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Joint Sparse Representation for Robust Multimodal

Biometrics Recognition
Sumit Shekhar, Student Member, IEEE, Vishal M. Patel, Member, IEEE, Nasser M. Nasrabadi, Fellow, IEEE,

and Rama Chellappa, Fellow, IEEE

.

Abstract—Traditional biometric recognition systems rely on a
single biometric signature for authentication. While the advan-
tage of using multiple sources of information for establishing the
identity has been widely recognized, computational models for
multimodal biometrics recognition have only recently received at-
tention. We propose a multimodal sparse representation method,
which represents the test data by a sparse linear combination of
training data, while constraining the observations from different
modalities of the test subject to share their sparse representations.
Thus, we simultaneously take into account correlations as well as
coupling information among biometric modalities. We modify our
model so that it is robust to noise and occlusion. A multimodal
quality measure is also proposed to weigh each modality as it gets
fused. Furthermore, we also kernelize the algorithm to handle
non-linearity in data. The optimization problem is solved using an
efficient alternative direction method. Various experiments show
that our method compares favorably with competing fusion-based
methods.

Index Terms—Multimodal biometrics, feature fusion, sparse
representation.

I. INTRODUCTION

Unimodal biometric systems rely on a single source of

information such as a single iris or fingerprint or face for

authentication [1]. Unfortunately these systems have to deal

with some of the following inevitable problems [2]: (a) Noisy

data: poor lighting on a user’s face or occlusion are examples

of noisy data. (b) Non-universality: the biometric system

based on a single source of evidence may not be able to

capture meaningful data from some users. For instance, an

iris biometric system may extract incorrect texture patterns

from the iris of certain users due to the presence of contact

lenses. (c) Intra-class variations: in the case of fingerprint

recognition, presence of wrinkles due to wetness [3] can

cause these variations. These types of variations often occur

when a user incorrectly interacts with the sensor. (d) Spoof

attack: hand signature forgery is an example of this type of

attack. It has been observed that some of the limitations of

unimodal biometric systems can be addressed by deploying

multimodal biometric systems that essentially integrate the

evidence presented by multiple sources of information such

as iris, fingerprints and face. Such systems are less vulnerable

to spoof attacks as it would be difficult for an imposter to

Sumit Shekhar, Vishal M. Patel and R. Chellappa are with the Department
of Electrical and Computer Engineering and the Center for Automation
Research, UMIACS, University of Maryland, College Park, MD 20742 USA
(e-mail: {sshekha,pvishalm,rama}@umiacs.umd.edu)

Nasser M. Nasrabadi is with the U.S. Army Research Lab, Adelphi, MD
20783 USA (e-mail: nasser.m.nasrabadi@us.army.mil).

simultaneously spoof multiple biometric traits of a genuine

user. Due to sufficient population coverage, these systems are

able to address the problem of non-universality.

Classification in multibiometric systems is done by fus-

ing information from different biometric modalities. The

information fusion can be done at different levels, which

can be broadly divided into feature level, score level and

rank/decision level fusion. Due to preservation of raw in-

formation, feature level fusion can be more discriminative

than score or decision level fusion [4]. But, there have been

very few efforts in exploring feature level fusion in the

biometric community. This is because of the differences in

features extracted from different sensors in terms of type and

dimensions. Often the features have large dimensions, and

fusion becomes difficult at the feature level. The prevalent

method is feature concatenation, which has been used for

different multibiometric settings [5]–[7]. However, for high-

dimensional feature vectors, simple feature concatenation may

be inefficient and non-robust. A related work in the machine

learning literature is of Multiple Kernel Learning (MKL),

which aims to integrate information from different features

by learning a weighted combination of respective kernels. A

detailed survey of the methods for MKL can be found in

[8]. However, for multimodal systems, weight determination

during testing is important, based on the quality of different

modalities. Such a framework is not feasible in MKL setting.

Methods like [9], [10] try to exploit information from labeled

and unlabeled data from a different view to improve classifier

performance. Similarly, SVM-2k [11] jointly learns SVM for

two views. But, these methods are difficult to generalize to

multimodal setting, as common in biometric fusion. A Fisher

discriminant analysis based method has also been proposed for

integrating multiple views [12], but it is also similar to MKL

with kernel Fisher discriminant analysis as the base learner

[13].

In recent years, theories of Sparse Representation (SR) and

Compressed Sensing (CS) have emerged as powerful tools

for efficient processing of data in non-traditional ways [14].

This has led to a resurgence in interest in the principles

of SR and CS for biometrics recognition [15]. Wright et

al. [16] proposed the seminal sparse representation-based

classification (SRC) algorithm for face recognition. It was

shown that by exploiting the inherent sparsity of data, one

can obtain improved recognition performance over traditional

methods especially when the data is contaminated by various

artifacts such as illumination variations, disguise, occlusion
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Fig. 1: Overview of our algorithm.

and random pixel corruption. Pillai et al. extended this work

for robust cancelable iris recognition in [17]. Nagesh and Li

[18] presented an expression-invariant face recognition method

using distributed CS and joint sparsity models. Patel et al. [19]

proposed a dictionary-based method for face recognition under

varying pose and illumination. A discriminative dictionary

learning method for face recognition was also proposed by

Zhang and Li [20]. For a survey of applications of SR and CS

algorithms to biometric recognition, see [14], [15], [21], [22]

and the references therein.

Motivated by the success of SR in unimodal biomet-

ric recognition, we propose a joint sparsity-based algorithm

for multimodal biometrics recognition. Figure 1 presents an

overview of our framework. It is based on the well known

regularized regression method, multi-task multi-variate Lasso

[23], [24]. Our method imposes common sparsities both within

each biometric modality and across different modalities. Note

that our method is different from some of the previously pro-

posed classification algorithms based on joint sparse represen-

tation. For example, Yuan and Yan [25] proposed a multi-task

sparse linear regression model for image classification. This

method uses group sparsity to combine different features of

an object for classification. Zhang et al. [26] proposed a joint

dynamic sparse representation model for object recognition.

