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Joint Specification of Model Space and
Parameter Space Prior Distributions
Petros Dellaportas, Jonathan J. Forster and Ioannis Ntzoufras

Abstract. We consider the specification of prior distributions for Bayesian
model comparison, focusing on regression-type models. We propose a par-
ticular joint specification of the prior distribution across models so that sensi-
tivity of posterior model probabilities to the dispersion of prior distributions
for the parameters of individual models (Lindley’s paradox) is diminished.
We illustrate the behavior of inferential and predictive posterior quantities in
linear and log-linear regressions under our proposed prior densities with a
series of simulated and real data examples.
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1. INTRODUCTION AND MOTIVATION

A Bayesian approach to inference under model un-
certainty proceeds as follows. Suppose that the data y
are considered to have been generated by a model m,
one of a set M of competing models. Each model spec-
ifies the distribution of Y, f (y|m,βm) apart from an
unknown parameter vector βm ∈ Bm, where Bm is the
set of all possible values for the coefficients of model
m. We assume that Bm = Rdm where dm is the dimen-
sionality of βm.

If f (m) is the prior probability of model m, then the
posterior probability is given by

f (m|y) = f (m)f (y|m)∑
m∈M

f (m)f (y|m)
, m ∈ M,(1)

where f (y|m) is the marginal likelihood calculated us-
ing f (y|m) = ∫

f (y|m,βm)f (βm|m)dβm and f (βm|
m) is the conditional prior distribution of βm, the
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model parameters for model m. Therefore

f (m|y) ∝ f (m)f (y|m), m ∈ M.

For any two models m1 and m2, the ratio of the pos-
terior model probabilities (posterior odds in favor of
m1) is given by

f (m1|y)

f (m2|y)
= f (m1)

f (m2)

f (y|m1)

f (y|m2)
,(2)

the ratio of prior probabilities multiplied by the ratio of
marginal likelihoods, also known as the Bayes factor.

The posterior distribution for the parameters of a par-
ticular model is given by the familiar expression

f (βm|m,y) ∝ f (βm|m)f (y|βm,m), m ∈ M.

For a single model, a highly diffuse prior on the model
parameters is often used (perhaps to represent igno-
rance). Then the posterior density takes the shape of the
likelihood and is insensitive to the exact value of the
prior density function, provided that the prior is rela-
tively flat over the range of parameter values with non-
negligible likelihood. When multiple models are being
considered, however, the use of such a prior may cre-
ate an apparent difficulty. The most obvious manifesta-
tion of this occurs when we are considering two mod-
els m1 and m2 where m1 is completely specified (no
unknown parameters) and m2 has parameter βm2

and
associated prior density f (βm2

|m2). Then, for any ob-
served data y, the Bayes factor in favor of m1 can be
made arbitrarily large by choosing a sufficiently dif-
fuse prior distribution for βm2

(corresponding to a prior
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density f (βm2
|m2) which is sufficiently small over the

range of values of βm2
with nonnegligible likelihood).

Hence, under model uncertainty, two different diffuse
prior distributions for model parameters might lead to
essentially the same posterior distributions for those
parameters, but very different Bayes factors.

This result was discussed by Lindley (1957) and
is often referred to as “Lindley’s paradox” although
it is also variously attributed to Bartlett (1957) and
Jeffreys (1961). As Dawid (2011) pointed out, the
Bayes factor is only one of the two elements on the
right side of (2) which contribute toward the poste-
rior model probabilities. The prior model probabili-
ties are of equal significance. By focusing on the im-
pact of the prior distributions for model parameters
on the Bayes factor, there is an implicit understand-
ing that the prior model probabilities are specified in-
dependently of these prior distributions. This is often
the case in practice, where a uniform prior distribu-
tion over models is commonly adopted, as a refer-
ence position. Examples where nonuniform prior dis-
tributions have been suggested include the works of
Madigan et al. (1995), Chipman (1996), Laud and
Ibrahim (1995, 1996), Chipman, George and McCul-
loch (2001), Cui and George (2008), Ley and Steel
(2009) and Wilson et al. (2010). We propose a dif-
ferent approach where we consider how the two ele-
ments of the prior distribution under model uncertainty
might be jointly specified so that perceived problems
with Bayesian model comparison can be avoided. This
leads to a nonuniform specification for the prior dis-
tribution over models, depending directly on the prior
distributions for model parameters.

A related issue concerns the use of improper prior
distributions for model parameters. Such prior distri-
butions involve unspecified constants of proportional-
ity, which do not appear in posterior distributions for
model parameters but do appear in the marginal likeli-
hood for any model and in any associated Bayes fac-
tors, so these quantities are not uniquely determined.
There have been several attempts to address this is-
sue, and to define an appropriate Bayes factor for com-
paring models with improper priors; see Kadane and
Lazar (2004) for a review. In such examples, Dawid
(2011) proposed that the product of the prior model
“probability” and the prior density for a given model
could be determined simultaneously by eliciting the
relative prior “probabilities” of particular sets of pa-
rameter values for different models. He also suggested
an approach for constructing a general noninformative
prior, over both models and model parameters, based

on Jeffreys priors for individual models. Although the
prior distributions for individual models are not gen-
erally proper, they have densities which are uniquely
determined and hence the posterior distribution over
models can be evaluated. Clyde (2000) proposed a sim-
ilar approach where the priors for parameters of in-
dividual models are uniform and the relative weights
of different models are chosen by constraining the re-
sulting posterior model probabilities to be equivalent to
those resulting from a specified information criterion,
such as BIC.

Here, we do not consider improper prior distribu-
tions for the model parameters, but our approach is
similar in spirit as we do explicitly consider a joint
specification of the prior over models and model pa-
rameters.

We focus on models in which the parameters are suf-
ficiently homogeneous (perhaps under transformation)
so that a multivariate normal prior density N(μm,Vm)

is appropriate, and in which the likelihood is suffi-
ciently regular for standard asymptotic results to ap-
ply. Examples are linear regression models, general-
ized linear models and standard time series models.
In much of what follows, with minor modification,
the normal prior can be replaced by any elliptically
symmetric prior density proportional to |V |−1/2g((β −
μ)T V −1(β − μ)) where

∫ ∞
0 rd−1g(r2) dr < ∞ and d

is the dimensionality of β . This includes prior distribu-
tions from the multivariate t or Laplace families. Sim-
ilarly, our approach can also be adapted to common
prior distributions for parameters of graphical models.

