
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. MATRIX ANAL. APPL. c© 2010 Society for Industrial and Applied Mathematics
Vol. 31, No. 4, pp. 2146–2162

JOINT SPECTRAL CHARACTERISTICS OF MATRICES:
A CONIC PROGRAMMING APPROACH∗
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Abstract. We propose a new method to compute the joint spectral radius and the joint spectral
subradius of a set of matrices. We first restrict our attention to matrices that leave a cone invariant.
The accuracy of our algorithm, depending on geometric properties of the invariant cone, is estimated.
We then extend our method to arbitrary sets of matrices by a lifting procedure, and we demonstrate
the efficiency of the new algorithm by applying it to several problems in combinatorics, number
theory, and discrete mathematics.
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1. Introduction. The joint spectral radius ρ̂(M) of a set of n×n real matrices
M is the exponent of the maximal asymptotic growth of products of matrices from
this set when the length of the products grows. The joint spectral subradius ρ̌(M)
(also called the lower spectral radius) is the minimal growth counterpart:

ρ̂(M) = lim
k→∞

max {‖Ad1 · · ·Adk‖1/k : Ai ∈ M},(1.1)

ρ̌(M) = lim
k→∞

min {‖Ad1 · · ·Adk‖1/k : Ai ∈ M}.

Both these limits exist for all sets of matrices and do not depend on the norms used
in the definitions. In the simplest case, when the set M consists of only one matrix A,
both these spectral quantities are equal to the spectral radius ρ(A), which is then also
equal to the largest magnitude of the eigenvalues of A. This follows from Gelfand’s
formula ρ(A) = limk→∞ ‖Ak‖1/k.

The joint spectral radius was introduced in [39] and the joint spectral subradius
in [23]. These quantities have found numerous applications in various areas: in the
control of switched systems [3, 26], in subdivision algorithms for approximation and
curve design (see [16] for many references), in the study of wavelets and of refinement
equations [14, 36], in probabilistic automata [5], in information theory [7], in proba-
bility theory [33], and in many problems of discrete mathematics, graph theory, and
combinatorics (see [24] for a survey).

The question of how to compute these quantities efficiently has been the subject of
intense research activity in recent years. Let us start with the joint spectral radius ρ̂.
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For a given set of matrices M and for a given k ≥ 0, we define

(1.2) Mk = {Ad1 · · ·Adk : Adj ∈ M, j = 1, . . . , k}.
Associated to every submultiplicative norm || · || we have the following inequalities

for the joint spectral radius:

(1.3) max {ρ(A)1/k : A ∈ Mk} ≤ ρ̂(M) ≤ max {||A||1/k : A ∈ Mk} .
Moreover, the limit of the right-hand side of (1.3) is actually equal to ρ̂(M) as k goes
to +∞, and the upper limit of the left-hand side is also equal to ρ̂(M) [4]. These
observations provide an elementary method to compute the joint spectral radius to
any given accuracy by computing all products of length k until the upper and lower
bounds resulting from the inequalities (1.3) are sufficiently close to each other [14,21].
However, in practice the convergence of the bounds in (1.3) may be extremely slow
even for small matrix dimensions. This slow convergence is not surprising because
of negative complexity results [11, 40], according to which the computation of the
joint spectral radius is a problem that is computationaly hard. In particular, unless
P=NP there is no algorithm that runs in polynomial time both in n and 1/ε and that
approximates ρ̂ with a relative accuracy ε.

One possible way to improve the convergence in (1.3) is to choose a special norm
in R

n that depends on the set of matrices. This idea was put to good use in [22, 30]
(polyhedral norms), [8, 31, 41] (Kronecker lifting), and [29] (sums of squares). The
computational complexity of these methods grows exponentially with the dimension
of the matrices.

In this paper we generalize this approach, and we obtain efficient algorithms that
perform well, even for large dimensions. The main idea is to select a special set of
norms and find the best norm in that set with the help of conic optimization. By
“best norm” we mean one that provides the sharpest possible upper bound in (1.3)
for a given k ≥ 1. We will see, for instance, how the best ellipsoidal norm method
introduced in [2, 10] appears as a special case of our technique.

An interesting aspect of our method is that it can also be used to approximate
the joint spectral subradius ρ̌. To the best of our knowledge, the method we propose
here is the first nontrivial approximation method for the joint spectral subradius. The
main difficulty with the subradius is that the inequalities corresponding to (1.3) only
provide the following upper bounds for the subradius:

(1.4) ρ̌(M) ≤ min {ρ(A)1/k : A ∈ Mk} ≤ min {||A||1/k : A ∈ Mk}.
Both these upper bounds tend to ρ̌ as k → +∞, but no convergent lower bound
for ρ̌ is known; therefore, these bounds cannot be used to derive approximations of
guaranteed accuracy. As a contribution of this paper, we use the conic norm to derive
a lower bound for the subradius that converges to ρ̌ as k → +∞.

The paper is organized as follows. First, we consider sets of matrices that leave
a cone invariant. For these sets we define the notions of joint conic radius and joint
conic subradius (section 2). Then we prove the main relations between the spectral
and conic radii (Theorems 2.6 and 2.12). In section 3 we iterate these relations, and
we derive approximation algorithms for the joint spectral radius and subradius. We
then apply a lifting procedure in order to extend our approach to arbitrary sets of
matrices, possibly without invariant cone. We also present and analyze in that section
general tricks that can improve our algorithms in practice. In section 4 we describe
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numerical examples by applying our method to several problems of number theory and
combinatorics. We consider problems on the asymptotics of the overlap-free language,
the density of ones in Pascal’s rhombus, and the analysis of Euler’s partition function.
The dimensions of the matrices that we consider in these contexts range from 5 to 20.

2. Main results. Let K ⊂ R
n be a convex, closed, pointed, and nondegenerate

cone with the apex at the origin (for definitions in convex geometry, see [12]). Any
such cone defines a partial order in R

n: we write x ≥K y (x >K y) for x − y ∈ K
(x− y ∈ intK). The cone K is an invariant cone for the matrix A if AK ⊂ K. In this
case we say that A is nonnegative and write A ≥K 0. If K is invariant for all matrices
of some set M, then it is said to be an invariant cone for that set.