Their essential goal was to recognize the same object viewed

from multiple observations i.e., different poses. Our method

is more general in that it can deal with both multi-modal as

well as multi-variate sparse representations.

This paper makes the following contributions:

• We present a robust feature level fusion algorithm for

multibiometric recognition. Through the proposed joint

sparse framework, we can easily handle different dimen-

sions of different modalities by forcing different features

to interact through their sparse coefficients. Furthermore,

the proposed algorithm can efficiently handle large di-

mensional feature vectors.

• We make the classification robust to occlusion and noise

by introducing an error term into the optimization frame-

work.

• The algorithm is easily generalizable to handle multiple

test inputs from a modality.

• We introduce a quality measure for multimodal fusion

based on the joint sparse representation.

• Lastly, we kernelize the algorithm to handle non-linearity

in the data samples.

A preliminary version of this work appeared in [27], which

describes just the linear version of the algorithm, robust

to noise and occlusion. Furthermore, extensive experimental

evaluations are presented here.

A. Paper Organization

The paper is organized as follows. In section II, we describe

the proposed sparsity-based multimodal recognition algorithm

which is kernelized in section IV. The quality measure is

described in III. Experimental evaluations on a comprehensive

multimodal dataset and a face database are described in

section V. Finally, in section VI, we discuss the computational

complexity of the method. Concluding remarks are presented

in section VII.

II. JOINT SPARSITY-BASED MULTIMODAL BIOMETRICS

RECOGNITION

Consider a multimodal C-class classification problem with

D different biometric traits. Suppose there are pi training
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samples in each biometric trait. For each biometric trait

i = 1, . . . , D, we denote

Xi = [Xi
1,X

i
2, . . . ,X

i
C ]

as an ni × pi dictionary of training samples consisting of C
sub-dictionaries Xi

k’s corresponding to C different classes.

Each sub-dictionary

Xi
j = [xi

j,1,x
i
j,2, . . . ,x

i
j,pj

] ∈ R
n×pj

represents a set of training data from the ith modality labeled

with the jth class. Note that ni is the feature dimension of each

sample and there are pj number of training samples in class j.

Hence, there are a total of p =
∑C

j=1 pj many samples in the

dictionary Xi
C . Elements of the dictionary are often referred

to as atoms. In multimodal biometrics recognition problem,

given a test samples (matrix) Y, which consists of D different

modalities {Y1,Y2, . . . ,YD} where each sample Yi consists

of di observations Yi = [yi
1,y

i
2, . . . ,y

i
d] ∈ R

n×di , the objec-

tive is to identify the class to which a test sample Y belongs

to. In what follows, we present a multimodal multivariate

sparse representation-based algorithm for this problem [23],

[24], [28].

A. Multimodal multivariate sparse representation

We want to exploit the joint sparsity of coefficients from

different biometric modalities to make a joint decision. To

simplify this model, let us consider a bi-modal classification

problem where the test sample Y = [Y1,Y2] consists of two

different modalities such as iris and face. Suppose that Y1

belongs to the jth class. Then, it can be reconstructed by a

linear combination of the atoms in the sub-dictionary X1
j . That

is, Y1 = X1Γ1 +N1, where Γ1 is a sparse matrix with only

pj nonzero rows associated with the jth class and N1 is the

noise matrix. Similarly, since Y2 represents the same subject,

it belongs to the same class and can be represented by training

samples in X2
j with different set of coefficients Γ2

j . Thus, we

can write Y2 = X2Γ2+N2, where Γ2 is a sparse matrix that

has the same sparsity pattern as Γ1. If we let Γ = [Γ1,Γ2],
then Γ is a sparse matrix with only pj non-zero rows.

In the more general case where we have D modalities,

if we denote {Yi}Di=1 as a set of D observations each

consisting of di samples from each modality and let Γ =
[Γ1,Γ2, . . . ,ΓD] ∈ R

p×d be the matrix formed by concate-

nating the coefficient matrices with d =
∑D

i=1 di, then we

can seek for the row-sparse matrix Γ by solving the following

ℓ1/ℓq-regularized least square problem

Γ̂ = argmin
Γ

1

2

D
∑

i=1

‖Yi −XiΓi‖2F + λ‖Γ‖1,q (1)

where λ is a positive parameter and q is set greater than 1 to

make the optimization problem convex. Here, ‖Γ‖1,q is a norm

defined as ‖Γ‖1,q =
∑p

k=1 ‖γ
k‖q where γk’s are the row

vectors of Γ and ‖Y‖F is the Frobenius norm of the matrix

Y defined as ‖Y‖F =
√

∑

i,j Y
2
i,j . Once Γ̂ is obtained, the

class label associated with an observed vector is then declared

as the one that produces the smallest approximation error.

ĵ = argmin
j

D
∑

i=1

‖Yi −Xiδij(Γ
i)‖2F , (2)

where δij is the matrix indicator function defined by keeping

rows corresponding to the jth class and setting all other rows

equal to zero. Note that the optimization problem (1) reduces

to the conventional Lasso [29] when D = 1 and d = 1. In

the case, when D = 1 (1) is referred to as multivariate Lasso

[23].

