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Joint Spectral and Energy Efficiency Optimization

for Downlink NOMA Networks
Wali Ullah Khan, Furqan Jameel, Tapani Ristaniemi, Shafiullah Khan, Guftaar Ahmad Sardar Sidhu and Ju Liu

Abstract—Non-orthogonal multiple access (NOMA) holds the
promise to be a key enabler of 5G communication. However, the
existing design of NOMA systems must be optimized to achieve
maximum rate while using minimum transmit power. To do so,
this paper provides a novel technique based on multi-objective
optimization to efficiently allocate resources in the multi-user
NOMA systems supporting downlink transmission. Specifically,
our unique optimization technique jointly improves spectrum and
energy efficiency while satisfying the constraints on users quality
of services (QoS) requirements, transmit power budget and
successive interference cancellation. We first formulate a joint
problem for spectrum and energy optimization and then employ
dual decomposition technique to obtain an efficient solution. For
the sake of comparison, a low complexity single-objective NOMA
optimization scheme is also provided as a benchmark scheme.
The simulation results show that the proposed joint approach
not only performs better than the traditional benchmark NOMA
scheme but also significantly outperforms its counterpart orthog-
onal multiple access (OMA) schemes in terms of both energy and
spectral efficiency.

Index Terms—Non-orthogonal multiple access, Multi-objective
optimization, Spectral efficiency, Energy efficiency, QoS.

I. INTRODUCTION

The rapid increase in the demand for high data rates along

with energy constrained nature of wireless devices put a great

question mark on the capabilities of future communication

technologies. It is anticipated that the energy and spectral

efficient solutions would play a pivotal role to cope with these

challenges. In this regard, non-orthogonal multiple access

(NOMA) has emerged as a prominent radio technique to

efficiently use the existing resources without compromising

the quality of services (QoS) requirements of the users [1],

[2]. With the help of superposition coding (SC) techniques at

the transmitter and successive interference cancellation (SIC)
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methods at the receiver, NOMA schemes can accommodate

multiple users by utilizing the same spectrum and time re-

sources [3], [4].

A. Related Work

Due to the remarkable ability of NOMA schemes, re-

searchers have recently studied energy efficiency in NOMA

systems. In this regard, Shi et al. in [5] presented an energy

efficient resource management scheme for hybrid NOMA

wireless networks, where two different power control and user

clustering techniques were compared. The work in [6] in-

vestigated a beamforming technique for multiple-input-single-

output (MISO) NOMA system to increase energy efficiency.

The authors first transformed the optimization problem into

a convex problem and then exploited two algorithms based

Dinkelbach’s and sequential convex programming approaches.

A resource optimization problem was proposed to improve the

energy efficiency of NOMA heterogeneous networks under

the consideration of both perfect and imperfect channel state

information (CSI) in [7]. They first performed user scheduling

under equal power consideration and then employed a frac-

tional power control policy to solve the convex optimization

problem. Liu et al. in [8] investigated an energy maximization

scheme for cooperative NOMA system. The original non-

convex problem for joint power optimization at source and

relay was decomposed into the two-layered optimization prob-

lem to obtain the optimal solutions. A resource management

problem to increase energy efficiency was studied in NOMA

networks supporting device-to-device (D2D) transmission [9].

They adopted a low complex Karush–Kuhn–Tucker (KKT)

based iterative algorithm to obtain the efficient solution. The

authors of [10] proposed an energy efficient resource manage-

ment problem for multi-user NOMA systems to improve the

overall system energy efficiency. They provided a sub-optimal

technique for sub-channel and power allocation. In a similar

manner, a power optimization technique was investigated to

enhance the energy efficiency in multi-user NOMA systems

[11]. To solve the non-convex problem, they derived a closed-

form expression followed by KKT conditions. A resource

optimization scheme to increase the energy efficiency of multi-

user NOMA network was investigated in [12]. The joint

problem of power and user allocation was formulated as non-

convex where they first transformed it to a nonprobabilistic

problem and then adopt an iterative approach to obtain an

efficient solution. In [13], Zhang et al. solved the problem

of sub-channel and power allocation in order to improve

the energy efficiency in NOMA networks. The sub-optimal
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algorithms were employed based on the two-sided matching

technique for optimal sub-channel assignment and Lagrangian

optimization for efficient power allocation. Besides this, the

problem of efficient power allocation was also considered by

Ni et al. in [14]. They performed user clustering and optimal

power management to reduce the total power consumption of

multi-cell NOMA networks. Of late, the problems of joint

sub-channel and power management were investigated in [15]–

[17], wherein, the authors maximized the energy efficiency for

downlink heterogeneous networks employing NOMA scheme.