Definition 2.1. For a given compact set of matrices M with an invariant cone
K, we consider the values
(2.1)

σ̂K(M) = inf
{
λ ≥ 0

∣∣ there exist v >K 0, Av ≤K λv for all A ∈ M
}
,

σ̌K(M) = sup
{
λ ≥ 0

∣∣ there exist v ≥K 0, v 	= 0, Av ≥K λv for all A ∈ M
}
,

and call them the joint conic radius and the joint conic subradius, respectively.
These values depend not only on the set M but also on the cone K ⊂ R

n.
In the following we assume the cone K to be fixed, and we use the short notation
σ̂(M), σ̌(M), or simply σ̂, σ̌, if it is clear what set M is considered.

These values are well defined, provided the set M admits an invariant cone.
However, if this is not the case, then the following simple procedure can be used. Let
us define the semidefinite lifting Ã of the n× n matrix A by

(2.2) Ã : Rn
2 → R

n2

: X → ATXA.

Proposition 2.2 (see [8, 24]). Let M be a set of n × n matrices. The semi-
definite lifting M̃ = {Ã : A ∈ M} of M leaves the cone Kn of symmetric positive
semidefinite matrices invariant. Moreover, the set M̃ satisfies ρ̂(M̃) = ρ̂(M)2 and
ρ̌(M̃) = ρ̌(M)2.

As a result of this proposition, sets of matrices can always be transformed into
sets of matrices that leave a cone invariant and whose joint spectral radius is squared.
But this is, of course, at the cost of squaring the space dimension.

2.1. The joint spectral radius. In this section, we derive a relation between
the joint spectral radius and the joint conic radius. We start with two simple lemmas.
Let us have a compact set M of matrices in R

n×n. In the following we call convex
body a convex compact set with a nonempty interior.

Lemma 2.3 (see [35]). If there exists a convex body P ⊂ R
n and λ > 0 such that

AP ⊂ λP for all A ∈ M, then ρ̂(M) ≤ λ. If there exists a closed set Q ⊂ R
n such

that 0 /∈ Q and AQ ⊂ λQ for all A ∈ M, then ρ̌(M) ≥ λ.
As a corollary we obtain the following lemma.
Lemma 2.4. Let the set M possess an invariant cone K. If for some v ∈ intK

we have Av ≤K λv for all A ∈ M, then ρ̂ ≤ λ. If for some v ∈ K \ {0} we have
Av ≥K λv for all A ∈ M, then ρ̌ ≥ λ.

Proof. For the first assertion we apply Lemma 2.3 to the body P = (v−K)∩(−v+
K). The second assertion follows from the same lemma for the set Q = v +K.

In order to find a relation between ρ̂ and σ̂, we introduce the following geometric
characteristics of convex cones.
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Definition 2.5. For a given cone K ⊂ R
n, the value α(K), 0 ≤ α ≤ 1, is the

largest number such that for any convex compact set G ⊂ K, there exists v ∈ G, for
which v ≥K αG.

An example of the value of α for the positive orthant in R
2 is provided in Fig-

ure 2.1. Clearly, α is an affine invariant of a cone.

Fig. 2.1. For the positive orthant in R
2, we have α = 1/2. That is, associated to any compact

convex set in R
2
+, there is a point v ∈ G such that 2v ≥

R2
+

x for all x ∈ G.

Theorem 2.6. For any set M of matrices with an invariant cone K, we have

α σ̂ ≤ ρ̂ ≤ σ̂,

where α = α(K), σ̂ = σ̂(M), and ρ̂ = ρ̂(M).
Proof. The inequality ρ̂ ≤ σ̂ is proved in Lemma 2.4. To prove the inequality

ασ̂ ≤ ρ̂, we use the well-known fact [24, 39] that for any q > ρ̂ there is a norm in R
n

such that the corresponding matrix norm of each matrix in M is smaller than q. Fix
then such a q and denote by G the intersection of the unit ball of that norm with the
cone K; then AG ⊂ qG for any A ∈ M. On the other hand, for any γ < α there is
u ≥K G such that γu ∈ G. Observe that in this case intG 	= ∅; hence, u >K 0. It
follows that A(γu) ∈ AG ⊂ qG, and so, Au ∈ q

γG ≤K q
γu. Thus, Au ≤K q

γu for all

A ∈ M. Whence σ̂ ≤ q
γ . This holds for arbitrary q > ρ̂ and γ < α; therefore, σ̂ ≤ ρ̂

α ,
which concludes the proof.

Let us add that this theorem is proved in [9] for the particular case of nonnegative
matrices. The following theorem provides a universal bound on α.

Theorem 2.7. For any cone K ⊂ R
n we have α(K) ≥ 1

n .
In the proof we will use several facts of convex geometry. For a given convex body

G ⊂ R
d and for any point z ∈ intG, we consider the Minkowski–Radon constant:

τz(G) = inf
{
t > 0

∣∣∣ there exist x, y ∈ ∂G , z =
t

1 + t
x+

1

1 + t
y
}
.

In other words, τz(G) is the minimal possible ratio |z−y|
|z−x| , with | · | denoting the

Euclidean norm and where x, y are the points of intersection of a line passing through
z with the boundary of G. We then denote

τ(G) = τz′(G), with z′ =
1

VolG

∫
G

x dx,

that is, with z′ the center of gravity of G. The well-known Minkowski–Radon theo-
rem [37] states that τ(G) ≥ 1

d for any convex body G. For d-dimensional simplices
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Δ, one has τz(Δ) = 1
d for z = grΔ and τz(Δ) < 1

d for all other points z ∈ Δ. Another
well-known fact will be formulated in the following lemma. We call a hyperplane H
a plane of support for the convex set G if H ∩ ∂G 	= ∅ and G lies in one of the closed
half-spaces with respect to H .

Lemma 2.8. If a convex compact set G lies in a cone K ⊂ R
n and contains at

least one interior point of K, then there is a hyperplane of support H for G such that
H does not separate the set G from 0, and the cross section H ∩ K is bounded and
has its center of gravity in G.

For the proof of this lemma it suffices to consider the set G′ = Conv{G, 0} and
to choose a hyperplane H that cuts from the cone K a convex body that contains
G′ and has the smallest possible volume; see [1, p. 229] for details. We are now in
position to prove the above theorem.