B. Robust multimodal multivariate sparse representation

In this section, we consider a more general problem where

the data is contaminated by noise. In this case, the observation

model can be modeled as

Yi = XiΓi + Zi +Ni, i = 1, . . . D, (3)

where Ni is a small dense additive noise and Zi ∈ R
n×di

is a matrix of background noise (occlusion) with arbitrarily

large magnitude. One can assume that each Zi is sparsely

represented in some basis Bi ∈ R
n×mi

. That is, Zi = BiΛi

for some sparse matrices Λi ∈ R
mi×di . Hence, (3) can be

rewritten as

Yi = XiΓi +BiΛi +Ni, i = 1, . . .D, (4)

With this model, one can simultaneously recover the coef-

ficients Γi and Λi by taking advantage of the fact that Λi are

sparse

Γ̂, Λ̂ = argmin
Γ,Λ

1

2

D
∑

i=1

‖Yi −XiΓi −BiΛi‖2F +

λ1‖Γ‖1,q + λ2‖Λ‖1, (5)

where λ1 and λ2 are positive parameters and Λ =
[Λ1,Λ2, . . . ,ΛD] is the sparse coefficient matrix correspond-

ing to occlusion. The ℓ1-norm of matrix Λ is defined as

‖Λ‖1 =
∑

i,j |Λi,j |. Note that the idea of exploiting the

sparsity of occlusion term has been studied by Wright et al.

[16] and Candes et al. [30].

Once Γ,Λ are computed, the effect of occlusion can be

removed by setting Ỹi = Yi − BiΛi. One can then declare

the class label associated to an observed vector as

ĵ = argmin
j

D
∑

i=1

‖Yi −Xiδi
j(Γ

i)−BiΛi‖2F . (6)

C. Optimization algorithm

Optimization problem (5) is convex but difficult to solve due

to the joint sparsity constraint. In this section, we present an

approach based on the classical alternating direction method

of multipliers (ADMM) [31], [32]. Note that the optimization

problem (1) can be solved by setting λ2 equal to zero. Let

C(Γ,Λ) =
1

2

D
∑

i=1

‖Yi −XiΓi −BiΛi‖2F .
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Then, our goal is to solve the following optimization problem

min
Γ,Λ

C(Γ,Λ) + λ1‖Γ‖1,q + λ2‖Λ‖1. (7)

In ADMM the idea is to decouple C(Γ,Λ), ‖Γ‖1,q and ‖Λ‖1
by introducing auxiliary variables to reformulate the problem

into a constrained optimization problem

min
Γ,Λ,U,V

C(Γ,Λ) + λ1‖V‖1,q + λ2‖U‖1 s. t.

Γ = V,Λ = U. (8)

Since, (8) is an equally constrained problem, the Augmented

Lagrangian method (ALM) [31] can be used to solve the

problem. This can be done by minimizing the augmented

Lagrangian function fαΓ,αΛ
(Γ,Λ,V,U;AΛ,AΓ) defined as

C(Γ,Λ) + λ2‖U‖1 + 〈AΛ,Λ−U〉+
αΛ

2
‖Λ−U‖2F+

λ1‖V‖1,q + 〈AΓ,Γ−V〉+
αΓ

2
‖Γ−V‖2F , (9)

where AΛ and AΓ are the multipliers of the two linear

constraints, and αΛ, αΓ are the positive penalty parameters.

The ALM algorithm solves fαΓ,αΛ
(Γ,Λ,V,U;AΛ,AΓ) with

respect to Γ,Λ,U and V jointly, keeping AΓ and AΛ fixed

and then updating AΓ and AΛ keeping the remaining variables

fixed. Due to the separable structure of the objective function

fαΓ,αΛ
, one can further simplify the problem by minimizing

fαΓ,αΛ
with respect to variables Γ,Λ,U and V, separately.

Different steps of the algorithm are given in Algorithm 1.

In what follows, we describe each of the sub-optimization

problems in detail.

Algorithm 1: Alternating Direction Method of Multipliers

(ADMM).

Initialize: Γ0,U0,V0,AΛ,0,AΓ,0, αΓ, αΛ

While not converged do
1. Γt+1 = argminΓ fαΓ,αΛ

(Γ,Λt,Ut,Vt;AΓ,t,AΛ,t)
2. Λt+1 = argminΛ fαΓ,αΛ

(Γt+1,Λ,Ut,Vt;AΓ,t,AΛ,t)
3. Ut+1 = argminU fαΓ,αΛ

(Γt+1,Λt+1,U,Vt;AΓ,t,AΛ,t)
4. Vt+1 = argminV fαΓ,αΛ

(Γt+1,Λt+1,Ut+1,V;AΓ,t,AΛ,t)
5. AΓ,t+1

.
= AΓ,t + αΛ(Γt+1 −Ut+1)

6. AΛ,t+1
.
= AΛ,t + αΓ(Γt+1 −Vt+1)

1) Update step for Γ: The first sub-optimization problem

involves the minimization of fαΓ,αΛ
(Γ,Λ,V,U;AΛ,AΓ)

with respect to Γ. It has the quadratic structure, which is easy

to solve by setting the first-order derivative equal to zero.

Furthermore, the loss function C(Γ,Λ) is a sum of convex

functions associated with sub-matrices Γi, one can seek for

Γi
t+1, i = 1, . . . , D, which has the following solution

Γi
t+1 = (XiT Xi + αΓI)

−1(XiT (Yi −Λi
t) + αΓV

i
t +Ai

V,t),

where I is p × p identity matrix and Λi
t,V

i
t and Ai

V,t are

sub-matrices of Λt,Vt and AV,t, respectively.

2) Update step for Λ: The second sub-optimization prob-

lem is similar in nature, whose solution is given below

Λi
t+1 = (1 + αΛ)

−1(Yi −XiΓi
t+1 + αΛU

i
t −Ai

Λ,t),

where Ui
t and Ai

Λ,t are sub-matrices of Ut and AΛ,t, respec-

tively.