Besides energy efficiency, researchers have also focused on

the spectral efficiency aspect of NOMA networks. For in-

stance, Khan et al. in [3] proposed an efficient power allocation

problem for spectral efficiency in multi-cell multi-user NOMA

systems. They employed a tractable sub-optimal technique to

obtain an efficient solution. A resource optimization scheme

was provided to enhance the sum rate of NOMA systems

supporting multi-carrier communications [18]. The problems

of user association with the base station (BS), sub-channel

assignment and power management were formulated as mixed

integer programming. Here, they first performed the user

association and sub-channel assignment by three-dimensional

(3D) matching approach and then adopted efficient power

management through brand and bound (BB) approach. Sun

et al. in the multi-cell scenario provided a joint solution

for optimal beamforming and power allocation in a network

supporting NOMA in power multiplexing [19]. They divided

the number of users in two different groups based on minimum

rate requirements. The non-convex optimization problem of

sum rate maximization was solved by sub-optimal successive

convex approximation algorithm. Chen et al. in [20] proposed

a power allocation and spectrum sharing problem for two slot

secondary NOMA relay networks to increase the sum rate of

cellular users. The data symbols for primary and secondary

receivers were first transmitted from NOMA relay and then

data symbol for the primary receiver was retransmitted from

secondary receiver to improve its QoS. Besides this, a prob-

lem was considered in downlink MISO NOMA networks to

enhance the system sum rate [21]. The non-linear problem was

first approximated with the minorization-maximization algo-

rithm then they solved the second-order cone program with

polynomial computational complexity in each step. In another

study, Zhang et al. presented a resource management problem

for amplify-and-forward (AF) relaying NOMA network [22].

The objective was to increase the system sum rate through

sub-channel and power optimization at source/ destination

pairs. To tackle with the non-linear problem, they employed

sub-optimal solutions based on matching theory and water-

filling algorithms. In [23], Fu et al. investigated a resource

management scheme in multi-carrier network to increase the

sum network capacity. They proposed a three-step water-filling

algorithm for sub-carrier and power optimization to different

users in the network. A joint problem for beamforming and

power management was presented by Xue et al. in multi-

user NOMA network to increase the user achievable data rate

[24]. The optimization problem was first approximated as a

convex problem and then solved by semidefinite programming

based one-dimensional search algorithm for the case of two

Table I
THE LIST OF DIFFERENT SYMBOLS AND THEIR DEFINITIONS

Symbol Definition

M Number of users.
Um Index of mth user.
ym Received signal of Um.
hm Channel gain of Um.
pm Transmit power of Um.
sm Data symbol of Um.
ωm AWGN of Um.

σ2 Variance of AWGN.
Rm Achievable rate of Um.
τm SINR of Um.
θ Minimum power gap for successful SIC.

R̄min Minimum required rate for QoS.
t Iteration index.
λm Lagrange multiplier .
µm Lagrange multipliers.
ηm Lagrange multiplier .
L Lagrangian function.
Λ Dual problem.
δ Non-negative step size.

Table II
THE LIST OF DIFFERENT ABBREVIATIONS AND THEIR DEFINITIONS

Acronym Definition

SIC Successive interference cancellation.
5G Fifth generation.
D2D Device-to-Device.
OMA Orthogonal multiple access.
3D Three-dimensional.
BB Brand and bound.
NOMA Non-orthogonal multiple access.
MISO Multiple-input single-output.
SC Superposition coding.
AF Amplify-and-forward.
CSI Channel state information.
BS Base station.
KKT Karush–Kuhn–Tucker.
LCM Least common multiple.
PC Circuit power.
QoS Quality of services.
AWGN Additive white Gaussian noise.

users. Reference [25] jointly optimized sub-channel and power

allocation for multi-user NOMA networks. The aim of this

work was to increase the sum rate of the system. The joint

solution was obtained through a matching game and interior

point methods. Similarly, Liang et al. considered a resource

allocation problem to enhance the user average data rate

in cooperative NOMA network [26]. To tackle the NP-hard

problem, they first decoupled the joint resource allocation

problem into two separate sub-problems and then adopted two

sub-optimal schemes based on matching game approach for

the user sub-channel association and dual method for effi-

cient power allocation. In addition, the problems of resource

management to increase the spectral efficiency in NOMA

heterogeneous networks were also investigated in [27]–[30].

To date, all related research works in NOMA networks have

focused on single-objective optimization either optimization

of spectral efficiency or energy efficiency. However, in several

situations, decision makers find themselves need to optimize

multiple functions with different objectives simultaneously

which raises the requirement of multi-objective optimization
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[31]. Multi-objective optimization is an optimization technique

which involve more than one objectives that are to be max-

imized or minimized simultaneously [32]. In this work, we

employ multi-objective optimization technique where optimal

decisions need to be taken in the presence of tradeoff among

conflicting spectrum and energy efficient objectives [33]. In

general, it is difficult to obtain a single solution which simul-

taneously optimizes multi-objective functions. More specifi-

cally, no solution exists which enhance one of the objective

without degrading other objective functions, the condition is

called Pareto optimality [34]. However, there exists a set of

non-dominated, weak Pareto optimal solutions and it is the

user’s responsibility to choose its preferred optimal solution.