Proof of Theorem 2.7. Let G be an arbitrary convex subset of a cone K. If G
does not intersect the interior of K, then it lies on a face of that cone, which is also
a cone of a smaller dimension. By induction, we get α(K) ≥ 1

n−1 >
1
n . Assume now

that G∩ intK 	= ∅. Applying Lemma 2.8, we obtain a hyperplane of support H, which
does not separate G from the origin. Let us denote S = K ∩H and v = grS ∈ G.
Let u = nv. The set S′ = (u−K)∩H is homothetic to S with respect to its center of
gravity v with the factor −(n− 1); i.e., S′ = v − (n− 1)(S − v). By the Minkowski–
Radon theorem, τ(S′) ≥ 1

n−1 ; therefore, S ⊂ S′. Since the hyperplane H separates
u from G, it follows that for any x ∈ G, the segment [x, u] intersects H ; i.e., it
intersects the set S. Thus, for any x ∈ G the segment [x, u] also intersects S′. This
means that G ⊂ (u −K), and so, u ≥K G. Since 1

n u = v ∈ G , it now follows that
α(K) ≥ 1

n .
Thus, to estimate the joint spectral radius by the value σ̂(M), one needs to

compute α(K) for the invariant cone of M. Theorem 2.7 guarantees that α ≥ 1
n for

any cone in R
n. Therefore, we have, by Theorem 2.6,

1

n
σ̂ ≤ ρ̂ ≤ σ̂ .

For some cones we have better bounds. In the following theorem we find precise values
of α for three important cases: for n-hedral cones (cones bounded by n hyperplanes
passing through the origin), for the cone Kn of symmetric positive semidefinite n ×
n-matrices, and for the Lorentz cone. A Lorentz cone of angle φ ∈ ]0, π/2[ is the
set Kφ = {x ∈ R

n : x1 tanφ ≥ √
x22 + · · ·+ x2n} or a rotation of this set around the

origin.
Proposition 2.9. For any n-hedral cone in R

n we have α = 1
n ; for a Lorentz

cone we have α = 1
2 ; for the cone Kn of positive semidefinite n × n-matrices, we

have α = 1
n .

The proof of Proposition 2.9 is in Appendix A.

2.2. The joint spectral subradius. A straightforward application of Lemma
2.4 yields the inequality σ̌ ≤ ρ̌. However, in contrast to Theorem 2.6, there is no
corresponding upper bound on ρ̌. More precisely, there is no positive constant C(K)
corresponding to the cone K such that ρ̌(M) ≤ C(K) σ̌(M) for any set of matrices
M that leaves K invariant. We show this with an example for the case K = R

n
+.

Example 1. Let n ≥ 2 and M = {A1, . . . , An} ⊂ R
n, where Aj is a matrix

whose entries of the jth row are all zeros and all other entries are ones. Since AiAj =
(n− 1)Ai for all i, j, it follows that Ad1 · · ·Adm = (n− 1)m−1Ad1 for any product of
length m. Hence, ρ̌ = n− 1. On the other hand, σ̌(M) = 0. Indeed, any nonnegative
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vector v 	= 0 has at least one positive coordinate vj , while (Ajv)j = 0. Hence, the
inequality Ajv ≥Rn

+
λv implies λ = 0.

Thus, to obtain an upper bound for the subradii, we need to impose some extra
conditions on the matrices. This situation can actually not be avoided, since Theo-
rem 2 in [40] shows that there is no algorithm that approximates the subradius for
general finite sets of matrices. Example 1 shows that an invariant cone does not suf-
fice to obtain an upper bound. It appears, however, that the existence of a second
invariant cone does the job. We start with introducing some more notation. Let
us have a cone K ⊂ R

n. We say that a convex closed cone K ′ is embedded in K if
(K ′ \ {0}) ⊂ intK. In this case we call (K,K ′) an embedded pair. Note that the em-
bedded cone K ′ may be degenerate, i.e., may have an empty interior. An embedded
pair (K,K ′) is called an invariant pair for a matrix A if the cones K and K ′ are both
invariant for A. This definition extends to sets of matrices.

Definition 2.10. For a given embedded pair (K,K ′), the value β(K,K ′) is the
smallest number such that for any line intersecting K and K ′ by segments [x, y] and

[x′, y′], respectively (with [x, x′] ⊂ [x, y′]), one has 1 ≤ |x−y′|
|x−x′| ≤ β.

An illustration of the value β(K,K ′) is provided in Figure 2.2.

Fig. 2.2. The constant β for an embedded pair (K,K ′) is equal to the maximum ratio
|x−y′|
|x−x′| .

Lemma 2.11. Let M be a set of matrices such that ρ̌(M) > 0, and assume that
M has an invariant embedded pair (K,K ′). Then, for any p : 0 < p ≤ ρ̌ there is
a closed convex set Q ⊂ K ′ (that may be unbounded) not containing the origin such
that AQ ⊂ pQ for any A ∈ M.

Proof. We suppose without loss of generality that ρ̌(M) = 1. If this is not the
case, we can just scale the matrices by dividing by ρ̌. Take v0 ∈ K ′. We define the set

Q = Conv{λAv0 : A ∈ Mk, k ∈ N, λ ≥ 1}.
Since the cone K ′ is invariant, Q ⊂ K ′, and, obviously, AQ ⊂ Q. Hence, for all
nonzero p < 1, AQ ⊂ pQ. It remains to show that Q does not contain the origin. If
this were the case, we could define a series of matrices Ak ∈ Mk : k ∈ N such that
Akv0 → 0. However, since v0 ∈ intK, this implies that ||Ak|| → 0, and so, ρ̌(M) < 1,
which is in contradiction with the assumptions.