3) Update step for U: The third sub-optimization problem

is with respect to U, which is the standard ℓ1 minimization

problem which can be recast as

min
U

1

2
‖Λt+1 + α−1

Λ AΛ,t −U‖2F +
λ2

αΛ
‖U‖1. (10)

Equation (10) is the well-known shrinkage problem whose

solution is given by

Ut+1 = S

(

Λt+1 + α−1
Λ AΛ,t,

λ2

αΛ

)

,

where S(a, b) = sgn(a)(|a| − b) for |a| ≥ b and zero

otherwise.

4) Update step for V: The final suboptimization problem

is with respect to V which can be reformulated as

min
V

1

2
‖Γt+1 + α−1

Γ AΓ,t −V‖2F +
λ1

αΓ
‖V‖1,q. (11)

Due to the separable structure of (11), it can be solved by

minimizing with respect to each row of V separately. Let

γi,t+1, aΓ,i,t and vi,t+1 be rows of matrices Γt+1,AΓ,t and

Vt+1, respectively. Then for each i = 1, . . . , p we solve the

following sub-problem

vi,t+1 = argmin
v

1

2
‖z− v‖22 + η‖v‖q, (12)

where z = γi,t+1−aΓ,i,tα
−1
Γ and η = λ1

λ2
. One can derive the

solution for (12) for any q. In this paper, we only focus on

the case when q = 2. The solution of (12) has the following

form

vi,t+1 =

(

1−
η

‖z‖2

)

+

z,

where (v)+ is a vector with entries receiving values

max(vi, 0).
Our proposed Sparse Multimodal Biometrics Recognition

(SMBR) method is summarized in Algorithm 2. We refer to

the robust method taking sparse error into account as SMBR-E

(SMBR with error), and the initial case where it is not taken

account as SMBR-WE (SMBR without error).

Algorithm 2: Sparse Multimodal Biometrics Recognition

(SMBR).

Input: Training samples {Xi}
D
i=1, test sample {Yi}

D
i=1, Occlusion

basis {B}Di=1

Procedure: Obtain Γ̂ and Λ̂ by solving

Γ̂, Λ̂ = argmin
Γ,Λ

1

2

D
∑

i=1

‖Yi−X
i
Γ
i−B

i
Λ

i‖2F+λ1‖Γ‖1,q+λ2‖Λ‖1,

Output:

identity(Y) = argminj
∑D

i=1 ‖Y
i −Xiδ

i
j(Γ̂

i
)−BiΛ̂

i‖2
F
.

III. QUALITY BASED FUSION

Ideally a fusion mechanism should give more weights to

the more reliable modalities. Hence, the concept of quality

is important in multimodal fusion. A quality measure based

on sparse representation was introduced for faces in [16]. To

decide whether a given test sample has good quality or not,
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its Sparsity Concentration Index (SCI) was calculated. Given

a coefficient vector γ ∈ R
p, the SCI is given as:

SCI(γ) =

C.maxi∈{1,··· ,C}‖δi(γ)‖1

‖γ‖1
− 1

C − 1

where, δi is the indicator function keeping the coefficients

corresponding to the ith class and setting others to zero. SCI

values close to 1 correspond to the case where the test sample

can be represented well using the samples of a single class,

hence is of high quality. On the other hand, samples with SCI

close to 0 are not similar to any of the classes, and hence are

of poor quality. This can be easily extended to the multimodal

case using the joint sparse representation matrix Γ̂. In this

case, we can define the quality, qij for sample yi
j as:

qij = SCI(Γ̂
i

j)

where, Γ̂i
j is the jth column of Γ̂

i
. Given this quality measure,

the classification rule (2) can be modified to include the quality

measure.

ĵ = argmin
j

D
∑

i=1

di
∑

k=1

qik‖y
i
k −Xiδj(Γ

i
k)‖

2
F , (13)

where, δj is the indicator function retaining the coefficients

corresponding to jth class.

IV. KERNEL SPACE MULTIMODAL BIOMETRICS

RECOGNITION

The class identities in the multibiometric dataset may not

be linearly separable. Hence, we also extend the sparse multi-

modal fusion framework to kernel space. The kernel function,

κ : Rn × R
n, is defined as the inner product

κ(xi,xj) = 〈φ(xi), φ(xj)〉

where, φ is an implicit mapping projecting the vector x into

a higher dimensional space.

A. Multivariate kernel sparse representation

Considering the general case of D modalities with {Yi}Di=1

as a set of di observations, the feature space representation can

be written as:

Φ(Yi) = [φ(yi
1), φ(y

i
2), ..., φ(y

i
d)]

Similarly, the dictionary of training samples for modality i =
1, · · · , D can be represented in feature space as

Φ(Xi) = [φ(Xi
1), φ(X

i
2), · · · , φ(X

i
C)]

As in joint linear space representation, we have:

Φ(Yi) = Φ(Xi)Γi

where, Γi is the coefficient matrix associated with modality

i. Incorporating information from all the sensors, we seek to

solve the following optimization problem similar to the linear

case:

Γ̂ = argmin
Γ

1

2

D
∑

i=1

‖Φ(Yi)−Φ(Xi)Γi‖2F + λ‖Γ‖1,q (14)

where, Γ = [Γ1,Γ2, · · · ,ΓD]. It is clear that the information

from all modalities are integrated via the shared sparsity

pattern of the matrices {Γi}Di=1. This can be reformulated in

terms of kernel matrices as:

Γ̂ = argmin
Γ

1

2

D
∑

i=1

(

trace(ΓiT KXi,Xi
Γi)

−2trace(KXi,Yi
Γi)

)

+ λ‖Γ‖1,q (15)

where, the kernel matrix KA,B is defined as:

KA,B(i, j) = 〈φ(ai), φ(bj)〉 (16)

ai and bj being ith and jth columns of A and B respectively.