Different techniques for solving multi-objective optimization

problems exist and are categorized according to the level

of preferences of the competing objective functions [34]. In

this paper, we exploit the weighted-sum method, where the

objective of spectral and energy efficiency can be linearly

combined as a single-objective function. This method uses

a set of positive weighting coefficients which reflect the

users preferences according to the target performance, the

application, and the surrounding environment.

B. Motivation and Contributions

The implementation of NOMA in power multiplexing de-

pends on the guaranteed SIC operation. However, to success-

fully complete the SIC at users, a sufficient gap between users

transmit powers is required and should be guaranteed by the

proposed solutions. Unfortunately, the recent studies [2]–[30]

lack this practical consideration. In fact, these studies do not

guarantee that such a gap exists among users’ transmit powers

in their proposed frameworks. Additionally, the focus of many

of NOMA studies is on single-objective optimization that most

often include maximization of energy efficiency or spectral

efficiency under conventional constraints. Adopting a different

approach from existing studies, our work employs multi-

objective optimization to obtain the most preferred optimal

solution among multiple and contradicting objective functions.

Furthermore, we have considered the constraints on minimum

user rate, total BS power and the minimum gap between users

powers to accomplish the SIC process. The salient aspects

of our multi-objective optimization method are five-fold and

outlined as follows.

1) By exploiting power domain NOMA principle, we con-

sider a joint optimization of spectral and energy effi-

ciency in downlink NOMA networks. The objective is to

simultaneously increase the user sum rate and to reduce

the transmit power of each user at BS while satisfying

each user QoS requirement, transmit power budget and

successful SIC constraints.

2) To achieve the joint performance improvements for rate

and transmit power, we provide a technique based on

multi-objective optimization. To date, all related works

in NOMA networks have considered single-objective op-

timization problems. Thus, to the best of our knowledge,

this is the first NOMA work which considers multi-

objective optimization for the said metrics.

Base Station

Downlink user U1

Downlink user U2

Downlink user U3

Downlink user U4

Downlink user Um

h
1

h
2

h
m

h
4

h
3

Figure 1. System model of NOMA network supporting downlink transmis-
sion.

3) Unlike the solutions discussed in [2]–[30] which do

not consider the minimum gap among users powers to

perform successful SIC technique, we guarantee the SIC

process by considering the constraint of minimum gap

among users transmit powers to our joint framework.

4) To derive the optimal solution for our multi-objective

convex problem, we adopt a dual theory which satisfy

KKT conditions, where Lagrange multipliers can be

obtained and iteratively updated using the sub-gradient

method. For a fair comparison, we also consider a

low complexity single-objective NOMA optimization

scheme as a benchmark.

5) We perform Monte-Carlo simulation where we obtain

the average from 105 realizations. The results depict that

the proposed joint approach not only performs better

than the traditional benchmark single-objective NOMA

optimization scheme but also significantly outperforms

its counterpart optimal OMA scheme. In addition, we

find that our NOMA scheme gives good performance for

high QoS requirements and take only a few iterations in

convergence.

The rest of the paper is organized as follows: The system

description and different formulation steps are provided in

Section II. In Section III, we discuss the optimal solution to the

problem for downlink NOMA while Section IV presents the

numerical results and the relevant discussion. Finally, Section

V provides concluding remarks and future work. The definition

of different acronyms and abbreviations used in our work are

respectively defined in Table I and II.

II. SYSTEM MODEL AND JOINT PROBLEM FORMULATION

This section provides system model and, subsequently,

discusses the problem formulation steps.

Consider a downlink NOMA network as illustrated in Fig.

1, having a BS with M different users, where U = {Um|m =
1, 2, 3, ...M}. Utilizing the power multiplexing of NOMA,
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Figure 2. The SIC process in M users downlink NOMA transmission.

all users are accommodated over the same frequency band1,

whereby, the BS and users follow a single antenna configura-

tion. Since the users are connected to the BS, we consider that

BS has the knowledge of CSI of all its serving users [35]. In

addition, we consider the Rayleigh fading channel between BS

and all its serving users. To perform successful SIC process

at downlink transmission, we sort all the users based on their

channel gains such that |h1| ≤ |h2| ≤ ... ≤ |hM |. According

to this order, U1 decodes its signal first followed by U2 and

so on. Thus, U1 cannot apply SIC and decodes its signal

with the interference of all other users, while UM decode its

signal after eliminating interference from all other users by

applying the SIC technique. Fig. (2) illustrates the SIC process

of downlink NOMA transmission. After the SIC process, the

received signal of Um is given by

ym = hm

√
pmsm + hm

M
∑

n=m+1

√
pnsn + ωm, (1)

where hm is the channel gain of Um, pm represents the Um

transmit power, and sm is the data symbol of Um. The second

term in (1) denotes the interference of other users using the

same spectrum resource after the SIC process. The noise term

ωm ∼ CN (0, σ2) is the zero mean additive white Gaussian

noise (AWGN) with variance σ2. For the received signal of

Um derived in (1), the data rate is

Rm = log2(1 + τm), (2)

where τm in (2) is the signal-to-interference and noise ratio

(SINR) of Um and can be given by

τm =
pm|hm|2

M
∑

n=m+1

pn|hm|2 + σ2

. (3)