We choose to decompose the prior variance matrix as
Vm = c2

m�m where cm represents the scale of the prior
dispersion and �m is a matrix with a specified value of
|�m|, although for the remainder of this section we do
not require an explicit value; further discussion of this
issue is presented in Section 2. Hence, suppose that

f (βm|m)

= (2π)−dm/2|�m|−1/2c−dm
m(3)

· exp
(
− 1

2c2
m

(βm − μm)T �−1
m (βm − μm)

)
.

Then,

f (m|y) ∝ f (m)

∫
f (y|m,βm)f (βm|m)dβm

= f (m)(2π)−dm/2|�m|−1/2c−dm
m

(4)

·
∫

Rdm
exp

(
− 1

2c2
m

(βm − μm)T �−1
m

· (βm − μm)

)
f (y|m,βm)dβm
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and for suitably large cm,

f (m|y) ≈ f (m)(2π)−dm/2|�m|−1/2c−dm
m

(5)
·
∫

Rdm
f (y|m,βm)dβm.

Hence, as c2
m gets larger, f (m|y) gets smaller, assum-

ing everything else remains fixed. Therefore, for two
models of different dimension with the same value of
c2
m, the posterior odds in favor of the more complex

model tend to zero as c2
m gets larger, that is, as the prior

dispersion increases at a common rate. This is essen-
tially Lindley’s paradox.

There have been substantial recent computational
advances in methodology for exploring the model
space; see, for example, Green (1995, 2003), Kohn,
Smith and Chan (2001), Denison et al. (2002), Hans,
Dobra and West (2007). The related discussion of the
important problem of choosing prior parameter disper-
sions has been largely focused on ways to avoid Lind-
ley’s paradox; see, for example, Fernández, Ley and
Steel (2001) and Liang et al. (2008) for detailed dis-
cussion on appropriate choices of g-priors for linear
regression models and Raftery (1996) and Dellapor-
tas and Forster (1999) for some guidelines on select-
ing dispersion parameters of normal priors for gen-
eralized linear model parameters. Other approaches
which have been proposed for specifying default prior
distributions under model uncertainty which provide
plausible posterior model probabilities include intrin-
sic priors (Berger and Pericchi, 1996) and, for normal
linear models, mixtures of g-priors (Liang et al., 2008).
The important effect that any of these prior specifica-
tions might have on the parameter posterior distribu-
tions within each model has been largely neglected.
For example, a set of values of cm might be appropriate
for addressing model uncertainty, but might produce
prior densities f (βm|m) that are insufficiently diffuse
and overstate prior information within certain models.
This has a serious effect on posterior and predictive
densities of all quantities of interest in any data analy-
sis. This is a particularly important consideration when
posterior or predictive inferences are integrated over
models (model-averaging). In such analyses both the
prior model probabilities and prior distributions over
model parameters can have a significant impact on in-
ferences.

In this paper we propose that prior distributions for
model parameters should be specified with the issue of
inference conditional on a particular model being the
primary focus. For example, when only weak informa-
tion concerning the model parameters is available, a

highly diffuse prior may be deemed appropriate. The
key element of our proposed approach is that sensitiv-
ity of posterior model probabilities to the exact scale
of such a diffuse prior is avoided by suitable specifica-
tion of prior model probabilities f (m). As mentioned
above, these probabilities are rarely specified carefully,
a discrete uniform prior distribution across models usu-
ally being adopted. However, it is straightforward to
see that setting f (m) ∝ c

dm
m in (5) will have the effect

of eliminating dependence of the posterior model prob-
ability f (m|y) on the prior dispersion cm. This pro-
vides a motivation for investigating how prior model
probabilities can be chosen in conjunction with prior
distributions for model parameters, by first considering
properties of the resulting posterior distribution.

The strategy described in this paper can be viewed
as a full Bayesian approach where the prior distribu-
tion for model parameters is specified by focusing on
the uncertainty concerning those parameters alone, and
the prior model probabilities can be specified by con-
sidering the way in which an associated “information
criterion” balances parsimony and goodness of fit. In
the past, informative specifications for these probabil-
ities have largely been elicited via the notion of imag-
inary data; see, for example, Chen, Ibrahim and Yian-
noutsos (1999) Chen et al. (2003). Within the approach
suggested here, prior model probabilities are specified
by considering the way in which data yet to be ob-
served might modify one’s beliefs about models, given
the prior distributions for the model parameters. Full
posterior inference under model uncertainty, including
model averaging, is then available for the chosen prior.

2. PRIOR AND POSTERIOR DISTRIBUTIONS

We consider the joint specification of the two com-
ponents of the prior distribution by investigating its im-
pact on the asymptotic posterior model probabilities.
This allows us to investigate, across a wide class of
models, the sensitivity of posterior inferences to the
specification of prior model probabilities and prior dis-
tributions for model parameters. By using Laplace’s
method to approximate the posterior marginal like-
lihood in (4), we obtain, subject to certain regular-
ity conditions (see Kass, Tierney and Kadane, 1988;
Schervish, 1995, Section 7.4.3)

f (m|y) ∝ f (m)|�m|−1/2c−dm
m f (y|m, β̂m)

· exp
(
− 1

2c2
m

(β̂m − μm)T �−1
m (β̂m − μm)

)
(6)

· |c−2
m �−1

m − H(β̂m)|−1/2(
1 + Op(n−1)

)
,
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where n is the sample size, β̂m is the maximum likeli-
hood estimate and H(βm) is the second derivative ma-
trix for logf (y|m,βm). Then,

logf (m|y)

= C + logf (m) − 1

2
log |�m| − dm log cm

+ logf (y|m, β̂m)

− 1

2c2
m

(β̂m − μm)T �−1
m (β̂m − μm)

− 1

2
log |c−2

m �−1
m − H(β̂m)| + Op(n−1)(7)

= C + logf (m)

− 1

2
log |�m| − dm log cm + logf (y|m, β̂m)

− 1

2c2
m

(β̂m − μm)T �−1
m (β̂m − μm) − dm

2
logn

− 1

2
log |i(β̂m)| + Op(n−1/2),

where C is a normalizing constant to ensure that the
posterior model probabilities sum to 1 and i(βm) ≈
−n−1H(βm) is the Fisher information matrix for a unit
observation; see Kass and Wasserman (1995).