B. Optimization Algorithm

Similar to the linear fusion method, we apply the alternating

direction method to efficiently solve the problem for kernel

fusion. The method splits the variable Γ such that the new

problem has two convex functions. This is done by introducing

a new variable V and reformulating the problems (15) and (??)

as:

argmin
Γ,V

1

2

NK
∑

i=1

(

trace(ΓiT KXi,XiΓi)− 2trace(KXi,YiΓi)
)

+ λ‖V‖1,qs.t.Γ = V (17)

where, NK is the number of kernels in (15) and (??).

Rewriting the problem using the Lagrangian multiplier, the

optimization problem becomes:

argmin
Γ,V

1

2

NK
∑

i=1

(

trace(ΓiT KXi,XiΓi)− 2trace(KXi,YiΓi)
)

+ λ‖V‖1,q + 〈B,Γ−V〉+
βW

2

∥

∥Γ−V
∥

∥

2

F
(18)

which upon re-arranging reduces to:

argmin
Γ,V

1

2

NK
∑

i=1

(

trace(ΓiT KXi,XiΓi)− 2trace(KXi,YiΓi)
)

+ λ‖V‖1,q +
βW

2

∥

∥Γ−V +
1

βW

B
∥

∥

2

F
(19)

The optimization method is summarized in Algorithm 3. It

should be pointed out that each step has a simple closed-form

expression.

Algorithm 3: Alternating Direction Method of Multipliers

(ADMM) in kernel space.

Initialize: Γ0,V0,B0, βW

While not converged do

1. Γt+1 = argminΓ
1
2

∑NK
i=1

(

trace(ΓiT
K

Xi,XiΓ
i)−

2trace(K
Xi,YiΓ

i)
)

+ λ‖Vt‖1,q + βW

2

∥

∥Γ−Vt +
1

βW
Bt

∥

∥

2

F

2. Vt+1 = argminV λ‖V‖1,q + βW
2

∥

∥Γt+1 −Vt + 1
βW

Bt

∥

∥

2

F

3. Bt+1 = Bt + βW (Γt+1 −Vt+1)

1) Update steps for Γt: Γt+1 is obtained by updating each

sub-matrix Γi
t, i = 1, · · · , NK as:

Γi
t = (KXi,Xi + βW I)−1(KXi,Yi + βWVi

t −Bi
t) (20)

where, I is an identity matrix and Vi
t, B

i
t are sub-matrices

of Vt and Bt respectively.
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2) Update steps for Vt: The update equation for Vt is

same as in the linear fusion case using (11) and (12), replacing

AΓ,t and αΓ with Bt and βW respectively.

C. Classification

Once Γ is obtained, classification can be done by assigning

the class label as:

ĵ = argmin
j

NK
∑

i=1

‖Φ(Y
i
)−Φ(X

i

j)Γ̂
i
j‖

2
F

or in terms of kernel matrices as:

ĵ = argmin
j

NK
∑

i=1

(

trace(KYY)− 2trace(Γ̂iT

j K
Xi

j
Y
Γ̂i
j)

+ trace(Γ̂iT

j KXi
j
Xi

j
Γ̂i
j)) (21)

Here, Xi
j is the sub-dictionary associated with jth class and

Γ̂i
j is the coefficient matrix associated with this class.

The classification rule can be further extended to include

the quality measure as in (13). But, we skip this step here,

as we wish to study the effect of kernel representation and

quality separately.

Multivariate Kernel Sparse Recognition (kerSMBR) algo-

rithm is summarized in Algorithm 4:

Algorithm 4: Kernel Sparse Multimodal Biometrics Recogni-

tion (kerSMBR).

Input: Training samples {Xi}
D
i=1, test sample {Yi}

D
i=1

Procedure: Obtain Γ̂ by solving

Γ̂ = argmin
Γ

1

2

D
∑

i=1

‖Φ(Yi)−Φ(Xi)Γi‖2F + λ‖Γ‖1,q (22)

Output: identity(Y) = argminj
∑D

i=1

(

trace(KYY)−

2trace(Γ̂iT

j K
X

i
j
Y
Γ̂
i
j) + trace(Γ̂iT

j K
X

i
j
X

i
j
Γ̂
i
j))

V. EXPERIMENTS

We evaluated our algorithm on two publicly available

datasets - the WVU Multimodal dataset [33] and the AR face

dataset [34]. In the first experiment, we tested on the WVU

dataset, which is one of the few publicly available datasets

which allows fusion at image level. It is a challenging dataset

consisting of samples from different biometric modalities for

each subject.

In the second experiment, we show the applicability of our

method to fusing information from weak biometrics extracted

from face images. In particular, the periocular region has

been shown to be a useful biometric [35]. Similarly, the nose

region has also been explored as a biometric [36]. Sinha et al

[37] have demonstrated that eyebrows are important for face

recognition. However, each of these sub-regions may not be

as discriminative as the whole face. The challenge for fusion

algorithms is to be able to combine these weak modalities

with a strong modality based on the whole face [38]. We

demonstrate how our framework can be extended to address

this problem. Further, we also show the effects of noise and

occlusion on the performance of different algorithms. In all the

experiments Bi was set to be identity for convenience, i.e., we

assume background noise to be sparse in image domain.

A. WVU Multimodal Dataset

The WVU multimodal dataset is a comprehensive collection

of different biometric modalities such as fingerprint, iris,

palmprint, hand geometry and voice from subjects of different

age, gender and ethnicity as described in Table I. It is a

challenging dataset as many of these samples are corrupted

with blur, occlusion and sensor noise as shown in Figure 2. Out

of these, we chose iris and fingerprint modalities for testing the

proposed algorithms. In total, there are 2 iris (right and left iris)

and 4 fingerprint modalities. Also, the evaluation was done on

a subset of 219 subjects having samples in both modalities.

Fig. 2: Examples of challenging images from the WVU

Multimodal dataset. The images shown above suffer from

various artifacts such as sensor noise, blur and occlusion.

