSAL-TV algorithm is

similar to SUnSAL-TV. The only difference of the two algo-

rithms is in Step 7, where the corresponding subproblem of

SUnSAL-TV is the classic sparse regression, whereas the one

of JSBUnSAL-TV in (23) is the joint-sparse-blocks regres-

sion. In addition, each iteration of JSBUnSAL-TV clearly has

the same complexity as that of SUnSAL-TV, i.e., O(L2 n) +

O(Ln log n), see more details in [34].

IV. EXPERIMENTS

In this section, we demonstrate the effectiveness of

JSBUnSAL-TV on both simulated and real data. We will

compare JSBUnSAL-TV with six state-of-the-art algo-

rithms: SUnSAL [15], CLSUnSAL [26], SUnSAL-TV1 [34],

ADSpLRU [42]2, DRSU-TV [40], and JSpBLRU [31]. Our

tests were done by using MATLAB R2016a on a MacBook

Pro laptop with 2.7 GHz Intel Core i7 and 16 GB memory.

The floating-point precision is 10−16.

A. PARAMETER SETTING

In the following, for the proposed JSBUnSAL-TV algorithm,

we first give a partition strategy of X in (6) and then a

reweighting strategy ofwi,j in (25), similarly as in [31]. Recall

from (6) that partitioningX is just to determine the values of s

and di, for i = 1, . . . , s. Recall that n denotes the total number

of pixels and s is the number of blocks. Assume d is a positive

integer for 1 ≤ d ≤ n. Given n and d , we now show how to set

s and all di. For simplicity, we assume that most ofXj contain

the same number of pixels. To this end, we let s = ⌊n/d⌋ be

the largest integer no greater than n/d , and define

d1 = d2 = · · · = ds−1 = d, ds = n− (s− 1)d . (35)

Clearly, once d is given, all di can be obtained. Also, it is

easy to check that n =
∑s

j=1 dj. As an example, consider

n = 5625 and d = 3, then we have s = ⌊n/d⌋ = 1875

and d1 = d2 = · · · = ds−1 = ds = d = 3. It says that X

is partitioned as X = [X1,X2, . . . ,X1875] and all Xj contain

d = 3 pixels. As another example, consider instead n = 5624

and d = 3, we have s = ⌊n/d⌋ = 1874, d1 = d2 = · · · =

d1873 = d = 3, and d1874 = 5. Then X is partitioned as

X = [X1,X2, . . . ,X1874]. Each Xj contains d = 3 pixels,

for j = 1, . . . , 1873, and X1874 contains the remaining 5

pixels. The authors in [31] have explored the influence of the

values of d for the ℓ2,1-blocks norm regularization and it is

hard to obtain an optimal d for all cases. However, d = 3

is a good candidate for many experiments. Following the

analysis, we fix d = 3 in JSBUnSAL-TV for both simulated

and real-data experiments.

We now adopt a two-level reweighting strategy proposed

in [31] for joint-sparse-blocks regression to enhance the spar-

sity along the rows in each block.We recall from (25) and (26)

that the ith row of the jth block of Vk+1
2 , i.e., (Vk+1

2,j )[i], is

obtained by

(Vk+1
2,j )[i] = t

k
i,j

max{‖tki,j‖2 − λ
µ
wi,j, 0}

max{‖tki,j‖2 − λ
µ
wi,j, 0} + λ

µ
wi,j

, (36)

where we assume tki,j = (Xk+1
j − 3

k
2,j)

[i], for i = 1, . . . ,m,

j = 1, . . . , s. Similarly as in [55], the authors in [31] propose

a reweighting strategy of wi,j, that is, the weights wi,j at

1The MATLAB codes of SUnSAL, CLSUnSAL, and SUnSAL-TV are
available at http://www.lx.it.pt/~bioucas/publications.html

2The MATLAB code of ADSpLRU is available at http://
members.noa.gr/parisg/demo_splr_unmixing.zip
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(k + 1)th iteration for (Vk+1
2,j )[i] in (36), denoted as wk+1

i,j , are

computed by

wk+1
i,j =

1

‖tki,j‖2 + ε
, (37)

where ε = 10−16 is a small constant added to avoid singu-

larities. Clearly, the reweighting coefficients treat each row in

each block differently and enhance the sparsity along the rows

in each block. The effectiveness of the reweighting technique

for spectral unmixing problems has been exploited in [31] and

will be also shown in the following section IV-B.

