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ABSTRACT

A new spatial unmixing algorithm for hyperspectral images is stud-

ied. This algorithm is based on the well-known linear mixing model.

The spectral signatures (or endmembers) are assumed to be known

while the mixture coefficients (or abundances) are estimated by a

Bayesian algorithm. As a pre-processing step, an area filter is em-

ployed to partition the image into multiple spectrally consistent con-

nected components or adaptative neighborhoods. Then, spatial cor-

relations are introduced by assigning to the pixels of a given neigh-

bourhood the same hidden labels. More precisely, these pixels are

modeled using a new prior distribution taking into account spectral

similarity between the neighbors. Abundances are reparametrized

by using logistic coefficients to handle the associated physical con-

straints. Other parameters and hyperparameters are assigned appro-

priate prior distributions. After computing the joint posterior distri-

bution, a hybrid Gibbs algorithm is employed to generate samples

that are asymptotically distributed according to this posterior distri-

bution. The generated samples are finally used to estimate the un-

known model parameters. Simulations on synthetic data illustrate

the performance of the proposed method.

1. INTRODUCTION

Spectral unmixing is an important step for hyperspectral image ana-

lysis. It aims at estimating the spectral signatures of the pure materi-

als (or endmembers) present in any hyperspectral image pixel and its

corresponding fractions (or abundances) usually assuming that the

mixture is linear. More precisely, this linear mixture model (LMM)

can be expressed as

yp =Map + np, (1)

where yp = [yp,1, . . . , yp,L]
T is the L-spectrum of the observed

pixel, M = [m1, . . . ,mR] is a known L × R matrix containing

the L-spectra of the endmembers, ap is the R × 1 abundance vec-

tor associated to the pixel p, R is the number of endmembers that

are present in the image and np is the independent and identically

distributed (i.i.d.) zero-mean Gaussian noise sequence with the same

variance s2 for each spectral band. Note that abundances satisfy pos-

itivity and sum-to-one constraints since they are proportions. Spec-

tral unmixing begins with the recovery of the endmembers using an

endmember extraction algorithm (EEA). EEAs are usually preceded

by a dimensionality reduction step using a feature reduction algo-

rithm such as Principal Component Analysis (PCA). In this work,

the endmembers are assumed to be known, extracted from a spectral

library or recovered by an EEA like the Minimum Volume Simplex

Analysis (MVSA) [1] or the well-known N-FINDR [2]. Once the

endmembers have been identified, the abundances are estimated in

the so-called “inversion” step. Inversion algorithms are based on op-

timization theory like the FCLS [3], on Bayesian inference in [4] or

on a fuzzy membership process [5]. The last mentioned approach

employed Markov Random Fields (MRFs) to take into account spa-

tial correlations between image pixels and inspired the hierarchical

Bayesian MRF-based model developed in [6] yielding a joint un-

mixing and segmentation algorithm. However, a major drawback of

MRF comes from the resulting high computational complexity.

In this paper, it is proposed to exploit the spatial correlations in a

different way. The new joint segmentation and unmixing procedure

is based on an adaptative neighborhood building process that has

been developed for the classification of hyperspectral images [7].

These neighborhoods, regrouping connected pixels that are spec-

trally consistent, are built by applying a self-complementary area

filter [8] on the hyperspectral image. After this pre-processing step,

an implicit classification is carried out by assigning class labels to

each neighborhood. The classes not only share the same abundance

means and covariances but also have similar spectral characteristics.

Since the pixels belonging to a given neighborhood must belong to

the same class, the spatial dependencies are modeled by assigning

to the class labels a prior distribution depending on the spectrum

similarity between these neighborhoods. Then, appropriate prior

distributions with unknown means and variances depending on the

pixel class are chosen for the abundances which are reparametrized

in the same way as in [6]. The associated hyperparameters are as-

signed non-informative prior distributions according to a hierarchi-

cal Bayesian model. The joint posterior distribution of the unknown

parameters and hyperparameters is finally computed from the like-

lihood and the prior distributions. However, deriving the Bayesian

estimators such as the MMSE and MAP estimators is too difficult

from this posterior distribution. Thus, following the strategy in [6],

we propose to use Markov Chain Monte Carlo (MCMC) methods to

generate samples asymptotically distributed according to this distri-

bution. These samples are then used to estimate the unknown model

parameters.