Biometric Modality # of subjects # of samples

Iris 244 3099
Fingerprint 272 7219

Palm 263 683
Hand 217 3062
Voice 274 714

TABLE I: WVU Biometric Data

1) Preprocessing: Robust pre-processing of images was

done before feature extraction. Iris images were segmented

using the method proposed in [39]. Following the segmen-

tation step, 25 × 240 iris templates were generated by re-

sampling using the publicly available code of Masek et al.

[40]. Fingerprint images were enhanced using the filtering

methods described in [41], and then the core point was

detected from the enhanced images [42]. Features were then

extracted around the detected core point.

2) Feature Extraction: Gabor features were extracted from

the processed images as they have been shown to give good

performance on both fingerprints [42] and iris [43]. For

fingerprint samples, the processed images were convolved with

Gabor filters at 8 different orientations. Circular tessellations

were extracted around the core point for all the filtered images

similar to [42]. The tessellation consisted of 15 concentric

bands, each of width 5 pixels and divided into 30 sectors. The

mean values for each sector were concatenated to form the

feature vector of size 3600× 1. Features for iris images were

formed by convolving the templates with a log-Gabor filter at

a single scale, and vectorizing the template to give a 6000× 1
dimensional feature.
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Fig. 3: CMCs (Cumulative Match Curve) for individual modalities using (a) SMBR-E, (b) SMBR-WE, (c) SLR and (d) SVM

methods.
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Fig. 4: CMCs for multimodal fusion using (a) four fingerprints, (b) two irises and (c) all modalities.
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Finger 1 Finger 2 Finger 3 Finger 4 Iris 1 Iris 2

SMBR-WE 68.1± 1.1 88.4± 1.2 69.2± 1.5 87.5± 1.5 60.0± 1.5 62.1± 0.4
SMBR-E 67.1± 1.0 87.9± 0.8 67.4± 1.9 86.9± 1.5 62.5± 1.2 64.3± 1.0

SLR 67.4± 1.9 87.9± 1.3 66.0± 2.2 87.5± 1.3 57.1± 3.0 57.9± 2.7
SVM 41.1± 5.0 75.5± 2.2 49.2± 1.6 67.0± 8.3 44.3± 1.2 45.0± 2.9

TABLE II: Rank one recognition performance for individual modalities.

SMBR-WE SMBR-E SLR-Sum SLR-Major SVM-Sum SVM-Major MKLFusion

4 Fingerprints 97.9± 0.4 97.6± 0.6 96.3± 0.8 74.2± 0.7 90.0 ± 2.2 73.0± 1.5 86.2± 1.2
2 Irises 76.5± 1.6 78.2± 1.2 72.7± 4.0 64.2± 2.7 62.8 ± 2.6 49.3± 2.0 76.8± 2.5

All modalities 98.7± 0.2 98.6± 0.5 97.6± 0.4 84.4± 0.9 94.9 ± 1.5 81.3± 1.7 89.8± 0.9

TABLE III: Rank one recognition performance for the WVU Multimodal dataset.

SMBR-WE SMBR-E SLR-Sum SLR-Major SVM-Sum SVM-Major

4 Fingerprints 98.2± 0.5 98.1± 0.5 97.5± 0.5 86.3± 0.6 93.6 ± 1.6 85.5± 0.9
2 Irises 76.9± 1.2 78.8± 1.7 74.1± 1.0 67.2± 2.4 64.3 ± 3.3 51.6± 2.0

All modalities 98.8± 0.4 98.6± 0.3 98.2± 0.2 93.8± 0.9 95.5 ± 1.5 93.3± 1.2

TABLE IV: Rank one recognition performance using the proposed quality measure.

3) Experimental Set-up: The dataset was randomly divided

into 4 training samples per class (1 sample here is 1 data

sample each from 6 modalities) and the remaining 519 samples

were used for testing. The recognition result was averaged over

5 runs. The proposed methods were compared with state-of-

the-art classification methods such as sparse logistic regression

(SLR) [44] and SVM [45]. As these methods cannot handle

multiple modalities, we explored score-level and decision-

level fusion methods for combining the results of individual

modalities. For score-level fusion, the probability outputs for

test sample of each modality, {yi}
6
i=1 were added together

to give the final score vector. Classification was based upon

the final score values. For decision-level fusion, the subject

chosen by the maximum number of modalities was taken

to be from the correct class. We further compared with the

efficient multiclass implementation of MKL algorithm [46].

The proposed linear and kernel fusion techniques were tested

separately and compared them with the linear and kernel

versions of SLR, SVM and MKL algorithms. We denote the

score-level fusion of these methods as SLR-Sum and SVM-

Sum, and the decision-level fusion as SLR-Major and SVM-

Major. MKL based method is denoted as MKLFusion. We

report mean and standard deviation of rank one recognition

rates for all the methods. We also show Cumulative Match

Curves (CMCs) for all the classifiers. CMC is a performance

measure for biometric recognition systems and has been shown

to be equivalent to ROC of the system [47].

a) Linear Fusion: The recognition performances of

SMBR-WE and SMBR-E was compared with linear SVM and

linear SLR classification methods. The parameters λ1 and λ2

were set to 0.01.

• Comparsion of Methods: Figure 3 and Table II show the

performance on individual modalities. All the classifiers

show a similar trend. The performance for all of them are

lower on iris images and fingers 1 and 3. The proposed

method show superior performance on all the modalities.

Figure 4 and Table III show the recognition perfor-

mance for different fusion settings. The proposed SMBR

approach outperforms existing classification techniques.

Both SMBR-E and SMBR-WE have similar performance,

though the latter seems to give a slightly better perfor-

mance. This may be due to the penalty on the sparse error,

though the error may not be sparse in the image domain.

Further, sum-based fusion shows a superior performance

over voting-based methods. MKL based method shows

good performance for iris fusion, but the performance

drops for other two settings. This may be because by

weighing kernels during training, it loses flexibility while

testing when number of modalities increase.