Theorem 2.12. For any set M with an invariant pair (K,K ′), we have

σ̌ ≤ ρ̌ ≤ β σ̌,

where β = β(K,K ′), σ̌ = σ̌K(M), and ρ̌ = ρ̌(M).
Proof. The inequality σ̌ ≤ ρ̌ follows from Lemma 2.4. To prove that ρ̌ ≤ βσ̌, we

apply Lemma 2.11 and get a set Q such that AQ ⊂ pQ for all A ∈ M and for all
0 < p ≤ ρ̌.
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Draw any hyperplane of support for Q that separates Q from the origin and
makes a bounded cross section of the cone K. Denote this hyperplane by H, let
S = H ∩K, S′ = H ∩K ′, and v ∈ H ∩Q. Let us show that v ≤K βQ. For any ray on
H starting at the point v and meeting the boundaries of K ′ and K at points x′ and
x, respectively, one has |x−v|

|x−x′| ≤ β. Hence, the set homothetic to S with the factor

(1− 1
β ) with respect to v contains the set S′. This yields that S′ ⊂ ( 1β v+K); therefore,

Q ⊂ ( 1β v + K), which means 1
β v ≤K Q, and hence, v ≤K βQ. Since AQ ⊂ pQ, it

follows that 1
β v ≤K 1

pAQ. On the other hand, v ∈ Q; whence, 1
β v ≤K 1

pAv for any

A ∈ M. This means that σ̌ ≥ p
β . Taking a limit p → ρ̌, we get βσ̌ ≥ ρ̌, from which

the theorem follows.
Remark 1. A simple compactness argument shows that β <∞ for any embedded

pair. If the cone K is fixed, then the value β(K,K ′) is nondecreasing in the second
variable; i.e., if K ′

1 ⊂ K ′
2, then β(K,K ′

1) ≤ β(K,K ′
2). The smallest possible value

β = 1 is attained precisely when dimK ′ = 1, i.e., when K ′ is a ray. If, on the other
hand, a sequence of cones {K ′

j}j∈N approaches the boundary of K (that is, there are
xj ∈ K ′

j and x ∈ ∂K, x 	= 0, such that xj → x as j → ∞), then β(K,K ′
j) → +∞.

Now we compute the values β(K,K ′) for several cases of embedded pairs. For
a given point x = (x1, . . . , xn) ∈ R

n
+, we denote by xmin and xmax its smallest and

greatest entries, respectively. Similarly, for X ∈ Kn, λmin and λmax denote the small-
est and greatest eigenvalues, respectively. Let us recall that λmax = max|u|=1(Xu, u)
and λmin = min|u|=1(Xu, u). We write Kϕ for the Lorentz cone of angle ϕ < π

2 .

Proposition 2.13. If R
n
+,c =

{
x ∈ R

n
+

∣∣ xmax ≤ cxmin

}
, then

β(Rn+,R
n
+,c) = c2;

if Kn,c =
{
X ∈ Kn

∣∣ λmax ≤ cλmin

}
, then

β(Kn,Kn,c) = c2;

for two coaxial Lorentz cones Kϕ and Kψ (ϕ > ψ), we have

β(Kϕ,Kψ) =

(
sin(ϕ+ ψ)

sin(ϕ− ψ)

)2

.

The proof of Proposition 2.13 is in Appendix B.
Note that if all entries of a matrix A are positive and in each column the ratio

between the greatest and the smallest elements does not exceed c, then A(Rn+) ⊂ R
n
+,c.

This yields, in particular, that A possesses an invariant cone K ′ = A(Rn+) contained
in R

n
+,c.
Corollary 2.14. If all matrices of a set M are positive and in each column of

any matrix the ratio between the greatest and the smallest elements does not exceed
c, then M has an invariant pair for which β ≤ c2. This pair is K = R

n
+, K

′ =
conv

{
A(Rn+)

∣∣ A ∈ M}
.

If a matrix A with an invariant cone K is such that AK ⊂ intK, then (K,AK)
is an invariant pair for A for which β < ∞. If a set of such matrices M is compact,
we see that the cone K ′ = conv

{
AK

∣∣ A ∈ M}
is embedded in K, and so, all such

sets admit a constant β < ∞. Indeed, by contradiction, let us suppose that we have

a sequence xi, yi, x
′
i, y

′
i, xi, yi ∈ K, x′i, y

′
i ∈ K ′ such that

|xi−y′i|
|xi−x′

i| tends to ∞. We can

suppose (by scaling the vectors) that the vectors xi belong to the unit ball. Thus,
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by compactness of the unit ball, there is a subsequence of xi that tends to some unit
vector x. Now, since x 	∈ K ′, xi−x′i is bounded away from zero, and thus the points y′i
cannot be bounded. This means, again by compactness, that there is a subsequence
of the directions yi − xi which tends to the direction of an extremal ray of K ′. This
direction is thus in the interior of K. But this is impossible because the vector yi−xi
cannot belong to K, since xi, yi belong to its boundary.

Corollary 2.15. If a compact set of matrices M has an invariant cone K such
that AK ⊂ intK for all A ∈ M, then it has an embedded pair (K,K ′) for which
β(K,K ′) < ∞. Consequently, there is an algorithm to approximate its joint spectral
subradius up to any required accuracy.

3. Discussion. In this section we first briefly describe how our results can be
implemented, and we comment on the approximation they guarantee. We then present
some particular cases that can improve in a critical way our algorithms in practice.
Subsection 3.2 deals with the transposition of the initial set of matrices. Subsection 3.3
presents some favorable cases where the joint spectral characteristic can be computed
exactly; while in subsection 3.4 we show how it is sometimes possible to construct a
wider common invariant cone than the classical ones (like R

n
+ or Kn).

3.1. Implementation. For a given set M we want to find numbers ρ̂∗ and ρ̌∗
such that

∣∣ρ̂∗−ρ̂∣∣/ρ̂ ≤ ε and
∣∣ρ̌∗−ρ̌∣∣/ρ̌ ≤ ε. If M has an invariant cone with parameter

α (or an invariant pair with parameter β), then Mk has the same cone (or the same
invariant pair). If the set M does not have an invariant cone, one can always invoke
Proposition 2.2 in order to obtain the corresponding set M̃ that leaves Kn invariant.
Applying now Theorems 2.6 and 2.12 for the set Mk, we obtain the following.

Corollary 3.1. If a set M has an invariant cone K with parameter α, then for
any k ∈ N

(3.1) α1/k
[
σ̂(Mk)

]1/k ≤ ρ̂(M) ≤ [
σ̂(Mk)

]1/k
.

If, in addition, M has another invariant cone K ′ embedded in K, then

(3.2)
[
σ̌(Mk)

]1/k ≤ ρ̌(M) ≤ β1/k
[
σ̌(Mk)

]1/k
,

where β = β(K,K ′).
This result ensures that ρ̂∗ = [σ̂(Mk)]

1/k gives the desired accuracy ε whenever

k ≥ ln 1
α

ε . Moreover, by Theorem 2.7, α ≥ 1
n for any cone, and, hence, for any set with

an invariant cone, it suffices to take k ≥ lnn
ε . For the joint spectral subradius, we take

ρ̌∗ = [σ̌(Mk)]
1/k. This gives the desired approximation for k ≥ ln β

− ln(1−ε) . Note that

this value does not exceed lnβ
ε . Therefore, to compute the joint spectral subradius, it

suffices to take k ≥ ln β
ε . Let us remember, though, that the parameter β depends on

the cones, and, in contrast to α, it cannot be uniformly estimated for all cones in R
n.