The paper is organized as follows. Section 2 presents the pre-

processing step that is used to build the adaptative neighborhoods.

In section 3, we present the modified Bayesian model from [6] while

the resulting hybrid Gibbs algorithm is given in section 4. Section 5
reports simulation results on synthetic and real data.

2. PRE-PROCESSING STEP

2.1. Adaptative neighborhood

In order to build the adaptative neighborhood on hyperspectral data,

the authors in [7] employed a flattening procedure stemming from

the self-complementarity property [8]. Self-complementarity is an

important property in morphological theory and allows the structure



of interest to be preserved independently of their contrasts while re-

moving small meaningless structures (e.g., cars, trees,...) in very

high resolution remote sensing images. The algorithm developed by

Soille in [8] exploits this property in a two step procedure that di-

vides the image into flat zones, i.e., a region where neighboring pix-

els have the same values, satisfying any area criterion λ. This proce-

dure is repeated until the desired minimal flat zone size λ is obtained.

Note that this self-complementary area filter cannot be directly used

on hyperspectral images since the complete ordering property that

any morphological operator needs are absent from these data. The

proposed strategy in [7] employs a PCA to reduce the dimensionality

of the data. Then, the area filtering is computed on the data projected

on the first principal component space, i.e., where the corresponding

covariance matrix eigenvalue is the greatest. The resulting flat zones

regroup pixels that are spectrally consistent and are therefore con-

sidered as neighbors.

As stated in the introduction, the main contribution of this pa-

per consists of using the adaptative neighborhood building methods

developed in [7] as a pre-processing step for a spatial unmixing al-

gorithm. The neighborhoods resulting from the method derived in

[7] are considered for each band of the data. Then, spatial infor-

mation is extracted from each of the neighborhoods by computing

the corresponding vector median value. More precisely, if we de-

note the number of neighborhoods by S and the sth neighborhood

by Ωs (s = 1, . . . , S), then the vector median value for this neigh-

borhood is defined as

Υs = med(Y Ωs
), (2)

where Y Ωs
represents the matrix of observed pixels belonging to

the neighborhood Ωs and dim(Υs) = L is the number of spectral

bands. As explained in [7], the median vector ensures spectral con-

sistency as opposed to the mean vector.

2.2. Image segmentation

As in [6], it is assumed in this paper that the classes contain neigh-

boring pixels that have a priori close abundances. This spatial de-

pendency is modelled using the resulting adaptative neighborhoods

since they regroup spectrally consistent pixels. Thus, the pixels of

a given neighborhood are considered belonging to the same class,

since the spectral values are depending on the abundances. In other

words, if we let C1, . . . , CK defining the classes, a label vector of size

S×1, S ≥ K denoted as z = [z1, . . . , zS ]
T

with zs ∈ {1, . . . ,K}
is introduced to identify the class to which each neighborhood Ωs

and its underlying pixels belong, i.e., zs = k if and only if Ωs ∈ Ck.

3. BAYESIAN MODEL

In this section, a Bayesian model inspired by [6] is briefly presented.

3.1. Likelihood

The abundances ap (p = 1, . . . , P ) are assumed to depend on logis-

tic coefficients tp (as in [5],[6]), ensuring positivity and sum-to-one

constraints, in such a way that

ar,p =
exp(tr,p)

∑R

r=1 exp(tr,p)
, r = 1, . . . , R. (3)

The noise variances are the same for all the image pixels. Conse-

quently, the unknown parameter vector is Θ = {T , z, s2} where

s2 is the noise variance, z is the label vector and T = [t1, . . . , tP ]

with tp = [t1,p, . . . , tR,p]
T

is the logistic coefficient matrix used

for the abundance reparametrization. The additive noise consid-

ered as white Gaussian allows us to write for a given pixel1 p (p =
1, . . . , P ) yp|tp, s2p ∼ N

(

Map(tp), s
2
pIL)

)

.