• Fusion with quality: Clearly, different modalities have

different levels of performance. Hence, we studied the ef-

fect of the proposed quality measure on the performance

of different methods. For a consistent comparison, the

quality values produced by SMBR-E method was used

for all the algorithms. Table IV shows the performance

for the three fusion settings. The effect of including

the quality measure can be studied by comparing with

Table III. Clearly, the recognition rate increases for all

the methods across the fusion settings. Again SMBR-E

and SMBR-WE give the best performances among all the

methods.

• Effect of joint sparsity: We also studied the effect of joint

sparsity constraint on the recognition performance. For

this, SMBR-WE algorithm was run for different values

of λ1. Figure 5 shows the rank one recognition variation

across λ1 values for different fusion settings. All the

curves show a sharp increase in performance around

λ1 = 0. Further, the increase is more for iris fusion,

which shows around 5% improvement at λ1 = 0.005
over λ1 = 0. This shows that imposing joint sparsity

constraint is important for fusion. Moreover, it helps in

regulating fusion performance, when the reconstruction

error alone is not sufficient to distinguish between dif-

ferent classes. The performance is then stable across λ1

values, and starts decreasing slowly after reaching the

optimum performance.

• Variation with number of training samples: We varied

the number of training samples and studied the effect
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on the top four algorithms. Figure 6 shows the vari-

ation for fusion of all the modalities. It can be seen

that SMBR-WE and SMBR-E are stable across number

of training samples, whereas the performance of SLR

and MKLFusion based methods fall sharply. The fall in

performance of SLR and MKLFusion can be attributed to

the discriminative approaches of these methods, as well

as score-based fusion, as the fusion further reduces the

recognition performance when individual classifiers are

not good.
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• Comparison with other score-based fusion methods: Al-

though sum-based fusion is a popular technique for score

fusion, some other techniques have also been proposed.

We evaluated the performance of likelihood-based fusion

method proposed in [48]. The results are shown in Table

V. The method does not show good performance as it

models score distribution as Gaussian Mixture Model.

However, it is difficult to model score distribution due

to large variations in data samples. The method is also

affected by the curse of dimensionality.

2 irises 4 fingerprints All modalities

SLR-Likelihood 66.6 83.5 75.1
SVM-Likelihood 50.7 31.9 31.0

TABLE V: Fusion performance with likelihood-based method

[48].

b) Kernel Fusion: We further compared the perfor-

mances of proposed kerSMBR with kernel SVM, kernel SLR

and MKLFusion methods. In the experiments, we used Radial

Basis Function (RBF) as the kernel, given as:

κ(xi,xj) = exp

(

−
‖xi − xj‖

2
2

σ2

)

,

σ being a parameter to control the width of the RBF. For

MKLFusion, we gave linear, polynomial and RBF kernels as

the base kernels for learning.

• Hyperparameter tuning: To fix the value of hyper-

parameter, σ, we iterated over different values of σ,

{2−3, 2−2, · · · , 23} for one set of training and test split

of the data. The value of σ giving the maximum perfor-

mance was fixed for each modality, and the performance

was averaged over a few iterations. The weights {αij}
were set to 1 for composite kernel. λ and βW were set

to 0.01 and 0.01 respectively.

• Comparison of methods: Figure 7 shows the perfor-

mance of different methods on individual modalities,

and Figure 8 and Table VII on different fusion settings.

Comparison of performance with linear fusion shows

that the proposed kerSMBR significantly improves the

performance on individual iris modalities as well as iris

fusion. The performance on fingerprint modalities are

similar, however the fusion of all 6 modalities (2 iris + 4
fingerprints) shows an improvement of 0.4%. kerSMBR

also achieves the best accuracy among all the methods

for different fusion settings. kerSLR scores better than

kerSVM in all the cases, and it’s accuracy is close to

kerSMBR. The performance of kerSLR is better than the

linear counterpart, however kerSVM does not show much

improvement.

Fig. 9: Face mask used to crop out different modalities.

B. AR Face Dataset

The AR face dataset consists of faces with varying illumi-

nation, expression and occlusion conditions, captured in two

sessions. We evaluated our algorithms on a set of 100 users.

Images from the first session, 7 for each subject were used

as training and the images from the second session, again

7 per subject, were used for testing. For testing the fusion

algorithms, four weak modalities were extracted from the face

images: left and right periocular, mouth and nose regions. This

was done by applying rectangular masks as shown in Figure 9,

and cropping out the respective regions. These, along with the

whole face, were taken for fusion. Simple intensity values were
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Fig. 7: CMCs for individual modalities using (a) kernel SVM, (b) kernel SLR and (c) kerSMBR.
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Fig. 8: CMCs for different fusion methods for (a) four fingerprints, (b) two irises and (c) all modalities. Results for composite

kernels using different techniques is shown in figure (d).

Finger 1 Finger 2 Finger 3 Finger 4 Iris 1 Iris 2

kerSMBR 66.3± 1.7 87.1± 1.0 69.1± 2.1 86.4 ± 1.5 70.3± 1.8 71.0± 1.6
kerSLR 65.8± 1.8 86.9 ± 1.7 68.3± 2.0 89.5± 1.6 65.1± 1.7 66.8 ± 1.1
kerSVM 48.4± 5.4 76.7 ± 2.3 50.2± 1.9 68.4 ± 7.4 43.9± 1.1 44.6 ± 3.0

TABLE VI: Rank one recognition performance for individual modalities using kernel methods.
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kerSMBR kerSLR-Sum kerSLR-Major kerSVM-Sum kerSVM-Major MKLFusion

4 Fingerprints 97.9± 0.3 96.8± 0.7 75.2 ± 0.7 93.2± 1.2 71.4± 1.3 88.7± 0.9
2 Irises 84.7± 1.7 83.7± 1.8 75.2 ± 1.2 62.2± 2.8 47.82.4 76.9± 2.4

All modalities 99.1± 0.2 98.9± 0.1 87.9 ± 0.6 96.3± 0.8 79.5± 1.6 91.2± 1.0

TABLE VII: Rank one recognition performance for different fusion settings using kernel methods.

used as features for all of them. The experimental set-up was

similar to the previous section. The parameter values, λ1 and

λ2 were set to 0.003 and 0.002 respectively. Furthermore, we

also studied the effect of noise and occlusion on recognition

performance.