The quantities σ̌(Mk) and σ̂(Mk) are easy to compute by applying conic pro-
gramming methods (together with the bisection method). For instance, let us consider
an arbitrary set M of matrices and lift it using the semidefinite lifting (2.2) to a set
M̃. Now, σ̂(M̃k) is given by the following:

(3.3)
min r
X ≥Kn I,
ATXA ≤Kn rX, A ∈ Mk.
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By a simple bisection algorithm, one can find r̄ = σ̂(M̃k). Since ρ̂(M̃) =
[
ρ̂(M)

]2
,

invoking Corollary 3.1 and taking into account that α(Kn) = 1
n (Proposition 2.9), we

obtain (r̄)
1
2kn− 1

2k ≤ ρ̂(M̃) ≤ (r̄)
1
2k . Hence, the value (r̄)

1
2k approximates ρ̂(M) with

the relative precision ε ≤ lnn
2k .

This is nothing else but the method of the ellipsoidal norm for computing the
joint spectral radius presented in [2, 10]. In this sense, the ellipsoid method is an
important special case of our technique with the invariant cone S+

n . We have deduced
the main inequality and the estimate of the accuracy using the conic radius, which is
a completely different way from that used in [2, 10].

3.2. Transposition. For a given set M we denote by MT the set of transpose
matrices. It is well known that the sets M and MT have the same joint spectral
radius ρ̂ [24], whereas their conic radii σ̂(M) and σ̂(MT ) are a priori different.

This is, for instance, the case for the following set of matrices: let M = {Ai},
where Ai is the matrix whose entries are all equal to zero, except the ith row whose
entries are all equal to one. It is not difficult to see that M has a joint spectral radius
equal to one, but the conic radius σ̂(M) is equal to n. In conclusion, the lower bound
σ̂(M)/n is tight in this case. However, σ̂(MT ) = 1 = ρ̂(M), and the estimate gives
the exact value of the joint spectral radius for the transpose set.

Therefore, combining both values σ̂(M) and σ̂(MT ) to estimate the joint spectral
radius by Theorem 2.6, we can obtain better results. One could hope that the following
equation holds:

(3.4) (1/f(n))min {σ̂(M), σ̂(MT )} ≤ ρ̂(M),

where f(n) < n. Unfortunately, it appears that the growth f(n) ≈ n cannot be
avoided as shown by the set

M′ =

{(
Ai 0
0 ATj

)
∈ R

2n×2n : 1 ≤ i, j ≤ n

}
,

where Ai are defined as above. This set has joint spectral radius equal to one, but

min {σ̂(M′), σ̂(M′T )} = n.

The previous example proves the following proposition.
Proposition 3.2. The function f in (3.4) cannot be chosen smaller than n/2,

where n is the dimension of the matrices.
The same holds for the subradii ρ̌ and σ̌ : for some sets M, taking the transpose

of the set helps improve the estimates significantly. However, a construction similar
to the one above shows that, in general, one cannot hope to improve the bounds by
considering max {σ̌(M), σ̌(MT )}.

Also, one could ask the same questions for other invariant cones. For instance, by
applying the semidefinite lifting (2.2) to the matrices in M, one gets another set of
matrices M̃ that leaves Kn invariant. Thus, we could as well apply the lifting to MT

to get another estimate. Even though the obtained matrices are not the transpose of
the initial matrices, this estimate will not be better, as shown in Appendix C.

3.3. Exact computation of the joint spectral quantities in special cases.
Theorems 2.6 and 2.12 make it possible not only to estimate the joint spectral quan-
tities but also to find their precise values in some favorable cases.

Proposition 3.3. Let a set M possess an invariant cone K; let also k ∈ N, A ∈
Mk, and v ∈ K be the Perron–Frobenius eigenvector of the matrix A : Av = rv.
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(a) If v ∈ intK and rv ≥K Bv for all B ∈ Mk, then ρ̂(M) = r.
(b) If rv ≤K Bv for all B ∈ Mk, then ρ̌(M) = r.
Proof. If v ∈ K is the Perron-Frobenius eigenvector of the matrix A ∈ Mk with

eigenvalue r, then (see (1.3) and (1.4))

ρ̌ ≤ r1/k ≤ ρ̂.

Now, the hypothesis in (a) implies that σ̂ ≤ r1/k, and the hypothesis in (b) implies
that r1/k ≤ σ̌. It remains to combine this with Theorems 2.6 and 2.12.

This proposition provides sufficient conditions for the joint spectral radius to
attain its value at some finite product A ∈ Mk.

3.4. Constructing wider invariant cones. If a cone K is invariant, but in
practice does not deliver a good approximation of the joint spectral quantities, it
might be possible to construct a wider cone that gives better approximations.

Let Km be the closure of the set
{
x ∈ R

n
∣∣Cx ∈ K for all C ∈ Mm

}
. Clearly, Km

is an invariant cone of M containing K. If one defines the order in R
n by the cone Km

and the constants σ̂ and σ̌ by formulas (2.1) with respect to this cone, one gets the
following proposition, which generalizes Proposition 3.3.

Proposition 3.4. Let a set M possess an invariant cone K; let also k ∈ N, A ∈
Mk, and v ∈ K be the Perron–Frobenius eigenvector of the matrix A. Then

(a) if v ∈ intK and there is m ∈ N such that C(A−B)v ∈ K for all B ∈ Mk, C ∈
Mm, then ρ̂(M) = [ρ(A)]1/k;

(b) if there is m ∈ N such that C(B −A)v ∈ K for any B ∈ Mk, C ∈ Mm, then
ρ̌(M) = [ρ(A)]1/k.

4. Applications. In this section we briefly describe applications where the tech-
niques developed in this paper prove to be useful. We have chosen two applications
in number theory because this field has provided many sets of matrices that can be
used as benchmarks. We start with a recent application: the computation of the
asymptotics of overlap-free words.

