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Abstract

This article presents a novel stochastic optimization model that simultaneously opti-
mizes the short-term extraction sequence, shovel relocation, scheduling of a hetero-
geneous hauling fleet, and downstream allocation of extracted materials in open-pit 
mining complexes. The proposed stochastic optimization formulation considers geo-
logical uncertainty in addition to uncertainty related to equipment performances and 
truck cycle times. The method is applied at a real-world mining complex, stressing 
the benefits of optimizing the short-term production schedule and fleet management 
simultaneously. Compared to a conventional two-step approach, where the produc-
tion schedule is optimized first before optimizing the allocation of the mining fleet, 
the costs generated by shovel movements are reduced by 56% and lost production 
due to shovel relocation is cut by 54%. Furthermore, the required number of trucks 
shows a more balanced profile, reducing total truck operational costs by 3.1% over 
an annual planning horizon, as well as the required haulage capacity in the most 
haulage-intense periods by 25%. A metaheuristic solution method is utilized to solve 
the large optimization problem in a reasonable timespan.

Keywords Short-term mine planning · Production scheduling · Fleet management · 
Stochastic mixed integer programming · Metaheuristics

1 Introduction

Short-term mine planning generally aims to make optimal decisions over a time-
frame of days to months to best meet annual production targets given by the long-
term mine production plan (Wilke and Reimer 1977; Fytas et  al. 1987; Hustrulid 
et al. 2013). This task is typically accomplished in two separate steps. In the first 
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step, the physical short-term extraction sequence is optimized, which is guided 
by the long-term mine plan and other pertinent short-term objectives (Blom et al. 
2018). The second step optimizes the assignment of mining equipment (trucks and 
shovels) in open pit mines and is referred to as fleet management (Afrapoli and 
Askari-Nasab 2017). Fleet management optimization includes two parts. The first 
part optimizes the shovel positions in the mine as well as the allocation of a certain 
number of trucks to the related shovels. The second part optimizes truck dispatch-
ing to allocate single trucks to their next destination (Alarie and Gamache 2002; 
Afrapoli and Askari-Nasab 2017). Note that shovels are typically large in size to 
facilitate the cost-efficient extraction of materials, which leads to their difficult and 
costly relocation over long distances within mining operations.

Recent developments combine aspects of fleet management and short-term 
extraction sequencing for open pit mines with the motivation of creating synergies 
between the steps that are conventionally optimized separately; this, in turn, gen-
erates more efficient short-term plans (Fioroni et al. 2008; L’Heureux et al. 2013; 
Torkamani and Askari-Nasab 2015; Mousavi et  al. 2016a; Villalba Matamoros 
and Dimitrakopoulos 2016; Blom et al. 2017; Kozan and Liu 2018; Upadhyay and 
Askari-Nasab 2018). Most of these recent approaches integrate shovel allocation 
decisions, shovel capacities and the cost of shovel movements in the production 
scheduling model. Current research, however, has not incorporated the physical loss 
of shovel production due to time-consuming shovel movements within an industrial 
mining complex. Some recent models focus on extending equipment plans towards 
drilling and blasting activities (L’Heureux et al. 2013; Kozan and Liu 2018), while 
others include additional decision variables related to optimal truck allocation 
(Fioroni et  al. 2008; Torkamani and Askari-Nasab 2015; Villalba Matamoros and 
Dimitrakopoulos 2016; Blom et al. 2017; Upadhyay and Askari-Nasab 2018).

In addition to integrating mining equipment allocation decisions, important 
developments in short-term mine planning include modelling and optimizing com-
ponents of an industrial mining complex simultaneously. Simultaneous optimization 
may include multiple mines, multiple processing streams, multiple waste dumps, the 
option to stockpile material and the transportation of products to the port or the cus-
tomer (Howard and Everett 2008; Blom et al. 2016). Recent developments in simul-
taneous long-term mine planning shift the focus away from modelling the economic 
value of blocks towards the value of products sold, which can account for non-linear 
transformations of blended material in stockpiles and processing streams (Montiel 
and Dimitrakopoulos 2015, 2018; Goodfellow and Dimitrakopoulos 2016, 2017; 
Montiel et al. 2016). To date, this development has not yet been accounted for in the 
short-term optimization of mining complexes, which provides one motivation for 
the work presented herein. Note that different simultaneous or integrated optimiza-
tion developments are available in the technical literature with regards to integrated 
logistics in the context of general supply chains (Darvish and Coelho 2018). How-
ever, these do not address issues pertaining to typically unstructured mining opera-
tional environments or the management and extraction of ore from mineral deposits, 
where the location and supply of material quantities and qualities are uncertain, and 
are thus part of the short-term mine production scheduling optimization.
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In addition, despite the listed manifold advances in modelling the short-term 
mining environment more accurately, most developed optimization models ignore 
pertinent uncertainties related to short-term mine planning, such as: (1) geologi-
cal uncertainty stemming from imperfect knowledge of the material mined; (2) 
equipment performance uncertainty due to equipment downtime, queuing times 
or external factors (e.g. weather), and (3) plant performance uncertainty.