We propose specifying the decomposition of the
prior variance matrix c2

m�m so that |�m| = |i(βm)|−1,
resulting in

logf (m|y) = C + logf (y|m, β̂m)

− 1

2c2
m

(β̂m − μm)T �−1
m (β̂m − μm)

(8)
+ logf (m) − dm log cm

− dm

2
logn + Op(n−1/2),

where c−2
m defined as

c−2
m = (|Vm||i(βm)|)−1/dm(9)

can be interpreted as the number of units of information
in the prior.

Note that substituting cm = 1 (unit information) into
(8), and choosing a discrete uniform prior distribution
across models, suggests model comparison on the ba-
sis of a modified version of the Schwarz criterion (BIC;
Schwarz, 1978) where maximum likelihood is replaced
by maximum penalized likelihood. In a comparison of
two nested models, Kass and Wasserman (1995) gave
extra conditions on a unit information prior which lead

to model comparison asymptotically based on BIC; see
Volinsky and Raftery (2000) for an example of the use
of unit information priors for Bayesian model compari-
son. For regression-type models where the components
of y are not identically distributed, depending on ex-
planatory data, the unit information as defined above
potentially changes as the sample size changes, so a lit-
tle care is required with asymptotic arguments. We as-
sume that the explanatory variables arise in such a way
that i(βm) = ilim(βm) + O(n−1/2) where ilim(βm) is a
finite limit. This is not a great restriction and is true, for
example, where the explanatory data may be thought
of as i.i.d. observations from a distribution with finite
variance.

In general, i(βm) depends on the unknown model
parameters, so the number of units of information c−2

m

corresponding to any given prior variance matrix Vm

will also not be known, and hence it is not generally
possible to construct an exact unit information prior.
Dellaportas and Forster (1999) and Ntzoufras, Della-
portas and Forster (2003) advocated substituting μm,
the prior mean of βm, into i(βm) to give a prior for
model comparison which has a unit information in-
terpretation but for which model comparison is not
asymptotically based on BIC.

When the prior distribution for the parameters of
model m is highly diffuse, so that cm is large, then (8)
can be rewritten as

logf (m|y) ≈ C + logf (y|m, β̂m)
(10)

+ logf (m) − dm log cm − dm

2
logn,

where β̂m is the maximum likelihood estimate of βm.
Equation (10) corresponds asymptotically to an in-
formation criterion with complexity penalty equal to
logn + log c2

m − 2d−1
m logf (m) compared with BIC,

for example, where the complexity penalty is equal
to logn. The relative discrepancy between these two
penalties is asymptotically zero. Poskitt and Tremayne
(1983) discussed the interplay between prior model
probabilities f (m) and BIC and other information cri-
teria in a time series context when Jeffreys priors are
used for model parameters.

It is clear from (10) that a large value of cm arising
from a diffuse prior penalizes more complex models.
On the other hand, a more moderate value of cm (such
as unit information) may have the effect of shrinking
the posterior distributions of the model parameters to-
ward the prior mean to a greater extent than desired.
This has a particular impact when model averaging is



236 P. DELLAPORTAS, J. J. FORSTER AND I. NTZOUFRAS

used to provide predictive inferences (see, e.g., Hoet-
ing et al., 1999), where both the posterior model proba-
bilities and the posterior distributions of the model pa-
rameters are important. A conflict can arise where to
achieve the amount of dispersion desired in the prior
distribution for model parameters, more complex mod-
els are unfairly penalized. To avoid this, we suggest
choosing the dispersion of the prior distributions of
model parameters to provide the amount of shrinkage
to the prior mean which is considered appropriate a pri-
ori, and to choose prior model probabilities to adjust
for the resulting effect this will have on the posterior
model probabilities. We propose

f (m) ∝ p(m)cdm
m ,(11)

where p(m) are baseline model probabilities. The pur-
pose of decomposing prior model probabilities f (m)

in this way is to explicitly specify a direct depen-
dence between these probabilities and the hyperparam-
eters of the prior distributions for the parameters of
each model. There is no requirement that p(m) be uni-
form, and any differences between f (m) for different
m which are unrelated to the prior distributions for
the model parameters are absorbed in p(m). Often, we
might expect p(m) not to depend on the dimensional-
ities of the models, although we do not prohibit this.
With this choice of f (m), (8) becomes

logf (m|y) = C + logf (y|m, β̂m)

− 1

2c2
m

(β̂m − μm)T �−1
m (β̂m − μm)(12)

+ logp(m) − dm

2
logn + Op(n−1/2),

where the specification of the base variance �m is not
in terms of unit information, the extra term − log(|�m|·
|i(βm)|)/2 is required in (12). When c2

m is large and
when all p(m) are equal, model comparison is asymp-
totically based on BIC. More generally, we propose
choosing prior model probabilities based on (11) for
any prior variance Vm. Substituting (9) into (11), we
obtain

f (m) ∝ p(m)(|Vm||i(βm)|)1/2.(13)

The choice of p(m) can be based on the form of the
equivalent model complexity penalty which is deemed
to be appropriate a priori. Setting all p(m) equal, which
we propose as the default option, leads to model deter-
mination based on a modified BIC criterion involving
penalized maximum likelihood. Hence, the impact of

the prior distribution on the posterior model probabil-
ity through (β̂m − μm)T �−1

m (β̂m − μm)/2c2
m in (12)

is straightforward to assess, and any undesirable side
effects of large prior variances are eliminated. In Sec-
tion 1, we discussed existing approaches for specifying
nonuniform f (m) based on considerations such as the
desire to control model size. These can easily be in-
corporated into the specification of nonuniform p(m),
if desired. Other possible approaches to specifying or
eliciting p(m) are discussed in Sections 4 and 5.

In order to specify prior model probabilities using
(11), with p(m) chosen to correspond to a particular
complexity penalty, it is necessary to be able to evalu-
ate c−2

m , the number of units of information implied by
the specified prior variance Vm for βm. Equivalently, as
f (m) ∝ p(m)|Vm|1/2|i(βm)|1/2, knowledge of |i(βm)|
is required. Except in certain circumstances, such as
normal linear models, this quantity depends on the un-
known model parameters βm. This is not appropriate as
a specification for the marginal prior distribution over
model space. One possibility is to use a sample-based
estimate |i(β̂m)| to determine the “prior” model proba-
bility, in which case the approach is not fully Bayesian.
Alternatively, as suggested above, substituting μm, the
prior mean of βm, into i(βm) gives a prior for model
comparison which has a unit information interpretation
but for which model comparison is not asymptotically
based on (12), the extra term log(|i(μm)|/|i(βm)|)/2
being required.