For all the algorithms, regularization parameters are

tuned to their best performance with respect to signal-to-

reconstruction error (SRE) measured in dB and defined by

SRE (dB) = 10 log10

(

1
n

∑n
i=1 ‖x̂i‖

2
2

1
n

∑n
i=1 ‖x̂i − xi‖

2
2

)

, (38)

where n is the number of pixels, x̂i and xi are estimated

and exact abundance vectors of the ith pixel, respectively.

Generally speaking, the higher SRE (dB), the higher quality

of the unmixing results. Another metric evaluating the per-

formance of unmixing estimations is the root-mean-square

error (RMSE) defined by

RMSE =

√

√

√

√

1

mn

n
∑

i=1

∥

∥x̂i − xi

∥

∥

2

2
, (39)

where m is the number of endmembers. Unless otherwise

specified, we select optimal regularization parameters in the

compared algorithms from the following sequence:

{0, 5 · 10−4, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1} (40)

to get best SRE (dB) value, similarly as in [32], [34]. Note

that each of SUnSAL and CLSUnSAL has only one regular-

ization parameter, but each of other four algorithms has two.

Thus, fine tuning the parameters of SUnSAL-TV, ADSpLRU,

DRSU-TV, JSpBLRU, and JSBUnSAL-TV costs much more

computational time than that of SUnSAL and CLSUnSAL. In

particular, we empirically select the optimal rank parameter

τ in ADSpLRU and JSpBLRU from a slightly wider range:

{0, 5 · 10−4, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5,

1, 3, 5, 10, 50, 100}. (41)

In addition, we initially set the augmented Lagrangian penalty

parameter µ by choosing an optimal value from:

{0.001, 0.01, 0.1, 1}. (42)

We stop JSBUnSAL-TV if the termination criterion
∥

∥Xk − Xk−1
∥

∥

F
∥

∥Xk−1
∥

∥

F

≤ 10−8 (43)

is satisfied or when the number of iterations reached 1000.

The termination criterions for other algorithms are the same

as in [15], [26], [31], [34], [40], [42] with maximum

iteration 1000.

FIGURE 1. Spectral characteristic curves of five endmembers in
Example 1.

B. EXPERIMENTS ON SIMULATED DATA

Example 1: In this experiment, the simulated data cube con-

tains 75 × 75 pixels with 224 bands per pixel, which has

been used in [21], [34], [56]. We use the spectral library

A1 ∈ R
224×240: a randomly selected subset of the U.S. Geo-

logical Survey (USGS) spectral library3, which comprises

498 spectral signatures with reflectance values measured

in 224 spectral bands, distributed uniformly ranging from

0.4 to 2.5 µm. The test data cube is generated according to

LMM, with five randomly selected spectral signatures from

A1 as endmembers, shown in Fig. 1, and five corresponding

true fractional abundances shown in the first row of Fig. 2.

Then, the scene is corrupted by white Gaussian i.i.d. noise,

generated by the MATLAB function randn, with SNR = 25,

30, 35 and 40 dB, respectively.

Example 2: In this example, we use a simulated data cube

containing 128 × 128 pixels with 224 spectral bands. The

spectral library matrix isA2 ∈ R
224×100: a randomly selected

subset of A1. To generate the data cube by LMM, we ran-

domly choose five signatures from A2 and use true fractional

abundances shown in the first row of Fig. 3. We note that the

fractional abundances are also used in [48]. After the above

procedure, the true simulated data cube is contaminated by

white Gaussian i.i.d. noise with the same SNR values adopted

for Example 1.

Figs. 2 and 3 show the true and estimated abundance maps

by different unmixing algorithms for Example 1 with SNR

= 35 dB and Example 2 with SNR = 25 dB, respectively.

Abundance maps for other SNRs show similar behavior,

so we omit here for space considerations. From Fig. 2,

we observe that all unmixing algorithms delineate most

square regions in each abundancemap except SUnSAL. Also,

CLSUnSAL estimates the abundances with lower accuracy.