The complete expression of the likelihood for a given pixel p

and for the whole image is detailed in [6], as for the prior distribu-

tions for the logistic coefficients, noise variances and the associated

hyperparameters. Only the label prior distribution which is different

from that of [6] will be presented in the sequel.

3.2. Label prior

In this paper it is assumed that neighborhoods which have similar

spectral median ΥΩs
should belong to the same class, thus extend-

ing the spatial dependency to the whole image and not only the lo-

cally connected pixels. More precisely, considering two neighbor-

hoods Ωs and Ωt, we introduce the distance Ds,t = ‖Υs − Υt‖2
(‖x‖ =

√
xTx being the standard ℓ2 norm) and we define Vτ (t) the

set of index t such that Ds,t < τ where τ is a threshold tuning the

degree of spectral similarity between two neighborhoods. The prior

distribution for the label zs of the neighborhood Ωs is

P (zs = k|z-s) ∝ exp



κ
∑

t∈Vτ (t)

δ(zs − zt)



 , (4)

where ∝ means “proportional to”, δ(·) is the Kronecker function, κ

is a parameter tuning the degree of granularity of the neighborhood

classes and z-s = [z1, . . . , zs−1, zs+1, . . . , zS ]. The Hammersley-

Clifford theorem allows us to demonstrate that the joint prior distri-

bution for the label vector z is well defined and expressed as (see

Appendix)

P (z) ∝ exp



κ

S
∑

s=1

∑

t∈Vτ (t)

δ(zs − zt)



 . (5)

3.3. Joint distribution

We first recall the hyperparameters from [6] that are grouped into

the vector Φ =
{

Ψ,Σ, υ2, δ
}

where Ψ = [ψ1, . . . ,ψK ], Σ =
{

diag
(

σ2
r,1

)

, . . . , diag
(

σ2
r,K

)}

are associated to the logistic coef-

ficient matrix T , δ is associated to the noise variance and υ2 to Ψ.

Using Bayes theorem, the joint posterior distribution can be obtained

by replacing the former prior label distribution by (5). By denoting

nk = card(Ik), this leads to

f(Θ,Φ|Y ) ∝
(

1

s2

)LP

2
P
∏

p=1

exp

[

−
‖yp −Map(tp)‖2

2s2

]

× exp



κ

S
∑

t=1

∑

t∈Vτ (t)

δ(zs − zt)





× δν−1

(s2)ν+1 exp

(

− δ

s2

) P
∏

p=1

(

1

υ2

)RK

2
+1

×
∏

r,k

1

σ
nk+1
r,k

exp

[

−
(

ψ2
r,k

2υ2
+

2γ +
∑

p∈Ik
(tr,p − ψr,k)

2

2σ2
r,k

)]

(6)

1Note that the dependence of the abundance vector ap on the logistic
coefficient vector tp through (3) has been explicitly mentioned by denoting
ap = ap(tp).



This distribution is too complex to easily compute the MMSE

and MAP estimators of Θ. Thus we propose to use a Hybrid Gibbs

sampler inspired by [6], generating samples that are asymptotically

distributed according to (6). These samples are then used to approx-

imate the Bayesian estimators.

4. HYBRID GIBBS ALGORITHM

In a Gibbs sampler, samples are iteratively drawn from the full con-

ditional distributions associated to the posterior of interest. Since the

conditional distributions of the parameters and hyperparameters are

the same as in [6] except for z, we will only derive the z conditional

distribution in this section.

Using the same algorithm as in [6], the conditional distribution

for each neighborhood label is computed using the Bayes relation.