4.1. Overlap-free words. This problem arises in combinatorics on words (for
an introduction to combinatorics on words, see [27]), where one is interested in the
number ul of binary overlap-free words of length l. An overlap is a word on the
alphabet {a, b} of the form xuxux, where x is a or b and u is a word that can be
empty. For instance, the word baabaab is an overlap. An overlap-free word is a word
that does not contain any overlap. Let

r− = lim inf
n→∞

log un
logn

, r+ = lim sup
n→∞

log un
logn

.

The following result ([25], see also [6, 13]) allows us to express the asymptotics of ul
in terms of joint spectral characteristics.

Theorem 4.1. There exist two nonnegative matrices A0, A1 ∈ {0, 1, 2}20×20 such
that

r+ = log2 ρ̂({A0, A1}),
r− = log2 ρ̌({A0, A1}).

Thanks to this result, the following estimates appear in [25]:

1.2690 < r− < 1.2736 and 1.3322 < r+ < 1.3326.
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The inequality 1.2690 < r− was obtained from Theorem 2.12. Unfortunately, no
embedded invariant pair is known for A0 and A1, and so, it is not possible to obtain
an upper bound on r− with Theorem 2.12. However, it can be checked by extensive
search that the product A10

1 A0 satisfies the following:

r− ≤ log2
[
(ρ(A10

1 A0)
1/11

]
= 1.2735 . . . .

One can verify numerically that this product gives the best possible upper bound
among all matrix products of length less than 14. The upper bound on r+ can be
found by solving the semidefinite program (3.3) with k = 14, while the lower bound
is obtained from the simple inequality

(4.1) ρ̂ ≥ [
ρ(A0A1)

]1/2
= 2.5179 . . . .

Remark that the accuracy of this estimate is 0.0003. As we have seen in section 3, in
order to ensure such an accuracy, one has to solve the semidefinite program (3.3) with
k = ln(n)/(2 · 0.0003) ≈ 5000, which is, of course, enormous. However, (4.1) shows
that the actual cost for obtaining such an accuracy is much lower.

4.2. Pascal’s rhombus. Recently, the question of the density of ones in Pascal’s
rhombus arose in number theory [20]. Pascal’s rhombus is a variation of the well-
known Pascal’s triangle in which each term is equal to the sum of four earlier terms
rather than two. The coefficients in Pascal’s rhombus arise from a linear recurrence
relation on polynomials: define p0(x) = 1, p1(x) = 1 + x+ x2, and

pn(x) = (1 + x+ x2)pn−1(x) + x2pn−2(x).

In [19] the authors show that this leads to a recurrence relation for the value vn of the
number of odd coefficients in pn(x). In turn, it is shown that the asymptotic growth
of vn can be expressed by the joint spectral quantities of the following two matrices:

(4.2) Σ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
1 0 2 0 0
0 0 0 0 0
0 1 0 0 1
0 0 0 2 1

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

1 0 2 0 0
0 0 0 2 1
1 1 0 0 0
0 0 0 0 0
0 1 0 0 0

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

More precisely,

lim sup
n→∞

log vn
logn

= log2 ρ̂({A0, A1}),

lim inf
n→∞

log vn
logn

= log2 ρ̌({A0, A1}).

In [19] the authors mention the difficulty of finding estimates for ρ̌({A0, A1}). It
was conjectured later [18] that ρ̌({A0, A1}) = (1 +

√
5)/2 = 1.61803 . . . . These two

matrices leave the positive orthant K = R
5
+ invariant, and so, one can try to obtain a

lower bound on ρ̌ with our technique. It appears, however, that this algorithm does
not provide a better lower bound than the trivial value 1. Nevertheless, when applied
to the transpose matrices, the algorithm works very well: we obtained the vector
x = (0.196, 0.229, 0.190, 0.190, 0.196), which is such that C(B− (1.618)12I)x ∈ R

+ for
any B ∈ M12, C ∈ M6. This implies (see Proposition 3.4) that ρ̌(M) ≥ 1.618, which
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is extremely close to the conjectured value. Note that a good upper bound on ρ̌ can
be obtained as follows: ρ̌ ≤ ρ(A3

0A
3
1)

(1/6) = 1.6376. It can be checked by extensive
search that this is the smallest averaged spectral radius among all products of length
less or equal to 18.

Concerning the joint spectral radius of these matrices, the methods developed in
this paper are not necessary, as it is easy to prove that ρ̂(Σ) = 2.

4.3. Euler’s binary partition function and generalizations. The binary
partition function is a longstanding research topic in number theory. For a given
d ∈ N ∪ {∞} the binary partition function b2,d(k) is defined as the total number of
different binary expansions k =

∑∞
j=0 dj2

j, where the “digits” dj take values from
the set {0, 1, . . . , d − 1}. For d = 2, obviously, b(k) ≡ 1. For d ≥ 3 the value b2,d(k)
grows as k → ∞, and the problem is to find the exponents of this asymptotic growth.
For various d this problem was studied by Euler [17], Mahler [28], de Bruijn [15],
Reznick [38], and others. There are certain relations of this problem with the theory
of refinement equations and subdivision algorithms [34].

The generalized partition function bm,d(k) is defined similarly as the total number
of different m-adic expansions k =

∑∞
j=0 djm

j , dj ∈ {0, 1, . . . , d− 1}.
Recently, it has been shown [32] that the asymptotic behavior of bm,d(k) as k → ∞

is ruled by the joint spectral quantities of certain sets of matrices Σm,d, with binary
entries. More precisely, for all pairs (m, d) ∈ N

2, there exist constants C1, C2, λ1, and
λ2 such that the following holds:

(4.3) C1 k
λ1 ≤ bm,d (k) ≤ C2 k

λ2 .

Denoting ρ̂m,d and ρ̌m,d as the joint spectral radius and subradius of Σm,d, respec-
tively, we have the relations

λ1 = logm ρ̂m,d,

λ2 = logm ρ̌m,d.