To make the SIC process successful in the downlink trans-

mission, the transmit power of all the users must satisfy the

minimum required gap as [36]
(

pm −
M
∑

n=m+1

pn

)

|hm+1|2 ≥ θ, (4)

where θ is the minimum power gap among different users

to apply SIC technique successfully. Following the condition

in (4), the transmit powers of M users should satisfy as

p1 > p2 > ... > pM . Note that the SIC constraints for M

1In this work, we consider the same spectrum resource for all users of the
NOMA network, the problem of multiple spectrum resources using multi-
objective optimization is set aside for our future work.

users NOMA, where all users are communicated over the same

spectrum resource will be reduced exactly to (M − 1). It is

worth highlighting that for M users NOMA systems, where

all users are multiplexed on the same spectrum resource with

any specific SIC ordering, the strongest user generally applies

SIC and removes all other users’ signals before decoding its

own signal. In the end, the weakest user decodes the signal

without using SIC technique by treating all other users’ signals

as an interference. This is the reason why the SIC constraints

will be on M − 1 under NOMA communications conditions.

We intend to reduce the user power consumption and

improve the sum rate while satisfying the individual QoS

requirement for all users. The maximum sum of user rate

and the minimum total transmit power of BS in the downlink

transmission leads to multiple objectives. It can be achieved by

solving the multi-objective optimization. This multi-objective

optimization problem can be written as (P1)

(P1) max
pm

M
∑

m=1

Rm, (5a)

min
pm

M
∑

m=1

pm, (5b)

s.t. Rm ≥ Rmin, ∀m, (5c)

M
∑

m=1

pm ≤ PBS , (5d)

(

pm −
M
∑

n=m+1

pn

)

|hm+1|2 ≥ θ, (5e)

∀m ∈ {1, 2, . . . ,M − 1},
pm ≥ 0, ∀m. (5f)

where (5a) and (5b) are the objective functions for sum rate

maximization and total transmit power minimization, respec-

tively. Constraint in (5c) ensures per user minimum data rate

where Rmin is the threshold for Um to achieve the minimum

data rate. Constraint in (5d) limits the total power of BS where

PBS is the BS total power budget. Additionally, the constraint

in (5e) guarantees successful completion of the SIC process

in the downlink transmission while constraint in (5f) shows

non-negative transmit power of Um.

III. PROPOSED OPTIMAL SOLUTIONS

This section will provide the optimal solution of M users

downlink NOMA transmission in the joint metrics of sum

spectral efficiency and total network energy efficiency. These

metrics can be achieved by joint optimization of optimal power

allocation at the source using multi-objective optimization

technique. Later, we also discuss a single-objective NOMA

optimization as benchmark scheme.

A. Proposed Joint Optimization Scheme

To calculate the joint optimization of optimal power

management for downlink transmission, we now apply the

weighted-sum method to deal with the multi-objective op-

timization problem explained in (P1). This is one of the
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most successful tool for solving such kind of optimization

problems [37]. According to this method, multiple objectives

can be linearly combined as a single-objective optimization by

employing a weighting coefficient which indicates the tradeoff

between multi-objectives [34], [38], [39]. By applying this

technique, the formulated problem (P1) can be modified as

(P1.1):

(P1.1) max
pm

β

(

M
∑

m=1

Rm

)

− (1− β)

(

M
∑

m=1

pm

)

, (6)

s.t. (5c), (5d) and (5f).

where β is the weighting coefficient such as 0 ≤ β ≤ 1 which

indicates the tradeoff between two objectives, i.e., higher

values of β favor maximizing the system spectral efficiency,

while lower values of β favor the system energy efficiency. In

addition, we suppose that the users select the proper values

of β based on the mode of operations. For instance, when the

data rate, and, hence, spectral efficiency is important, then the

users choose the higher values of β. However, if the transmit

power, and energy efficiency is more crucial, then lower values

of β are selected.

Proposition 1. For M users downlink NOMA network with

any specific SIC ordering, the problem in (P1.1) is convex.

Proof: Please check Appendix A for the solution.

As shown in Appendix A, the multi-objective problem

(P1.1) is concave-convex. This observation motivates us to

use dual decomposition methods to get the optimal solution.