• Comparison of methods: Table VIII shows the perfor-

mance of different algorithms on the face dataset. Here,

SR (sparse representation) shows the classification result

using just the whole face. Block Sparse Method is a

recent block sparsity based face recognition algorithm

[50] and FDDL [49] is a state-of-the-art discrimina-

tive dictionaries based technique, but using only single

modality. Clearly, the SMBR approach achieves about

4 % improvement over other techniques. Thus, robust

classification using multiple modalities results in a signif-

icant improvement over the current benchmark. Further,

a comparison with discriminative methods such as SLR

and SVM shows that they perform poorly compared to

the proposed method. This is because weak modalities are

hard to discriminate, hence score-level fusion with strong

modality does not improve performance. On the other

hand, by appropriately weighing different modalities,

MKLFusion achieves better result. However, by impos-

ing reconstruction and joint sparsity simultaneously, the

proposed method is able to achieve superior performance.

• Effect of noise: In this experiment, test images were cor-

rupted with white Gaussian noise of increasing variance,

σ2. Comparisons are shown in Figure 10. It can be seen

that both SMBR, SR and Block Sparse methods are stable

with noise. The performance of other algorithms degrade

sharply with noise level. This also highlights the problem

with MKLFusion, as it is not robust to degradation during

testing.

• Effect of occlusion: In this experiment, a randomly cho-

sen block of the test image was occluded. The recognition

performance was studied with increasing block size.

Figure 11 shows the performance of various algorithms

with block size. SMBR-E is the most stable among all

the methods due to robust handling of error. Recognition

rates for other methods fall sharply with increasing block

size.

• Recognition in spite of disguise: We also performed

experiment on the rest of the AR face dataset, occluded by

sun-glass and scarves. Similar to the above experiment,

7 frontal non-occluded images per subject, from the first

session, were used for training, and 12 occluded images

per person, from both the sessions were used for testing.

Again the proposed SMBR-WE and SMBR-E methods

outperformed the other methods. SMBR-E method gave

the best performance, improving by 17.7% over the Block

Sparse method.

Method Scarves Sun-glass Overall

SMBR-WE 86.2 36.0 61.1
SMBR-E 80.0 75.0 77.5

SR 45.3 52.3 48.8
Block Sparse [50] 65.8 53.8 59.8

SLR-Sum 72.2 39.6 55.9
SVM-Sum 13.8 42.5 28.1

MKLFusion 47.7 13.0 30.3

TABLE IX: Rank one performance comparison of the pro-

posed method.

• Quality based fusion: Quality determination is an impor-

tant parameter in fusion here, as a strong modality is be-

ing combined with weak modalities. We studied the effect

of quality measure introduced in Section III. However, in

this case we fix the quality for strong modality, viz. whole

face to be 1, while for the weak modalities, the SCI values

were taken. The recognition performance for SMBR-

E and SMBR-WE across different noise and occlusion

levels was studied. Figure 12 show the performance

comparison with the unweighted methods. Using quality,

the recognition performance for SMBR-WE goes up to

97.4 % from 96.9 %, whereas for SMBR-WE it increases

to 97 % from 96 %. Similarly, results improve across

different noise levels for both methods. However, SMBR-

WE with quality shows worse performance as block size

is increased. This may be because it does not handle

sparse error, hence the quality values are not robust.

VI. COMPUTATIONAL COMPLEXITY

The proposed algorithms are computationally efficient. The

main steps of the algorithms are the update steps for Γ, Λ,

U and V. For linear fusion, the update step for Γ involves

computing (XiT Xi+αΓI)
−1 and four matrix multiplications.

The first term is constant across iterations and can be pre-

computed. Matrix multiplication for two matrices of sizes

m × n and n × p can be done in O(mnp) time. Hence,

for a given training and test data, the computations are

linear in feature dimension. Hence, large feature dimensions

can be efficiently handled. Similarly, update step for Λ in-

volves matrix multiplication XiΓi. Update steps for U and

V involves only scalar matrix computations and are very

fast. Similarly in the kernel fusion, update for Γ involves

calculating (KXi,Xi + βW I)−1, which can be pre-computed.

Other steps are similar to linear fusion. Classification step

involves calculating the residual error for each class, and is

efficient.

VII. CONCLUSION

We have proposed a novel joint sparsity-based feature level

fusion algorithm for multimodal biometrics recognition. The
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Fig. 10: Effect of noise on recognition performance.
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Fig. 11: Effect of occlusion on recognition performance.

Method Recognition Rate (%) Method Recognition Rate (%)

SMBR-WE 96.9 SVM-Sum 86.7
SMBR-E 96 SLR-Sum 77.9

SR 91 FDDL [49] 91.9
Block Sparse [50] 92.2 MKLFusion 89.7

TABLE VIII: Rank one performance comparison of the proposed method.

algorithm is robust as it explicitly includes both noise and

occlusion terms. An efficient algorithm based on alternative di-

rection was proposed for solving the optimization problem. We

also proposed a multimodal quality measure based on sparse

representation. Further, the algorithm was extended to handle

non-linear variations through kernel. Various experiments have

shown that our method is robust and significantly improves the

overall recognition accuracy.
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