In [32], these joint spectral quantities are analyzed for m = 2 and for some small
values of d. To the best of our knowledge, no numerical analysis has been done for
other d and for m ≥ 3. Since the set Σm,d consists of binary matrices, it leaves the
positive orthant invariant; hence, we can apply algorithms from section 3. Take, for
example, m = 3, d = 14. It follows from [32] that

Σ3,14 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 0 0
0 1 1 1 1 0 0
0 1 1 1 1 1 0
0 1 1 1 1 1 0
0 0 1 1 1 1 0
0 0 1 1 1 1 1
0 0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 0 0
1 1 1 1 1 0 0
0 1 1 1 1 0 0
0 1 1 1 1 1 0
0 1 1 1 1 1 0
0 0 1 1 1 1 0
0 0 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 0
1 1 1 1 1 0 0
1 1 1 1 1 0 0
0 1 1 1 1 0 0
0 1 1 1 1 1 0
0 1 1 1 1 1 0
0 0 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.
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The set Σ3,14 leaves the cone R
n
+,2 =

{
x ∈ R

n
+

∣∣ xmax ≤ 2xmin

}
invariant, and

thus, combining Proposition 2.13 with Corollary 3.1, we have the following bounds
on the accuracy of the subradius approximation:

(4.4)
[
σ̌(Mk)

]1/k ≤ ρ̌(M) ≤ 41/k
[
σ̌(Mk)

]1/k
.

For k = 9 the theoretical ratio between the upper and lower bound is 41/9 = 1.1665 . . . .
The algorithm with k = 9 provides

4.525 ≤ ρ̌.

Since ρ̌ ≤ ρ(A0A1)
1/2 = 4.6105, the actual ratio with k = 9 is at most 4.6105/4.525 =

1.02, which is much better than the predicted 1.1665.
For the joint spectral radius, applying the algorithm with k = 9, we find an upper

bound equal to 4.8. Note that ρ ≥ ρ(A1A2)
1/2 = 4.72. Hence, the approximation

ratio is actually equal to 4.8/4.72 = 1.02, which is once again far better than the
theoretical ratio 71/9 = 1.24 provided by Corollary 3.1. Thus, for m = 3, d = 14 we
have

4.525 ≤ ρ̌(Σ3,14) ≤ 4.6105 ; 4.72 ≤ ρ̂(Σ3,14) ≤ 4.8

Let us consider two other examples of pairs (m, d).
For m = 3, d = 7 we have three 3× 3-matrices. Our method with k = 6 gives

2.4142 ≤ ρ̂(Σ3,7) ≤ 2.416 .

The joint spectral subradius is known to be equal to 2 in this case.
For m = 4, d = 15 we have four 5× 5-matrices. Our method with k = 6 gives

3.7 ≤ ρ̌(Σ4,15) ≤ 3.7321; 3.791287 ≤ ρ̂(Σ4,15) ≤ 3.791288 .

5. Conclusion. In this paper we have pursued several goals. First, even though
the joint spectral radius has received much attention in the last decades and several
algorithms have been proposed to approximate it, to the best of our knowledge, we
provide here the first approximation algorithm for the joint spectral subradius.

Second, we propose a general framework (conic optimization) that unifies several
of the known algorithms for the joint spectral radius and provides simple proofs of
their convergence rate. This framework also allows for new algorithms for computing
the joint spectral radius when the matrices share an invariant cone.

Third, we illustrate the effectiveness of our algorithms on several examples. The
algorithms perform usually far better than predicted, and some tricks are sometimes
useful to obtain good approximations. An example of such a trick is matrix transpo-
sition: the example in subsection 4.2 shows that effect. Regarding this transposition
trick, we showed moreover (subsection 3.2) that it cannot guarantee to always pro-
vide a better accuracy for our algorithms. In practice, our results allow one to find
accurate estimates very rapidly. As some parameters can be tuned, this allows for
“trial and error” approaches that prove useful in practice.

We leave some open questions: We have shown on the examples that the accuracy
is always better than predicted. Why is this so? Can one prove better convergence
rates for some sets of matrices? How can one find an embedded pair? Is there a weaker
condition than the presence of an embedded pair, which seems a bit restrictive?
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Appendix A. Proof of Proposition 2.9.
Proof. Any n-hedral cone is affinely equivalent to the positive orthant Rn+, so we

take K = R
n
+. Theorem 2.7 yields α(K) ≥ 1

n ; it remains to establish the opposite
inequality. Let G =

{
x ∈ R

n
+

∣∣(e, x) ≤ 1
}
, where e ∈ R

n
+ is the vector of ones. If

v ≥Rn
+
G, then each coordinate of the point v is at least 1; hence, (e, v) ≥ n. Since

αv ∈ G, it follows that (αv, e) ≤ 1, and hence α ≤ 1
n .

For the Lorentz cone we repeat the proof of Theorem 2.7 and note that any
bounded cross section S in this case is an ellipsoid for which τ(S) = 1. Taking now
v = 2z, where z = grS, we show in the same way that v ≥K G, and therefore,
α(K) ≥ 1

2 . It remains to prove that α(K) ≤ 1
2 . This inequality holds for any cone,

not necessarily for a Lorentz one. Indeed, let G be a bounded intersection of K with
a hyperplane H. If for some point v ≥K G and a number γ > 1

2 we have z = γv ∈ G,

then |v−z|
|z| < 1. Therefore, the set S′ = (v−K)∩H is homothetic to the set S = K∩H

with respect to the point z with a coefficient smaller than 1. Hence, there exists a
point x ∈ S \ S′. Clearly, x ∈ G and x /∈ (v − K), which violates the assumption
v ≥K G. Similarly, for the cone Kn it will suffice to show that τ = 1

n−1 for any of
its bounded cross sections. Let us take such a cross section S, made by a hyperplane
H =

{
X ∈ Kn | 〈X,B〉

= n
}
, where B ∈ Kn and, by definition,

〈
X,B

〉
= tr(XB).

Since S is bounded, it follows that B is positive definite. Otherwise, there is a
matrix V ∈ Kn such that

〈
V,B

〉
= 0 (this is seen easily if we diagonalize B in an

orthonomal basis); in this case X + tV ∈ Kn ∩H , and so, S is not bounded.
Consider any matrix C for which CCT = B. Since B is positive definite, it follows

that C is nondegenerate. Therefore the map X �→ CTXC is an affine isomorphism of
the cone Kn, taking that hyperplane to H =

{
X ∈ Kn | 〈X, I〉 = n

}
, where I is the

identity matrix in R
n. Indeed,

〈
X,B

〉
= tr(XB) = tr(XCCT ) = tr(CTXC) =

〈
CTXC , I

〉
.