To use employ this method, we first derive the Lagrangian

function such as

L(pm, λm, µm, ηm) = β

(

M
∑

m=1

Rm

)

− (1− β)

(

M
∑

m=1

pm

)

+
M
∑

m=1

λd
m(Rm −Rmin) + µd

m

(

PBS −
M
∑

m=1

pm

)

+
M−1
∑

m=1

ηm

(

(

pm −
M
∑

n=m+1

pn

)

|hm+1|2 − θ

)

, (7)

where λm, µm and ηm are the positive Lagrangian multipli-

ers. Using this expression, the dual problem of optimization

problem (P1.1) can be derived as

min
λm,µm,ηm

Λ(λm, µm, ηm), (8)

s.t. λm ≥ 0, µm ≥ 0, ηm ≥ 0,

where

Λ(λm, µd
m, ηm) = max

pm

β

(

M
∑

m=1

Rm

)

− (1− β)

(

M
∑

m=1

pm

)

+
M
∑

m=1

λm(Rm −Rmin) + µm

(

PBS −
M
∑

m=1

pm

)

+
M−1
∑

m=1

ηm

(

(

pm −
M
∑

n=m+1

pn

)

|hm+1|2 − θ

)

, (9)

Note that the difference between dual and primal solution

has been proved to be zero (see [13] and references therein).

Now, by applying KKT conditions, the closed-form expression

for pm has been derived in Appendix B as

p∗m =

[

(βm + φm)|hm|2 − (φm)|hm|2pn − σ2(φm)

|hm|2(φm)

]+

,

(10)

where (α)+ = max(0, α), and

φm =
m−1
∑

n=1

ηn|hn|2 + µm + 1− β − (β + λn)

×
( n−1
∑

l=1

−|hl|2
l−1
∑

i=l+1

pi|hl|2 + σ2

)

. (11)

With optimal value of pm, our dual problem becomes

min
λm,µm,ηm

β

(

M
∑

m=1

R∗

m

)

− (1− β)

(

M
∑

m=1

p∗m

)

+
M
∑

m=1

λm(R∗

m −Rmin) + µm

(

PBS −
M
∑

m=1

p∗m

)

+
M−1
∑

m=1

ηm

(

(

p∗m −
M
∑

n=m+1

pn

)

|hm+1|2 − θ

)

, (12)

s.t. λm ≥ 0, µm ≥ 0, ηm ≥ 0.

Now the dual variables in (12) can be obtained and iteratively

updated using sub-gradient method in [40], [41] as

λm(t+ 1) =

[

λm(t) + δ(t)× (Rmin −Rm)

]+

, ∀m, (13)

µm(t+ 1) =

[

µm(t) + δ(t)×
(

M
∑

m=1

pm − PBS

)]+

, (14)

ηm(t+ 1) =

[

ηm(t) + δ(t)×
(

θ −
(

pm −
M
∑

n=m+1

pn

)

× |hm+1|2
)]+

, ∀m ∈ {1, 2, . . . ,M − 1}, (15)

where t and δ ≥ 0 represent the iteration index and step size,

respectively. In each number of t, λm, µm and ηm are updated

using p∗m obtained from (10). In the subsequent iterations, the

optimal values of λm, µm and ηm are used to calculate p∗m.

The iterative process continues until convergence.

Now, we discuss the complexity of our multi-objective opti-

mization technique. This is based on the number of iterations

which our scheme needs for the convergence. The number of

iterations required for convergence will be increased if high

number of users are sharing the same spectrum resource at

the same time. Since we consider M users in our proposed

NOMA network, the complexity for dealing with problem

(P1.1) using multi-objective optimization technique in each

iteration is O(M2). We assume that the total iteration are T ,

then the total computational complexity of our proposed joint

framework becomes O(TM2).
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Figure 3. Number of iterations versus the power allocation of each user
according to SIC constraint for M = 3, PC= 1, PBS = 10 W, β = 1.

B. Benchmark Single-objective NOMA Scheme

Section III-A discusses a joint spectral and energy optimiza-

tion for M users NOMA network. In this subsection, to reduce

the computational complexity, we present a single-objective

optimization scheme as a benchmark where power allocation

is optimized for sum rate maximization only. The power

optimization problem can be reduced to sum rate optimization

such as (Ps):

(Ps) max
pm

M
∑

m=1

Rm, (16a)

s.t. Rm ≥ R̄min, ∀m, (16b)

M
∑

m=1

pm ≤ PBS, (16c)

(

pm −
M
∑

n=m+1

pn

)

|hm+1|2 ≥ θ,

∀m ∈ {1, 2, . . . ,M − 1}, (16d)

pm ≥ 0, ∀m. (16e)

The problem (Ps) is convex [42], and we employ the same

technique with similar steps as discussed for multi-objective

optimization scheme in Section III-A, however all the steps

involve in the convexity proof and solutions of the problem

are missing for the sake of simplicity.

IV. RESULTS, COMPARISON AND DISCUSSION

This section provides the simulation results of our proposed

multi-objective optimization technique, as discussed in Section

III-A as well as the benchmark single-objective optimization

NOMA scheme, as discussed in Section III-A. In addition,

we also provide the results of conventional OMA technique

based on multi-objective optimization. We performed link-

level simulations in MATLAB and took 105 realization of

channel gains to generate each data point on the forthcoming
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Figure 4. Available BS transmit power versus the power allocation of each
user according to SIC constraint for M = 3, PC= 1, β = 1.