3. NORMAL LINEAR MODELS

Here we consider normal linear models where for
m ∈ M , y ∼ N(Xmβm,σ 2I ) with the conjugate prior
specification

βm|σ 2,m ∼ N(μm,σ 2Vm) and
(14)

σ−2 ∼ Gamma(α,λ).

For such models the posterior model probabilities can
be calculated exactly. Dropping the model subscript m

for clarity,

f (m|y)

∝ f (m)
|V ∗|1/2

|V |1/2

· (
2λ + yT y + μT V −1μ − β̃

T
(V ∗)−1β̃

)−α−n/2
,

where V ∗ = (V −1 + XT X)−1 and β̃ = V ∗(V −1μ +
XT y) is the posterior mean. Hence, setting V = c2�,
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as before,

logf (m|y)

= C + logf (m) − 1

2
log |c−2�−1 + XT X|

− 1

2
log |�| − d log c

− (α + n/2) log
(
2λ + yT y + μT V −1μ(15)

− β̃
T
(V ∗)−1β̃

)
= C − (α + n/2) log

(
2λ + (y − Xβ̃)T (y − Xβ̃)

+ (β̃ − μ)T V −1(β̃ − μ)
)

(16)

+ logf (m) − 1

2
log |i|

− d

2
logn − 1

2
log |�| − d log c + O(n−1),

where, with a slight abuse of notation, i = n−1XT X is
the unit information matrix multiplied by σ 2. Notice
the correspondence between (7) and (16). As before, if
|�| = |i|−1, then c−2 can be interpreted as the number
of units of information in the prior (as the prior vari-
ance is c2σ 2�) and

logf (m|y)

= C − (α + n/2) log
(
2λ + (y − Xβ̃)T (y − Xβ̃)

(17)
+ (β̃ − μ)T V −1(β̃ − μ)

)
+ logf (m) − d

2
logn − d log c + O(n−1).

In both (16) and (17) the posterior mean β̃ can be re-
placed by the least squares estimator β̂ . Again, if c =
1 (unit information) and the prior distribution across
models is uniform, model comparison is performed us-
ing a modified version of BIC, as presented for ex-
ample by Raftery (1995), where n/2 times the loga-
rithm of the residual sum of squares for the model has
been replaced by the first term on the right-hand side
of (17). The residual sum of squares is evaluated at the
posterior mode, and is penalized by a term represent-
ing deviation from the prior mean, as in (7). This ex-
pression also depends on the prior for σ 2 through the
prior parameters α and λ, although these terms van-
ish when the improper prior f (σ 2) ∝ σ−2, for which
α = λ = 0, is used. With these values, and setting
�−1 = i = n−1XT X, we obtain the prior used by Fer-
nández, Ley and Steel (2001), who also noted the unit
information interpretation when c = 1 for all m. This
is an example of a g-prior (Zellner, 1986).

As before, if the prior variance V suggests a differ-
ent value of c, then the resulting impact on the poste-
rior model probabilities can be moderated by an appro-
priate choice of f (m) and again we propose the use
of (11) and (13), noting that for normal models i is
known. In the context of normal linear models, Per-
icchi (1984) suggested a similar adjustment of prior
model probabilities by an amount related to the ex-
pected gain in information. Alternatively, replacing |i|
by |i + n−1V −1| in (13), resulting in

f (m) ∝ p(m)|V |1/2|i + n−1V −1|1/2,(18)

makes (16) exact, eliminating the O(n−1) term. Again,
for highly diffuse prior distributions on the model pa-
rameters (large values of c2), together with α = λ = 0
and prior model probabilities based on (11) and (13),
equation (17) implies that model comparison is per-
formed on the basis of BIC.

We note that when the g-prior �−1 = i = n−1XT X
is used, together with μ = 0, then the posterior model
probability (15) can be written as

logf (m|y)

= C + logf (m) − d

2
log(n + c−2) − d log c

(19)

− (α + n/2) log
(

2λ + 1

1 + nc2 yT y

+ nc2

1 + nc2 S2
y(1 − R2)

)
,

where S2
y = ∑n

i=1(yi − ȳ)2 and R2 is the standard co-
efficient of determination for the model. For our prior,
where f (m) ∝ p(m)cd , we obtain

logf (m|y)

= C + logp(m) − d

2
log(n + c−2)

− (α + n/2) log
(

2λ + 1

1 + nc2 yT y

+ nc2

1 + nc2 S2
y(1 − R2)

)
.

The trade-off between model fit, as reflected by R2,
and complexity, measured by d , is immediately appar-
ent, with the complexity penalty tending to BIC as c−2

tends to zero. The posterior model probability (19) is
similar to expression (5) of Liang et al. (2008). Their
approach differs in that they consider the intercept pa-
rameter of the linear model separately, giving it an im-
proper uniform prior, as this parameter is common to
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all models under consideration. Such a specification
might also be adopted within our framework, both for
linear models and for more general regression models.

4. SPECIFICATION OF p(m) BASED ON
RELATIONSHIP WITH OTHER INFORMATION

CRITERIA

In Sections 2 and 3, we have investigated how prior
model probabilities might be specified by considering
their joint impact, together with the prior distributions
for the model parameters, on the posterior model prob-
abilities. It was shown that making these probabilities
depend on the prior variance of the associated model
parameters using (11) or (13) with uniform p(m) leads
to posterior model probabilities which are asymptoti-
cally equivalent (to order n−1/2) to those implied by
BIC. For models other than normal linear regression
models, a prior value of β must be substituted into (13)
and so the approximation only attains this accuracy for
β within an O(n−1/2) neighborhood of this value. Nev-
ertheless, we might expect BIC to more accurately re-
flect the full Bayesian analysis for such a prior than
more generally, where the error of BIC as an approxi-
mation to the log-Bayes factor is O(1).