Clearly, CLSUnSAL hasmore smooth background than SUn-

SAL. As expected, due to the TV regularizer, SUnSAL-

TV, DRSU-TV, and JSBUnSAL-TV give abundance maps

with better spatial consistency for all endmembers than other

algorithms. In particular, JSBUnSAL-TV delineates a few

3Available online: http://speclab.cr.usgs.gov/spectral.lib06
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FIGURE 2. True and estimated abundance maps for (from left to right) endmembers #1–#5 by different unmixing algorithms
for Example 1 with SNR = 35 dB.
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FIGURE 3. True and estimated abundance maps for (from left to right) endmembers #1–#5 by different unmixing algorithms for
Example 2 with SNR = 25 dB.
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TABLE 1. SRE (dB), RMSE, and Time (s) by different unmixing algorithms for Examples 1 and 2. Optimal parameters for which the reported values were
achieved are indicated in the parentheses.

TABLE 2. Average per-pixel runtime by different unmixing algorithms for the AVIRIS Cuprite subscene.

more square regions of endmembers #1–#4 in comparison

with SUnSAL-TV and DRSU-TV. Similarly, from Fig. 3,

we observe that SUnSAL and CLSUnSAL provide less accu-

rate unmixing results. In addition, the TV based unmixing

algorithms: SUnSAL-TV, DRSU-TV, and JSBUnSAL-TV

give more smooth background than the low-rank represen-

tation based ADSpLRU and JSpBLRU. We also see that

SUnSAL-TV provides less accurate abundance for endmem-

ber #3 and DRSU-TV makes the regions with high fractional

abundance of the considered endmembers over-smooth. The

abundance maps by JSBUnSAL-TV are more similar to those

in the ground-truth than the ones estimated by other unmixing

algorithms.

Table 1 lists the SRE (dB) values, the RMSE values,

and the elapsed time in seconds (denoted as Time (s)),

along with optimal regularization parameter values, of all

compared algorithms for Examples 1 and 2. From Table 1,

we see that both SUnSAL and CLSUnSAL are very fast and
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FIGURE 4. SRE (dB) versus iteration of JSBUnSAL-TV with/without
reweighting for Example 1 with SNR = 35 dB.

FIGURE 5. Convergence histories of JSBUnSAL-TV for Example 1 under
different noise levels.

TV based unmixing algorithms: SUnSAL-TV, DRSU-TV,

and JSBUnSAL-TV, cost much more computational time

than other four algorithms. In addition, JSBUnSAL-TV

demands more runtime compared with SUnSAL-TV and

DRSU-TV. Clearly, among the seven compared algorithms,

JSBUnSAL-TV provides the highest SREs and lowest

RMSEs, which is consistent with the visual observation from

Figs. 2 and 3. The improvement is particularly clear for

Example 1 with SNR = 30, 35, and 40 dB since the changes

in SRE are at least greater than 3 dB.

We now demonstrate the effectiveness of the reweighting

strategy in JSBUnSAL-TV. To this end, Fig. 4 plots the

SRE (dB) values versus the iteration number of JSBUnSAL-

TV with and without the reweighting strategy for Exam-

ple 1 with SNR = 35 dB. We see from this figure that

JSBUnSAL-TV with reweighting provides higher SRE val-

ues than the one without reweighting as the iteration goes

stable. We also see that JSBUnSAL-TV with and without

reweighting provide an overall robust convergence behav-

ior. Furthermore, Fig. 5 shows the convergence histories

of JSBUnSAL-TV for Example 1 with examined SNRs. It

shows that JSBUnSAL-TV goes stable as iteration increases

for SNR of 30, 35, and 40 dB, but exhibits slight oscillation

for SNR = 25 dB.

Finally, we plot SRE (dB) values by JSBUnSAL-TV as a

function of parameters λ and λTV for Example 1 in Fig. 6.

FIGURE 6. SRE (dB) as a function of parameters λ and λTV in
JSBUnSAL-TV for Example 1 under different noise levels. (a) SNR = 25 dB.
(a) SNR = 30 dB. (a) SNR = 35 dB. (a) SNR = 40 dB.

FIGURE 7. USGS map showing the location of different minerals in the
Cuprite mining district in Nevada.