Table III
VALUES OF DIFFERENT PARAMETERS USED FOR SIMULATION.

Parameter Definition

Number of active users M = 3

Maximum power (W) 10
Channel type Raleigh fading
β 0.6− 1

PC (W) 1

σ2 1
θ 0.5

Channel realization 10
5

plots. Unless mentioned otherwise, the values of the simulation

parameters used to generate the plots are listed in Table III.

A. Impact of SIC Constraint on Power Allocation

For successful implementation of NOMA exploiting power

multiplexing, the successful operations of SIC is mandatory

and must be guaranteed. For this, it is necessary that received

signal powers of different users have the minimum gap. These

power gap should be assign according to the users channel

conditions. Moreover, by using this gap, a user employing

SIC can decide which signal needs to decode and which one

to subtract.

In Fig. 3, we have illustrated the transmit power of different

users as a function of the number of iterations. Since we

assume to order the users channel power in ascending order,

i.e., |h1|2 ≤ |h2|2 ≤ |h3|2, which means that U3 has strong

channel gain, followed by U2 and at the end U1 has the

weakest channel gain. We can see from the plot, the condition

of NOMA protocol, i.e., p1 > p2 > p2, means U3 has

assigned the least transmit power, followed by U2 and at the

end U1 has allocated the largest transmit power. Furthermore,

it can be seen that for user 1 and 2, the transmit power

first increases and then remains unchanged as the number

of iterations exceeds 15. However, for user 3, the transmit

power first increases up to 4.3 W and then decreases to 1.7

W. Afterward, the power for the third user remains constant as
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Figure 5. The sum rate of the NOMA system with different values of β
versus number of iterations when M = 3, PC= 1, PBS = 10.

the number of iterations exceeds from 15. These variations and

trends in the transmit powers of different users are due to the

sorted channel gains and subsequently the allocation of power

according to the SIC constraint, as discussed above. In addition

to this, note that the number of iterations for the proposed

methodology is within a reasonable range, even for 3 users

in the networks. This clearly highlights the lightweight and

less complex nature of our proposed NOMA multi-objective

optimization scheme.

Fig. 4 further emphasizes the operations of SIC constraint

to control the transmit power of different users according to

the NOMA protocol. Here, we plot the transmit power of

different users against the increasing values of BS available

power. It can be seen that the transmit power of the users

increases when the available BS power increases. From the

figure, one can observe that due to SIC condition, the users

keep a minimum gap between their transmit powers. More

specifically, for fixed value of BS transmit power, for example,

when PT = 3 W, the transmit power of U3 is 0.5 W, followed

by U2 with 1 W and the power of U1 is 1.5 W. Moreover, the

gap between users transmit powers increasing with increase in

the BS available transmit power. This is because the minimum

gap also increases with higher values of BS available power.

B. Spectral Efficiency Aspects

In Fig. 5, we have illustrated the spectral efficiency of

M users in downlink NOMA network versus the number of

iterations. From the figure, it can be seen that for different

values of β, the sum rate first increases and then remains

unchanged as the number of iterations passes 15. Note that

the total iterations required for our proposed multi-objective

NOMA methodology is within a reasonable range. This signi-

fies the lightweight nature and low complexity of our proposed

optimization method.

Fig. 6 depicts the sum rate of the M users in a down-

link network against increasing values of the available BS
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Figure 6. The sum rate of the NOMA system versus the available BS power
for M = 3, PC= 1.
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Figure 7. The sum rate of the network versus per user QoS requirement for
PBS = 10, β = 1, M = 3, PC= 1.

transmit power. We can observe the increase in system sum

rate for increasing values of BS available transmit power.

As is evident from (P1.1), an increase in β increases the

sum rate of the system for both NOMA and OMA schemes.

For fair comparison, we have also demonstrated the results

for NOMA technique when single-objective optimization is

applied (represented as “Benchmark”). The benchmark scheme

is aimed to improve the sum rate of the downlink system due

to which it underperforms for the case of energy efficiency.

We can see that the curve of the benchmark NOMA scheme

closely follows the curve of β = 1 which illustrates the

dependency of sum rate on different values of β. In contrast,

we observe that for a fixed transmit power (10 W), when β

increases from 0.6 to 0.9, the sum rate for M users downlink

NOMA increases from 7.5 to 12.5 bps/Hz. In contrast, for the

similar values of BS available power and β, the data rate for
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Figure 8. Total energy efficiency of the network with different values of β
versus number of iterations when M = 3, PC= 1, PBS = 10.

OMA minutely increases from 3.5 to 6 bps/Hz. This shows

that our proposed method not only performs better for multi-

user NOMA but also improves the sum rate in comparison to

OMA.