For a given neighborhood Ωs, we define Is as the set of pixel in-

dexes belonging to Ωs. The conditional distribution of zs is then

P [zs = k|z-s,T s,ψk,Σk] ∝ f(zs|z-s)
∏

i∈Is

f(ti|ψk,Σk),

where Σk = diag
(

σ2
r,k

)

and T s is the logistic coefficient matrix

reduced to the pixel index included in the neighborhood Ωs. Since

the label of a given neighborhood is the same for all pixels, it makes

sense that every corresponding logistic coefficient contributes to the

conditional distribution of zs. The complete expression of the con-

ditional distribution is

P [zs = k|z-s,T s,ψk,Σk] ∝ exp



κ
∑

t∈Vτ (t)

δ(zs − zt)





×
∏

i∈Is

f(ti|ψk,Σk), (7)

where f(ti|ψk,Σk), is given in [6]. Note that sampling from this

conditional distribution can be achieved using the same method as

in [6], i.e., by drawing a discrete value in the finite set {1, ...,K}
with the normalized probabilities (7). As mentioned above, the con-

ditional distributions for the other parameters can be found in [6]

and will not be detailed in this article for conciseness. After defining

the neighborhoods and extracting the median vector, the proposed

hybrid Gibbs sampler iteratively generates NMC samples asymptoti-

cally distributed according to the conditional distributions. The first

generated samples Nbi belonging to the so-called burn-in period are

ignored whereas the last samples are used to estimate the unknown

model parameters and hyperparameters. The estimates of the class

labels are obtained using the MAP estimator approximated by re-

taining the samples that maximizes the posterior conditional proba-

bilities of z. Then, the abundances are estimated conditionnally on

these MAP estimates using the MMSE estimator, approximated by

averaging over the NMC −Nbi.

5. SIMULATION RESULTS

We consider a 25 × 25 synthetic image generated with K = 3 dif-

ferent classes. The image contains R = 3 mixed components whose

spectra (L = 413 spectral bands) have been extracted from the spec-

tral libraries distributed with the ENVI package [9] and represent

construction concrete, green grass and micaceous loam. A label map

shown in Fig.1 (left) has been generated using a Markov random

field with a granularity coefficient β = 2. Then, abundances have

been generated using different means and variances for each class

(see Table 1 for the actual values). Fig. 2 (top) depicts the generated

abundance maps. Note that a black (resp. white) pixel indicates a

weak (resp. strong) value of the abundance coefficient. The noise

variance has been fixed to s2 = 0.001 leading to a signal-to-noise

ratio of 20dB. The neighborhoods have been built with a minimal

flat zone size parameter λ = 5. The threshold for the norm of the

difference between the medians Ds,t is equal to τ = 5 × 10−3 and

the granularity parameter has been set to κ = 1.

Fig. 1. Left: original labels. Right: labels estimated by the proposed

hybrid Gibbs sampler.

Fig. 2. Top: abundance maps of the 3 pure materials for LMM.

Bottom: abundance maps of the 3 pure materials estimated by the

proposed Gibbs sampler (from left to right: construction concrete,

green grass, micaceous loam).

The classification map obtained from the MAP estimates of the

label samples is depicted in Fig. 1 and is in good agreement with

the actual one. Conditionnally to these MAP estimates, the MMSE

estimates of the abundances are given in Fig. 2 and the estimated

values of the abundance means and variances are reported in Table 1.

The estimated classes, abundance coefficients and abundance mean

vectors estimated by our algorithm are clearly in accordance with

the actual values of these parameters.

Table 1. Actual and estimated abundance mean and variance

(×10−3) in each class.