As shown in this figure, optimal λTV values decrease as SNR

gets higher, similarly as the observations for SUnSAL-TV

[34]. The optimal λ for the ℓ2,1-blocks norm regularization

is relatively stable for all examined SNR values. We also

observe that the optimal choice of λTV is always greater

than the optimal choice of λ. Thus, fine-tuning strategies are

suggested to be adopted for λTV in JSBUnSAL-TV. Also,
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FIGURE 8. Abundance maps estimated for the minerals: (from left to
right) alunite, buddingtonite, and muscovite by applying different
unmixing algorithms to the AVIRIS Cuprite scene.

both optimal λ and λTV values are nonzero for all SNR

levels, showing the effectiveness of simultaneously impos-

ing the ℓ2,1-blocks norm and TV regularization terms in

JSBUnSAL-TV for hyperspectral unmixing.

C. EXPERIMENTS ON REAL DATA

In this experiment, we test different unmixing algorithms

on the well-known Airborne Visible/Infrared Imaging Spec-

trometer (AVIRIS) Cuprite data set4. We use a subscene

containing 350×350 pixels with 188 spectral bands between

0.4 and 2.5 µm. This data cube has been widely applied

to validate the effectiveness of unmixing algorithms in the

literature [18], [21], [32], [38], [48]; see [15], [26], [34] for

more details. We generate the 188 × 240 spectral library

matrix from the USGS library which includes all exposed

minerals of interest. A mineral map5 produced in 1995 by

USGS is shown in Fig. 7, in which a Tetracorder 3.3 software

product [57] was used to map different minerals present in

the Cuprite mining district. Note that the publicly available

AVIRIS Cuprite data were collected in 1997. Thus, it is hard

to give a direct comparison between the 1995 USGS map and

the 1997 Cuprite data. We only qualitatively assess fractional

abundance maps of different unmixing algorithms by using

the mineral map as a reference.

Fig. 8 shows fractional abundance maps estimated by the

Tetracorder software product6 and different unmixing algo-

rithms for three prominent minerals in the subscene: alu-

nite, buddingtonite, and muscovite. As in [15], [26], [32],

the regularization parameter λ for SUnSAL and CLSUnSAL

is set to 0.001 and 0.01, respectively. We also set the param-

eters λ = λTV = 0.001 for SUnSAL-TV, DRSU-TV, and

JSBUnSAL-TV and set λ = τ = 0.001 for both ADSpLRU

and JSpBLRU, similarly as in [31], [34]. From Fig. 8, we can

observe that the highest abundances estimated by all seven

algorithms are generally consistent with those obtained by

the Tetracorder software product. This says that all seven

unmixing algorithms are able to assess fractional abundance

maps of respective minerals.

Furthermore, we list the runtime per pixel by different

unmixing algorithms in Table 2. It says that SUnSAL and

CLSUnSAL are very fast and JSBUnSAL-TV uses slightly

more computational time than SUnSAL-TV and DRSU-TV,

in line with the observation from simulated-data experi-

ments. However, we also observe that both ADSpLRU and

JSpBLRU cost more time than other algorithms, which may

be due to the expensive step of the singular value decompo-

sition for the abundance matrix with a larger size. In conclu-

sion, the proposed JSBUnSAL-TV algorithm is effective for

unmixing real hyperspectral data.

V. CONCLUSION AND FUTURE WORK

In this paper, we have incorporated the joint-sparsity-blocks

regression in TV spatial regularized spectral unmixing frame-

work. The new model promotes adjacent pixels to have

similar not only constituent endmembers but also fractional

4Available online: http://aviris.jpl.nasa.gov/html/aviris.freedata.html
5Available online: http://speclab.cr.usgs.gov/cuprite95.tgif.2.2um_

map.gif
6Available online: https://speclab.cr.usgs.gov/PAPERS/tetracorder/
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abundances, and moreover, to have similar sparsity pat-

tern. We employ the ADMM to solve the proposed model,

and obtain an algorithm called JSBUnSAL-TV. In particu-

lar, a reweighting strategy is utilized to enhance the spar-

sity long lines within each block. The experiments on both

simulated and real data show that the proposed algorithm

efficiently improves the abundance estimation performance.

In the future, we will extend the ℓ2,1-blocks and TV

mixed regularization to tensor-based hyperspectral image

processing.
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