Fig. 7 depicts the sum rate of the NOMA network against in-

creasing values of per-user QoS requirement. As demonstrated

before, one can observe here that our multi-objective opti-

mization scheme outperforms the single-objective optimization

and conventional OMA schemes. By keeping the QoS fixed

at R̄min = 1.5 bps/Hz and keeping Pmax = 10, the sum

rate of the joint NOMA scheme is 12.4 bps/Hz while for the

same values, the sum rate of the benchmark is 11.9 bps/Hz

and the OMA is 5.8 bps/Hz, respectively. Further, the sum

rate of the conventional OMA scheme drops to zero when

R̄min approaches the value of 1.8 bps/Hz. This is because

the available transmit power is not large enough to satisfy

the high QoS demand of OMA users. In addition, the rate

gap between joint NOMA and benchmark NOMA increase

for high values of QoS requirements. This change illustrates

the positive impact of using multi-objective optimization as

the proposed scheme continues to perform well even at higher

QoS requirements.

C. Energy Efficiency Aspects

In Fig. 8, we have plotted the number of iteration versus

the total energy efficiency of M users in downlink NOMA

network. We can see from the plot that for different values

of β, the curves of total energy efficiency against different

values of β first increases and then remains unchanged as

the number of iteration exceeds from 15. In addition, the

number of iterations requires for the proposed multi-objective

optimization scheme is within a reasonable range which shows

the low complexity nature of the scheme.

Fig. 9 further emphasizes the utility of our proposed method

by plotting the total energy efficiency of the network against

increasing values of available BS transmit power. From these
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Figure 9. Total energy efficiency of the network against the available BS
transmit power for M = 3, PC= 1.

results, one can be observed that the total energy efficiency of

the network decreases with an increase in the transmit power.

However, the reduction in energy efficiency is far more for the

case of OMA and benchmark NOMA optimization scheme.

More specifically, for a fixed value of transmit power, i.e., 4

W and β = 0.6, the energy efficiency of OMA is 1.3 bpj/Hz,

while for the same values, the energy efficiency of NOMA

increases up to 3.3 bpj/Hz. This shows the effectiveness of

joint spectral and energy efficiency optimization.

Lastly, to see the impact of circuit power consumption (PC)

on the total energy efficiency of the network, in Fig. 10, we

provide the total energy efficiency of M users for NOMA and

OMA network with different values of PC consumption. One

can observe that the system energy efficiency increases when

the PC consumption decreases. More specifically, for a fixed

value of transmit power, i.e., 3 W and PC= 0.3, the total

energy efficiency of our joint power allocation scheme is 5

bpj/Hz, while for the same values, the total energy efficiency

of OMA network is 1.7 bpj/Hz. It is show the effectiveness of

our proposed NOMA multi-objective optimization technique

over its counterpart traditional OMA scheme.

V. CONCLUSION

Joint optimization of spectral and energy efficiency is crit-

ical for future NOMA systems. In this regard, this work has

provided a novel technique for jointly improving the energy

and spectral efficiency of multi-user NOMA systems. In par-

ticular, we have considered a downlink communication system

and have shown that the proposed multi-objective optimization

methodology works very well for NOMA systems. We have

also compared the simulation results of our joint optimization

scheme with the benchmark single-objective technique and

conventional OMA technique. Our results have confirmed the

superiority of the proposed multi-objective optimization tech-

nique over benchmark NOMA and OMA while maintaining a

reasonable level of complexity.
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Figure 10. Total energy efficiency of the network with different PC con-
sumptions versus the increasing values of available BS power for M = 3,
β = 0.6.

Although the above-mentioned results are self-contained, in

the future, we aim to extend them by incorporating channel

estimation errors in downlink transmission. Afterward, we also

aim to investigate the performance of our proposed multi-

objective problem for cooperative downlink NOMA systems.

These interesting and challenging problems will be addressed

in future works.

APPENDIX A

PROOF OF PROPOSITION 1

Here, we provide the convexity proof of our proposed joint

optimization problem. To do so, we first derive the Hessian

matrix and then prove it as a negative definite. Note that the

Hessian matrix is negative definite when its leading principle

minors are alternate in sign, i.e., negative for odd number and

positive for those of even number.

Let us derive the objective function of our proposed joint

problem as

max
pm

β

( M
∑

m=1

Rm

)

− (1− β)

( M
∑

m=1

pm

)

, (17)

where it can be seen that the second segment −(1 −
β)
(

∑M
m=1

pm

)

in (17) is a linear function of pm. The first

segment β
(

∑M
m=1

Rm

)

in (17) is strictly concave-convex.