Alternative (nonuniform) specifications for
p(m) might be based on matching the posterior model
probabilities (8) using prior weights (13) with other
information criteria of the form

logf (y|m, β̂m) − 1
2ψ(n)dm,

where ψ(n) is a “penalty” function; for BIC, ψ(n) =
logn and for AIC ψ(n) = 2. From (12), for large c2

m

or for a modified criterion, we have ψ(n) = logn +
2d−1

m logp(m). As p(m) contributes to the prior model
probability through (11) it cannot be a function of n

since our prior belief on models should not change
as the sample size changes. Therefore, strictly, the
only penalty functions which can be equivalent to set-
ting prior model probabilities as in (11) are of the
form ψ(n) = logn + ψ0 for some positive constant
ψ0 > 0. Any alternative dependence on n would cor-
respond to a prior which depended on n, through f (m)

or f (βm|m). Hence AIC, for example, is prohibited
(as would be expected since AIC is not consistent),
whereas any approach arising from a proper prior must
be consistent. Nevertheless, if a penalty function of a
particular form is desired for a sample of a specified
size n0, then setting logp(m) = dm

2 {logn0 − ψ(n0)}
will ensure that posterior model probabilities are cal-
culated on the basis of the information criterion with
penalty ψ(n0), at the relevant sample size n0.

Clyde (2000) proposed CIC, a calibrated information
criterion, based on a joint specification of (improper)
uniform prior distributions for model parameters, to-
gether with prior model probabilities

f (βm|m)f (m) ∝ (2π)−dm/2
∣∣∣∣nc i(β̂m)

∣∣∣∣1/2

,

where c is a constant which is determined by constrain-
ing the posterior model probabilities to be the same as
those which would arise from an alternative informa-
tion criterion, such as BIC. For our prior, in the limit as
c−2
m → 0, we have

f (βm|m)f (m) ∝ (2π)−dm/2|�m|−1/2p(m)

so in the case where |�m| = |i(βm)| for a value of
βm close to the m.l.e. these approaches will yield sim-
ilar results if p(m) is calibrated to (n/c)d/2, which
is plausible if c ∝ n. Note also that, if p(m) ∝
(2π)dm/2|�m|1/2, our prior in this limiting case reduces
to a uniform measure over the “parameter space” for
(m,βm).

5. ALTERNATIVE ARGUMENTS FOR f (m) ∝ c
dm
m

The purpose of the following discussion is not to ad-
vocate a particular prior, but simply to illustrate that
one can arrive at (11) by direct consideration of prior
probabilities, or prior densities, or by the behavior of
posterior means, as well as by the asymptotic behavior
of posterior model probabilities, or associated numeri-
cal approximations, as earlier.

5.1 Constant Probability in a Neighborhood of the
Prior Mean

Specifying the prior distribution on the basis of how
it is likely to impact the posterior distribution is en-
tirely valid, but may perhaps seem unnatural. In partic-
ular, the consequence that the prior model probabilities
might depend on the prior distributions for the model
parameters may seem somewhat alien. This is particu-
larly true of the implication of (13), that models where
we have more information (smaller dispersion) in the
prior distribution should be given lower prior probabil-
ities than models for which we are less certain about
the parameter values. One justification for this is to ex-
amine the prior model probabilities for particular sub-
sets of the parameter spaces within models. This can be
considered as an extension of the approach of Robert
(1993) for two normal models. We consider the prior
probability of the event

E = {model m is ‘true’}
∩ {(βm − μm)T i(β0

m)(βm − μm) < ε2}
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for some reference parameter value β0
m, possibly the

prior mean μ. The dependence of this subset of the pa-
rameter space on the unit information at β0

m enforces
some degree of comparability across models. This is
particularly true if the various values of β0

m are com-
patible (e.g., they imply the same linear predictor in a
generalized linear model, as they would generally do if
set equal to 0). For the purposes of the current discus-
sion, we also require Vm = c2

mi(β0
m)−1. This is a plau-

sible default choice, but nevertheless represents consid-
erable restriction on the structure of the prior variance,
which was previously unconstrained. Then

P(E) = f (m)P

(
χ2

dm
<

ε2

c2
m

)

≈ f (m)εdm

2dm/2−1
(dm/2)c
dm
m

for small ε. Therefore, for this prior, if the joint
prior probability of model m in conjunction with βm

being in some specified neighborhood (defined ac-
cording to a unit information inner product) of its
prior mean is to be uniform across models, then we
require f (m) ∝ p(m)c

dm
m as in (11), with p(m) =

2dm/2−1
(dm/2)/εdm .

5.2 Flattening Prior Densities

An alternative justification of (11) when the model
parameters are given diffuse normal prior distributions
arises as follows. One way of taking a “baseline” prior
distribution and making it more diffuse, to represent
greater prior uncertainty, is to raise the prior density
to the power 1/c2 for some c2 > 1, and then renor-
malize. For example, for a single normal distribution
this has the effect of multiplying the variance by c2,
which increases the prior dispersion in an obvious way.
Highly diffuse priors, suitable in the absence of strong
prior information, may be thought of as arising from a
baseline prior transformed in this way for some large
value of c2. Where model uncertainty exists, the joint
prior distribution is a mixture whose components cor-
respond to the models, with mixture weights f (m). As
suggested above, a diffuse prior distribution might be
obtained by raising a baseline prior density (with re-
spect to the natural measure over models and associ-
ated parameter spaces) to the power 1/c2 and renor-
malizing. Where the baseline prior distribution for βm

is normal with mean μm and variance �m, the effect of
raising the mixture prior density to the power 1/c2 is
to increase the variance of each βm by a factor of c2,

as before. For large values of c2 the effect of the sub-
sequent renormalization is that the model probabilities
are proportional to |�m|1/2(2π)dm/2cdm , independent
of the model probabilities in the original baseline mix-
ture prior. Again this illustrates a relationship between
prior model probabilities and prior dispersion parame-
ters satisfying (11). For the two normal models consid-
ered by Robert (1993) the resulting prior model prob-
abilities are identical. Where the baseline variance is
based on unit information, so |�m| = |i(βm)|, then the
prior model probabilities can be written as (13) with
p(m) = (2π)dm/2|i(βm)|−1/2.