Actual values Estimated values

Class 1
E[ap, p∈I1

] [0.6, 0.3, 0.1]T [0.58, 0.29, 0.13]T

Var[ap,r, p∈I1
] [5, 5, 5]T [6.2, 3.9, 7.9]T

Class 2
E[ap, p∈I2

] [0.3, 0.5, 0.2]T [0.31, 0.49, 0.2]T

Var[ap,r, p∈I2
] [5, 5, 5]T [5.8, 5.2, 8.9]T

Class 3
E[ap, p∈I3

] [0.3, 0.2, 0.5]T [0.29, 0.2, 0.5]T

Var[ap,r, p∈I3
] [5, 5, 5]T [5.0, 4.7, 9.0]T

The proposed spatial hybrid Gibbs sampler is compared respec-

tively with its MRF counterpart developed in [6] and with the non-

spatial Bayesian algorithm developed in [4]. The synthetic image



built with SNR = 20dB has been analyzed by these two algorithms

with the same number of iterations NMC. As a performance cri-

terion, the global mean square errors (MSEs) of the rth estimated

abundances have been computed. This global MSE is defined as

MSE
2
r =

1

P

P
∑

p=1

(âr,p − ar,p)
2

(8)

where âr,p denotes the MMSE estimate of the abundance ar,p. Ta-

ble 2 reports the obtained results with the time of simulation showing

that the algorithm developed in this paper (referred to as “Neighbor-

hoods”) performs similarly or better than the two other algorithms

(referred to as “MRF” and “Bayesian”) in terms of estimation per-

formance. However the proposed algorithm shows the lowest com-

putational time which is a very interesting property.

Table 2. Global MSEs of each abundance component and time of

simulation for the three unmixing algorithms.

Bayesian MRF Neighborhoods

MSE2
1 5.8× 10−3 3.4× 10−4 3.2× 10−4

MSE2
2 5.9× 10−3 9.5× 10−5 8.3× 10−5

MSE2
3 2.3× 10−4 2.3× 10−4 2.5× 10−4

Time (sec.) 4.6× 103 2× 103 1.6× 103

6. CONCLUSIONS

A new spatial unmixing algorithm based on adaptative neighbor-

hoods was proposed for hyperspectral images. The main novelty of

this algorithm is that spatial dependencies were taken into account

by assigning hidden discrete variables (labels) to pixels belonging

to appropriate neighborhoods partionning the image into multiple

classes. The classes were defined by homogeneous abundances with

a common mean vector and a common covariance matrix. A new

Bayesian model based on the neighborhood structure and on ideas

developed in a previous study was derived. The complexity of this

Bayesian model was alleviated by implementing an hybrid Gibbs

sampler generating data asymptotically distributed according to the

posterior distribution of interest. Simulations conducted on synthetic

data showed that the proposed algorithm achieved similar classifica-

tion and unmixing performance than its Markov random field coun-

terpart but with a reduced computational time. Future works will

investigate the generalization of the self-complementary area filter

to multiple bands by using a method inspired by [10].
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8. APPENDIX: LABEL PRIOR DISTRIBUTION

The Hammersley-Clifford theorem [11, p.231] allows us to write

P (z) ∝

S
∏

s=1

P (zs|z∗1 , . . . , z∗s−1, zs+1, . . . , zS)

P (z∗s |z∗1 , . . . , z∗s−1, zs+1, . . . , zS)
,

where the labels marked with a star z∗s are arbitrary auxiliary vari-

ables.

Therefore,

P (z) ∝ exp







κ

S
∑

s=1









∑

t∈Vτ (t),t<s

δ(zs − z
∗

t )

+
∑

t∈Vτ (t),t>s

δ(zs − zt)





−





∑

t∈Vτ (t),t<s

δ(z∗s − z
∗

t ) +
∑

t∈Vτ (t),t>s

δ(z∗s − zt)















.

By interverting the indexes s and t, we have

S
∑

s=1

∑

t∈Vτ (t),t<s

δ(zs − z
∗

t ) =
S
∑

s=1

∑

t∈Vτ (t),t>s

δ(z∗s − zt). (9)

This allows us to write the final expression

P (z) ∝ exp



κ

S
∑

s=1

∑

t∈Vτ (t)

δ(zs − zt)



 . (10)
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