Therefore,

〈
X,B

〉
= n ⇔ 〈

CTXC , I
〉

= n.

Thus, all cross sections of the cone Kn are affinely equivalent to the set S ={
X ∈ Kn

∣∣ tr(X) = n
}

for which grS = I. Let I = tX + (1 − t)Y for some
X,Y ∈ ∂Kn and t ∈ [0, 1]. There is an orthogonal basis in which the matrix X has a
diagonal form X = diag

(
x1, . . . , xn

)
. Whence in that basis Y = diag

(
y1, . . . , yn

)
.

Let x = (x1, . . . , xn), y = (y1, . . . , yn) be the corresponding points in R
n
+. Since

tr(X) = tr(Y ) = n, we see that x and y are both from the (n − 1)-dimensional
simplex Δ =

{
u ∈ R

n
+

∣∣ (e, u) = n
}
with the center e. If X,Y ∈ ∂Kn, then x, y ∈ ∂Δ.

Since e = tx + (1 − t)y and τ(Δ) = 1
n−1 , it follows that t ≥ 1

n−1 . Thus, τ(S) ≥ 1
n−1

from which the theorem follows.

Appendix B. Proof of Proposition 2.13.
Proof. Consider first the case of positive orthant Rn+. Let a line intersect this cone

by a segment [x, y] and the cone R
n
+,c by a segment [x′, y′]. Since the points x, y lie

on the boundary of Rn+, it follows that each of them has at least one zero coordinate.
Without loss of generality it can be assumed that x1 = 0. In this case y1 	= 0;
otherwise, the segment [x, y] does not intersect the cone R

n
+,c. Hence, without loss of

generality we assume y2 = 0. Since [x′, y′] ⊂ [x, y], we have x′2 > y′2. Furthermore,
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x′
2

x′
1
≤ c and

y′1
y′2

≤ c because x′ and y′ are in R
n
+,c. Therefore,

|x− y′|
|x− x′| =

y′1
x′1

=
y′1
y′2

y′2
x′1

<
y′1
y′2

x′2
x′1

≤ c2,

which implies β ≤ c2.
This upper bound is sharp. Indeed, for the points x = (0, c, . . . , c), x′ =

(1, c, . . . , c), and y′ = (c2, c, . . . , c), we have |x−y′|
|x−x′| = c2. Take now a sequence of

points yk ∈ ∂Rn+ for which the direction of the vector yk − x converges to the direc-
tion of x′ − x = (1, 0, . . . , 0) as k → ∞. For the segments [x, yk] the corresponding
ratio tends to c2 as k → ∞.

The proof for the pair Kn,Kn,c is similar. Let a line intersect Kn by a segment
[X,Y ] and the cone Kn,c by a segment [X ′, Y ′]. Since the matrices X,Y belong to
the boundary of the cone Kn, it follows that there are vectors a, b ∈ R

n, |a| = |b| = 1,
such that (Xa, a) = (Y b, b) = 0. Note that a 	= b; otherwise, (X ′a, a) = 0, which is
impossible because X ′ ∈ intKn. We have (X ′b, b) > (Y ′b, b), and therefore,

|X − Y ′|
|X −X ′| =

(Y ′a, a)
(X ′a, a)

=
(Y ′a, a)
(Y ′b, b)

(Y ′b, b)
(X ′a, a)

<
(Y ′a, a)
(Y ′b, b)

(X ′b, b)
(X ′a, a)

≤ c2

from which we deduce β ≤ c2. This bound is sharp. To see this we take the matrices
X = diag(0, c, . . . , c), X ′ = diag(1, c, . . . , c), Y ′ = diag(c2, c, . . . , c) and applying the
same argument as above for the cone R

n
+, prove that β(Rn+,R

n
+,c) = c2.

The case of the Lorentz cone is elementary. For the dimension n = 2 the inequality
|x−y′|
|x−x′| ≤

( sin(ϕ+ψ)
sin(ϕ−ψ)

)2
is a simple consequence of the sine law. In case n > 2 we consider

the restriction to the two-dimensional plane spanned by the vectors x and y. The
crosssections of the cones Kϕ and Kψ by this plane are also coaxial Lorentz cones

of some angles ϕ′ and ψ′, respectively, for which, moreover, sin(ϕ′+ψ′)
sin(ϕ′−ψ′) ≤ sin(ϕ+ψ)

sin(ϕ−ψ) .
Hence, the general case follows from the case n = 2.

Appendix C. Lifting the transpose set does not improve the estimate.
By applying the semidefinite lifting (2.2) to the matrices in M, one gets a set of
matrices M̃ that leaves Kn invariant. Thus, we could as well apply the lifting to MT

to get another estimate. Even though the obtained matrices are not the transpose of
the initial matrices, this estimate will not be better, as shown by the next proposition.

Proposition C.1. Let M ⊂ R
n×n be a set of matrices, and M̃ ⊂ Kn(n−1)/2 be

the semidefinite lifting of M. Then σ̂(M̃) = σ̂(M̃T ); that is, applying the semidefinite
lifting to M or MT does not change the quality of approximation of σ̂.

Proof. Recall that
√
σ̂(M̃) can be interpreted as the solution of the following

optimization problem:

min
||·||

γ(C.1)

||A|| ≤ γ for all A ∈ M,

where the minimum is taken over all the ellipsoidal norms. Let | · | and || · || be the
corresponding vector norm and matrix norm, respectively:

|x| = (xTSx)
1/2
, σ̂(M̃) = max {||A|| : A ∈ M}
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for a positive definite matrix S. The corresponding dual norm is still an ellipsoidal
norm, defined by the inverse of the positive definite matrix S,

|y|∗ = max
xTSx=1

yTx = (yTS−1y)1/2.

Now, the induced matrix norm || · ||∗ satisfies the following relation:

(C.2) max
A∈MT

{||A||∗} ≤ max
A∈M

{||A||}.

Indeed,

||AT ||∗ = max
|y|∗=1

|AT y|∗,(C.3)

= max
|y|∗=1

max
|x|=1

yTAx,(C.4)

≤ max
|y|∗=1

max
|x|=1

|Ax|.yT (Ax/|Ax|),(C.5)

≤ ||A||.(C.6)

Since the same reasoning holds by inverting the roles of | · | and | · |∗, the result is
proved.
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