5.3 Bayesian Model Averaging and Shrinkage

Finally, this approach can be justified by consider-
ing the behavior of the posterior mean under model av-
eraging. We restrict consideration here to two nested
models, m0 and m1, differing by a single parameter β

and suppose that f (y|m0) = f (y|m1, β0). We assume
that the prior for β under m1 is N(β0, c

2), so the prior
mean under model m1 is the specified value of β un-
der model m0, and, without loss of generality, we take
β0 = 0. Under model m1 the Bayes estimator for β is
the posterior mean E1(β|y), which has asymptotic ex-
pansion

E1(β|y) = β̂

(
1 − i(β̂)

nc2

)
+ a3

2i(β̂)2n
+ o(n−1),(20)

where na3 is the third derivative of the log-likelihood,
evaluated at β̂ (see, e.g., Johnson, 1970; Ghosh, 1994).
This illustrates the usual effect of prior variance c2

and the corresponding prior precision c−2 as a shrink-
age parameter, with the posterior mean being shrunk
away from the m.l.e., with the amount of shrinkage di-
minishing as c−2 → 0. Hence, for fixed y, the poste-
rior mean for β is (asymptotically) monotonic in c−2.
Allowing for model uncertainty, we have E(β|y) =
f (m1|y)E1(β|y) where

f (m1|y) = 1

1 + k(2π)1/2cf1(0|y)
,(21)

where f1(β|y) is the posterior (marginal) density for
β under m1, and k are the prior odds in favor of
m0 over m1. Combining (20) and (21), we see that,
in E(β|y), the model-averaged posterior mean for β ,
the m.l.e. β̂ is multiplied by a shrinkage coefficient,
f (m1|y)E1(β|y), which is not a monotonic function
of the prior precision for β and hence c−2 no longer
has a simple interpretation as a shrinkage parameter.
A simple illustration of this is provided by Figure 1,
where this coefficient is plotted for various values of
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FIG. 1. Model average coefficient on β̂ [evaluated as β̂/β], for
normal likelihood with known error variance, σ 2. The plot here
is for n = 10, β̂ = 1, σ 2 = 1. The dashed line is for a uniform
prior over models, and the solid line uses prior model probabil-
ity f (m1) ∝ c−1. The dotted lines are approximations based on
replacing (2π)1/2f1(0|y) in (21) with its normal approximation

exp(− i(β̂)n
2 β̂2), ignoring the dependence, to O(n−1), of f1(0|y)

on c−2.

c−2, for the simple example of a normal distribution
with known error variance, and prior odds k = 1, corre-
sponding to a uniform prior on model space. Note that
a high value of the coefficient on β̂ corresponds to low
shrinkage. It can be seen that, regardless of the value
of c−2, there is a certain amount of shrinkage toward
the prior mean and the shrinkage is not a monotone
function of c−2. For values of c−2 greater than 0.5, the
shrinkage to the prior mean is an approximately lin-
early increasing function of c−2 as expected. For small
values of c−2, posterior probability is increasingly con-
centrated on m0 as c−2 decreases (Lindley paradox)
and hence the model-averaged estimate is increasingly
shrunk to the prior mean. Adopting the approach ad-
vocated in this paper has the effect of setting k ∝ c−1

which mitigates this effect, and returns control over the
shrinkage to the analyst.

6. ILLUSTRATED EXAMPLES

We illustrate our approach in a series of simula-
tions and real data applications. For comparison, we
also present results under other prior specifications, no-
tably the hyper g-prior of Liang et al. (2008), for which
computation is performed using the BAS package; see
Clyde (2010).

Section 6.1 illustrates that unit information prior
specifications (or other specifications suggesting
smaller prior parameter dispersion) can indeed signif-
icantly shrink posterior distributions toward zero. This
effect suggests that although prior variances based on
unit information might have desirable behavior with
respect to model determination, they may unintention-
ally distort the parameter posterior distributions. We
demonstrate that this can affect the predictive ability of
routinely used model averaging approaches in which
information is borrowed across a set of models.

In Section 6.2 we illustrate the effect of Lindley’s
paradox in a standard linear regression context em-
phasizing its dramatic effect on inference concerning
model uncertainty. At the same time, we demonstrate
that if instead of using the standard discrete uniform
prior distribution for f (m) we adopt our proposed ad-
justed prior distribution given by (11) with p(m) = 1,
the prior distribution for the model parameters can be
made highly diffuse in a way which does not impact
strongly on the posterior model probabilities.

Finally, Section 6.3 investigates the behavior of pos-
terior model probabilities when substantive prior infor-
mation about the parameters is available. We demon-
strate through a real data example that the uniform
prior on models may have a significant impact on pos-
terior model probabilities and we illustrate the advan-
tages of specifying prior model probabilities that are
appropriately adjusted for parameter prior dispersions.

6.1 Example 1: A Simple Linear Regression
Example

Montgomery, Peck and Vining (2001) investigated
the effect of the logarithm of wind velocity (x), mea-
sured in miles per hour, on the production of electricity
from a water mill (y), measured in volts, via a linear
regression model of the form

yi ∼ N(β0 + β1xi, σ
2), i = 1, . . . , n

based on n = 25 data points. We calculate the poste-
rior odds of the above model, denoted by m1, against
the constant model denoted by m0, adopting the usual
conjugate prior specification given by (14) with zero
mean, variance Vm = c2

mn(XT
mXm)−1 and α = λ =

10−2. Since there is a high sample correlation coef-
ficient of 0.978 between y and x, we expect that m1
will be a posteriori strongly preferred to m0. Indeed,
the posterior probability of m1 is very close to 1 for
values of c2

m as large as 1028. This behavior provides
a source of security with respect to the choice of c2

m
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β0 β1

FIG. 2. Posterior densities of parameters β0 and β1 under different prior dispersions; c2
m = c2 for all models m for Example 6.1.

and Lindley’s paradox, and we use this example to in-
vestigate the effect of c2

m on the posterior densities of
β0 and β1; see Figure 2. We have used values of c2

m

that represent highly diffuse priors with c2
m = 10 and

c2
m = 100, the unit information prior that approximates

BIC with c2
m = 1, a prior that approximates AIC for this

sample size c2
m = (e2 − 1)/n = 0.256 and a prior sug-

gested by the risk inflation criterion (RIC) of Foster and
George (1994) with c2

m = 0.04; see also George and
Foster (2000). It is striking that the resulting posterior
densities differ highly in both location and scale. The
danger of misinformation when unit information priors
are used was discussed in detail by Paciorek (2006).

We also investigated how the Zellner and Siow
(1980) prior and the Liang et al. (2008) hyper g-prior
behave in this example. With the recommended hy-
perparameter values 2 < a ≤ 4, these priors produced
posterior densities close to the low information g-prior
with c2

m = 100; see Figure 2. The results are quite ro-
bust across this range for a and, for example, quite
large values of a, around 20, are required before the
level of shrinkage becomes comparable to the unit in-
formation g-prior. Hence inferences arising from the
hyper-g prior are quite robust across the recommended
range of hyperparameter values.