Let M = 3 downlink NOMA network where the channel

powers are ordered as |h1|2 ≤ |h2|2 ≤ |h3|2, thereby we can

write the sum rate as:

Rsum = log2

(

1 +
p1|h1|2

(p2 + p3)|h1|2 + σ2

)

+ log2

(

1 +
p2|h2|2

p3|h2|2 + σ2

)

+ log2

(

1 +
p3|h3|2
σ2

)

, (18)

Now following (18), the Hessian matrix
∐

can be derived

as

∐

=







(

∂Rsum

∂p1

)

∂
∂p1

(

∂Rsum

∂p1

)

∂
∂p2

(

∂Rsum

∂p1

)

∂
∂p3

(

∂Rsum

∂p2

)

∂
∂p1

(

∂Rsum

∂p2

)

∂
∂p2

(

∂Rsum

∂p2

)

∂
∂p3

(

∂Rsum

∂p3

)

∂
∂p1

(

∂Rsum

∂p3

)

∂
∂p2

(

∂Rsum

∂p3

)

∂
∂p3






(19)

After solving for derivations, we obtain

∐

=





−Π −Π −Π
−Π −Π+Π′ −Υ −Π+Π′ −Υ
−Π −Π+Π′ −Υ −Π+Π′ −Υ+Υ′ −Ψ





(20)

where

Π =
( |h1|2
(p1 + p2 + p3)|h1|2 + σ2

)2

,

Π′ =
( |h1|2
(p2 + p3)|h1|2 + σ2

)2

,

Υ =
( |h2|2
(p2 + p3)|h2|2 + σ2

)2

,

Υ′ =
( |h2|2
p3|h2|2 + σ2

)2

,

Ψ =
( |h3|2
p3|h2|2 + σ2

)2

.

The first order principle in (20) can be expressed as

det

∣

∣

∣

∣

∣

∐

1

∣

∣

∣

∣

∣

= −Π. (21)

As such, the second order principle minor is given by

det

∣

∣

∣

∣

∣

∐

2

∣

∣

∣

∣

∣

= Π(Υ−Π′)

= Π

(

( |h2|2
p2|h2|2 + σ2

)2

−
( |h1|2
p2|h1|2 + σ2

)2
)

(22)

By taking LCM, we get

= Π

(

(2p2|h1|2|h2|2 + |h1|2 + |h2|2)(|h2|2 − |h1|2)
(p2|h1|2 + σ2)2(p2|h2|2 + σ2)2

)

.

(23)

Following the same trend, we can derive the third principle

minor as

det

∣

∣

∣

∣

∣

∐

3

∣

∣

∣

∣

∣

= −Π(Υ−Π′)(Ψ−Υ′)

= −Π

(

( |h2|2
p2|h2|2 + σ2

)2

−
( |h1|2
p2|h1|2 + σ2

)2
)

×
(

( |h3|2
p3|h2|2 + σ2

)2

−
( |h2|2
p3|h2|2 + σ2

)2
)

, (24)
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By taking LCM, we obtain

= −Π×
(

(2(p2 + p3)|h1|2|h2|2 + |h1|2 + |h2|2)(|h2|2 − |h1|2)
((p2 + p3)|h1|2 + σ2)2((p2 + p3)|h2|2 + σ2)2

)

×
(

(2p3|h2|2|h3|2 + |h2|2 + |h3|2)(|h3|2 − |h2|2)
(p3|h2|2 + σ2)2(p3|h3|2 + σ2)2

)

. (25)

where Π, Π′, Υ, Υ′ and Ψ are all positive. Therefore, the first

and second order principle minors are negative and the third

one is positive. Thus, our proposed joint optimization problem

is concave-convex function.

APPENDIX B

DERIVATION OF CLOSED FORM EXPRESSION

To efficiently perform the SIC process, the channel gains

of users are assumed as |h1|2 ≤ |h2|2 ≤ ... ≤ |hM |2. When

m = 1, it represents the weakest user, i.e., U1 and directly

decodes the multiplex signal from BS without applying SIC

technique. Note that in such case, the other signals are acted

as an interference for U1. Thus, the closed-form expression

for U1 without SIC can be derived as

∂L(.)
∂p1

= (β + λ1)

( |h1|2
∑M

n=1
pn|h1|2 + σ2

)

+ β + η1|h2|2

− µ1 − 1 = 0. (26)

Now we can obtain p∗1 as

p∗1 =

[

(β + λ1)|h1|2 − φ1(pn|h1|2)− σ2φ1

φ1|h1|2

]+

. (27)

where φ1 = µ1 + 1− β − η1|h2|2.

For second user when m = 2, U2 first decodes and removes

the signal of U1 and then decodes its signal using SIC.

However, U2 can not remove the signal of any user when

m = 2 + 1. The solution of U2 can be then derived as

∂L(.)
∂p2

= (β + λ2)

( |h2|2
∑M

n=2
pn|h2|2 + σ2

)

+ (β + λ1)

×
( −|h1|2
∑M

n=2
pn|h1|2 + σ2

)

+ η2|h3|2 + β − η1|h2|2

− µ2 − 1 = 0. (28)

Then, the optimal value can be obtained as

p∗2 =

[

(β + λ2)|h2|2 − φ2(pn|h2|2 − σ2φ2)

φ2|h2|2

]+

, (29)

where

φ2 = η1|h2|2 + µ2 + 1− η2|h3|2 − β − (β + λ1)

×
( −|h1|2

M
∑

n=2

pn|h1|2 + σ2

)

. (30)

Therefore, by deduction method, the optimal power of Um can

be derived as (10).
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