Finally, we examined the effect of intrinsic priors
on posterior distributions for model parameters. We
adopted the approach of Perez and Berger (2002) to
construct an intrinsic (or expected posterior) prior by
setting as a baseline prior the g-prior with c2 = 100
and the null model as a reference. For this simple lin-
ear regression model the minimal training sample has
size n∗ = 3. The resulting posterior distributions of β0

and β1, also shown in Figure 2, are in close agreement
with the baseline g-prior. However, in variable selec-
tion problems the minimal training sample is usually
set so that the full model can be estimated. Hence, the
value of n∗ could be much higher if more covariates
were available and this would affect the prior variance
of the parameters. As an example, we have calculated
the posterior densities of β0 and β1 when n∗ = 20, also
displayed in Figure 2. The effect of the prior densities
to the posterior distributions is dramatic. This nicely
illustrates the effect of the training sample size in in-
trinsic priors; see the relevant discussion in Berger and
Pericchi (2004).

We now investigate the effect of prior specification
when prediction is of primary interest. A common way
of evaluating predictive performance is to compute the
negative cross-validation score (see Geisser and Eddy,
1979) given by

S = −
n∑

j=1

logf p(j),

where

f p(j) = ∑
m∈M

f (m)f (yj |y\j ,m)

is the model-averaged predictive density of observation
yj given the rest of the data y\j . Lower values of S in-
dicate greater predictive accuracy. Following Gelfand
(1996) we estimate f p(j) from an MCMC sample by
the inverse of the posterior (over m,βm) mean of the
inverse predictive density of observation j .

We generated three additional covariates that have
correlation coefficients 0.99, 0.97 and 0.89 with x
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(a) g-prior (Vm = c2
mn(XT

mXm)−1). (b) Independence prior (Vm = c2
mIdm).

FIG. 3. Negative cross-validation log-likelihood for two prior dispersion structures with uniform prior (solid line) and adjusted prior
(dashed line) for Example 6.1.

and performed the same model determination exercise.
Posterior model probabilities for all models were cal-
culated for all models under consideration. We used
a g-prior with Vm = c2

mn(XT
mXm)−1 and an indepen-

dent prior with Vm = c2
mIdm . For the uniform prior on

models combined with the unit information prior ob-
tained by c2

m = 1, S is far away from the minimum
value achieved for higher values of c2

m; see Figure 3(a).
For c2

m > 105, S increases due to the effect of Lind-
ley’s paradox focusing posterior probability on mod-
els that are unrealistically simple. On the other hand,
our proposed adjusted prior specification achieves the
maximum predictive ability for any large value of c2

m;
see Figure 3(b). The same exercise was also repeated
for the hyper-g prior for various values of the hyperpa-
rameter a. The corresponding negative cross-validation
score was close to the stabilized value of the g-prior
and it was proven to be very robust for a wide range
of values of a. Only for a very close to 2, did predic-
tive ability start to deteriorate in a similar fashion to the
g-prior.

This simulated data exercise does indicate that pre-
dictive ability can be optimized if highly dispersed
prior parameter densities are chosen together with the
adjusted prior over model space. Alternatively, in this
example, the hyper-g family is sufficiently robust to si-
multaneously provide a diffuse prior for model param-
eters, together with reasonable behavior under model
uncertainty.

6.2 Example 2: Simulated Regressions

We now consider the first simulated dataset of Della-
portas, Forster and Ntzoufras (2002) based on n = 50
observations of 15 standardized independent normal

covariates Xj, j = 1, . . . ,15, and a response variable
Y generated as

Y ∼ N(X4 + X5, 2.52).(22)

Assuming a conjugate normal inverse gamma prior dis-
tribution given by (14) with zero mean, Vm = c2

m�m

and a = λ = 10−2, we calculated posterior model prob-
abilities for all models under consideration. Similar
behavior is exhibited either when �m is specified as
�m = n(XT

mXm)−1 (described below) or as �m = Idm .
Figure 4(a) and (b), illustrates the behavior of the

posterior model probabilities, under a uniform prior on
model space, of three indicative models. For the param-
eters we used the g-prior and the hyper-g prior with
c2
m = 2n−1/(a − 2) obtained by equating the shrink-

age proportion g/(g − 1) of the g-prior with its prior
mean under the hyper-g prior. The effect of Lindley’s
paradox is more evident for the g-prior where all poste-
rior probabilities are quite sensitive to the values of c2

m

while the hyper-g prior demonstrates a remarkable ro-
bustness for a wide range of prior parameter values and
only for quite large values of c2

m which correspond to
values of a close to 2 is Lindley’s paradox exhibited.
We note that the hyper-g prior seems to result in in-
creased uncertainty on model space resulting in lower
posterior model probabilities for the higher posterior
probability models.

By contrast, using the adjusted prior in Figure 4(c)
identifies 1 + X4 + X5 + X12 as the highest probabil-
ity model for any value of c2

m > 1. Note that, when
�m = n(XT

mXm)−1, c2
m = 1 represents the dispersion

induced by the unit information prior. Similarly, Fig-
ure 5 summarizes the posterior inclusion probability of
each variable Xj . Again, for the uniform prior these
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(a) Zellner’s g-prior with uniform prior on model space.

(b) Hyper-g prior with uniform prior on model space.

(c) Zellner’s g-prior with adjusted prior on model space.

FIG. 4. Posterior model probabilities under different prior dis-
persions for the Dellaportas, Forster and Ntzoufras (2002) dataset
of Section 6.2 generated using (22). Solid line: constant model;
short dashed line: 1 + X4 + X5 model; long dashed line:
1 + X4 + X5 + X12 model.

(a) Zellner’s g-prior with uniform prior on model space.

(b) Hyper-g prior with uniform prior on model space.

(c) Zellner’s g-prior with adjusted prior on model space.

FIG. 5. Posterior variable inclusion probabilities under different
prior dispersions for the Dellaportas, Forster and Ntzoufras (2002)
dataset of Section 6.2 generated using (22).
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probabilities are sensitive to changes in c2
m across its

range, whereas the adjusted prior produces stable re-
sults for c2

m > 1.
In a more detailed simulation study, we repeated the

above analysis by generating 100 datasets of the same
model. The distribution of the posterior model proba-
bilities over the 100 simulated datasets reinforces the
findings of the one-sample based simulation. We also
repeated the above simulation experiment with a more
challenging simulated dataset based on a simulation
structure suggested by Nott and Kohn (2005). Each
dataset consisted of n = 50 observations and p = 15
covariates and one response generated using the fol-
lowing sampling scheme:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Xj ∼ N(0,1) for j = 1, . . . ,10
Xj ∼ N(0.3X1 + 0.5X2 + 0.7X3

+ 0.9X4 + 1.1X5,1)

for j = 11, . . . ,15
Y ∼ N(4 + 2X1 − X5 + 1.5X7

+ X11 + 0.5X13,2.52)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.(23)

The general conclusions of this study are in close
agreement with the results obtained above. Further de-
tails are available in the electronic supplement which
is available at http://stat-athens.aueb.gr/~jbn/papers/
paper24.htm.

6.3 Example 3: A 3 × 2 × 4 Contingency Table
Example with Available Prior Information

We consider data presented by Knuiman and Speed
(1988) to illustrate how our proposed methodology
performs in an example where prior information for
the model parameters is available. The data consist of
491 individuals classified in n cells by categorical vari-
ables obesity (O: low, average, high), hypertension (H:
yes, no) and alcohol consumption (A: 1, 1–2, 3–5, 6+
drinks per day). We adopt the notation of the full hi-
erarchical log-linear model used by Dellaportas and
Forster (1999):

yi ∼ Poisson(λi) for i = 1,2, . . . , n, log(λ) = Xβ,

where λ = (λ1, . . . , λn)
T , X is the n × n design matrix

of the full model, β = (βj ; j ∈ V) is an n × 1 parame-
ter vector, βj are the model parameters that correspond
to j term and V is the set of all terms under considera-
tion. All parameters here are defined using the sum-to-
zero constraints. Dellaportas and Forster (1999) pro-
posed as a default prior for parameters of log-linear
models

βj ∼ N (μj , k2
j (X

T
j Xj )

−1 )(24)

with μj being a vector of zeros and k2
j = 2n for all

j ∈ V = {∅,O,H,A,OH,OA,HA,OHA}; we de-
note this prior by DF.

In their analysis, Knuiman and Speed (1988) took
into account some prior information available about the
parameters βj . In particular, prior to this study infor-
mation was available indicating that βOHA and βOA

are negligible and only V = {∅,O,H,A,

OH,HA} should be considered. Moreover, the term

βHA is nonzero with a priori estimated effects β
T

HA =
(0.204,−0.088,−0.271); note that the signs of the
prior mean are opposite when compared with reported
values of Knuiman and Speed since we have used a
different ordering of the variable levels.

Knuiman and Speed adopted the prior (24) with
μHA = βHA and μj = 0 for j ∈ V \ {HA} and prior
variance coefficients k2

HA = 0.05 and k2
j = ∞ for j ∈

{∅,O,H,A,OH }. In our data analysis we used k2
j =

104 instead of k2
j = ∞. We denote this prior as KS.

We also used a combination of the DF and KS priors,
denoted by KS/DF, modifying slightly the KS prior so
that k2

j = 2n for terms j ∈ {∅,O,H,A,OH }. Finally,
an additional diffuse independence prior, denoted by
IND, with zero prior mean and variance 103 for all
model parameters was also used.

In log-linear models i(βm) depends on βm so to
specify the adjusted prior we utilize the prior mean μm

of βm resulting in

f (m) ∝ p(m)|Vm|1/2|XT
m Diag(λ0)Xm|1/2n−dm/2,

λ0 = exp(Xmμm),

while the prior parameters p(m) were set equal to
logp(m) = −dm

2 log(2) in line with the DF prior.
Posterior model probabilities (estimated using re-

versible jump MCMC) for all prior specifications are
presented in Table 1. The top right panel of the table
illustrates the striking effect of informative parameter
priors on posterior model probabilities. The difficulty
of making joint inferences on parameter and model
space is evident by inspecting the sensitivity of model
probabilities to different priors. However, the specifi-
cation for adjusting the prior model probabilities has
the effect that posterior model probabilities are robust
under all prior specifications.

7. CONCLUSION

There are clearly alternative specifications for the
prior model probabilities p(m) which satisfy (11), and
we do not seek to justify one over the other. Indeed,

http://stat-athens.aueb.gr/~jbn/papers/paper24.htm
http://stat-athens.aueb.gr/~jbn/papers/paper24.htm
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TABLE 1
Prior and posterior model probabilities under different parameter and model prior densities for Example 6.3

Parameter
prior

Model
space prior

Prior model probabilities Posterior model probabilities

O + H + A OH + A O + HA OH + HA O + H + A OH + A O + HA OH + HA

1. DF uniform 0.25 0.25 0.25 0.25 0.657 0.336 0.004 0.002
2. KS uniform 0.25 0.25 0.25 0.25 0.075 0.000 0.923 0.002
3. KS/DF uniform 0.25 0.25 0.25 0.25 0.059 0.023 0.638 0.280

4. DF adjusted 0.247 0.247 0.251 0.255744 0.677 0.317 0.004 0.002
5. KS adjusted 0.046 0.954 2.0 × 10−6 3.3 × 10−5 0.665 0.335 0.000 0.000
6. KS/DF adjusted 0.500 0.500 1.7 × 10−5 1.7 × 10−5 0.690 0.310 0.000 0.000
7. IND adjusted 0.003 0.996 3.0 × 10−6 0.001 0.690 0.303 0.004 0.003

choosing model probabilities to satisfy (11) may not
be appropriate in some situations. Hence, we do not
propose (11) as a necessary condition for f (m) al-
though we do believe that there are compelling reasons
for considering such a specification, perhaps as a de-
fault or reference position in the type of situations we
have considered in this paper. What we do argue is that
there is nothing sacred about a uniform prior distribu-
tion over models, and hence by implication, about the
Bayes factor. It is completely reasonable to consider
specifying f (m) in a way which takes account of the
prior distributions for the model parameters for indi-
vidual models. Then, certainly within the contexts dis-
cussed in this paper, as demonstrated by the examples
we have presented, the issues surrounding the role of
the prior distribution for model parameters, in exam-
ples with model uncertainty, become much less signif-
icant.
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