The impact of ignoring geological uncertainty has been widely discussed for 
long-term and short-term mine planning (Ravenscroft 1992; Dowd 1994, 1997; 
Dimitrakopoulos et  al. 2002). Villalba Matamoros and Dimitrakopoulos (2016) 
simultaneously optimize a short-term extraction sequence and truck-shovel allo-
cation decisions of a single mine while integrating metal uncertainty and equip-
ment performance uncertainty into their optimization formulation. Several sets 
of equally likely uncertainty scenarios, including stochastic orebody simulations 
(Goovaerts 1997; Rossi and Deutsch 2014) and equipment availability scenarios, 
serve as an input to a stochastic integer programming (SIP) model, which is based 
on previous developments in stochastic mine planning (Ramazan and Dimitra-
kopoulos 2005, 2013; Mai et  al. 2019). Quigley and Dimitrakopoulos (2019) 
extend the formulation from Villalba Matamoros and Dimitrakopoulos (2016) to 
suit the optimization of multiple pits, processing streams, and material types, as 
well as access constraints for the location of hauling ramps. Villalba Matamoros 
and Dimitrakopoulos (2016) and Quigley and Dimitrakopoulos (2019) use the 
CPLEX solver (IBM 2013) to obtain a solution, which restricts their approach to 
instances of a relatively small size, and thus limits their application.

Although short-term mine planning models naturally consider fewer min-
ing blocks than their counterparts in long-term mine planning, their optimiza-
tion formulations can have a high number of variables and constraints due to the 
optimization of many periods, additional decision-making, and stochasticity of 
various input variables. Some formulations for short-term mine planning use the 
aggregation of blocks as a pre-processing step to reduce problem size (Eivazy and 
Askari-Nasab 2012; Kozan and Liu 2018). This grouping is undesirable because 
the aggregation of mining blocks misrepresents mining selectivity and ore dilu-
tion. In addition, it ignores the ability to blend favorable ore types together given 
the mine’s selectivity, as well as fixes the geometries of mining fronts beforehand 
and the varying distances of truck hauling and shovel movement that correspond 
to the aggregated mining blocks.

Metaheuristics provide a useful platform for the optimization of large, poten-
tially non-linear optimization formulations. Kumral and Dowd (2005) apply a 
simulated annealing (SA) algorithm (Kirkpatrick et al. 1983; Geman and Geman 
1984) to improve a suboptimal short-term extraction sequence. Mousavi et  al. 
(2016a) solve their mixed integer programming model for short-term mine plan-
ning by a hybridized combination of large neighborhood search and branch-and-
bound. Mousavi et  al. (2016b) test three different variants of local search algo-
rithms to optimize a short-term extraction sequence. However, mechanisms that 
consider the perturbation of extraction decisions, equipment assignment deci-
sions and downstream allocation of material altogether remain to be developed.
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In this article, a new simultaneous stochastic optimization approach to jointly 
optimize short-term mine production schedules and fleet management for industrial 
mining complexes is presented. The proposed approach extends previous develop-
ments for long-term mine production planning (Goodfellow and Dimitrakopoulos 
2016) by adding major components linked to short-term planning, notably fleet 
management and its associated uncertainties. The new components that are inte-
grated into the mine production scheduling optimization model for short-term plan-
ning include the scheduling of a heterogeneous truck fleet and individual shovel 
allocations that consider the costs and loss of production caused by their relocation. 
These decisions are jointly optimized with the short-term extraction sequence as 
well as with the downstream allocation of extracted materials to multiple processing 
facilities and stockpiles in a mining complex. The stochastic optimization formula-
tion considers uncertainty related to equipment performances and truck cycle times 
in addition to geological or material supply uncertainty. A simulated annealing 
metaheuristic is adapted to account for all newly added decision variables related to 
short-term production planning. The metaheuristic is designed to optimize large lin-
ear and non-linear problem instances that typically occur in open-pit mine planning.

In the next sections, the mathematical formulation of the developed stochastic 
programming model is presented first, along with details of the metaheuristic solu-
tion approach. Subsequently, a case study is performed at a gold mining complex to 
demonstrate the applied aspects of the proposed optimization model. Conclusions 
follow.

2  Mathematical formulation

The mathematical model for joint stochastic short-term production scheduling and 
fleet management optimization for mining complexes is formulated as a stochastic 
integer programming model with fixed recourse (Birge and Louveaux 2011), and 
builds upon the simultaneous stochastic optimization of the components of a mining 
complex that are pertinent to long-term mine planning (Goodfellow 2014; Good-
fellow and Dimitrakopoulos 2016, 2017). In this section, a general notation and 
objective function of the mathematical model are presented first. Subsequently, the 
decision variables for optimal shovel positioning and optimal truck scheduling in a 
mining complex are introduced, along with new stochastic components of the min-
ing fleet, such as equipment uncertainty and uncertain truck cycle times.

2.1  Modelling a mining complex

The mathematical formulation models a mining complex as a set of locations, 
i ∈ � ∪ � , whereas material flows from a set of mining areas, � , towards a set of 
destinations, � . Extracted material is then processed, stockpiled, sent to secondary 
destinations, or is disposed of in waste dumps or tailing facilities. A mining area 
is a location in one of the pits belonging to a mining complex, where material is 
excavated. Hence, mining areas account for the fact that extraction normally takes 
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place in several locations (benches) within the pits in parallel, leading to different 
excavation and hauling requirements. All mining blocks, b, that belong to one area 
of the mining complex are summarised in the set �

a
 . When material flows through 

the mining complex, a set of primary, additive attributes of the extracted materi-
als, p ∈ ℙ (e.g., ore tonnage, metal tonnage, etc.), is defined. A set of hereditary 
attributes, h ∈ ℍ , is then derived from the linear or non-linear conversion of primary 
attributes (e.g., metal recoveries, profits, costs). For more information about mod-
elling primary and hereditary attributes, the reader is referred to Goodfellow and 
Dimitrakopoulos (2016).

2.2  Notation

This section defines the indices and sets, parameters, and decision variables that are 
used in the mathematical model.

2.2.1  Indices and sets

t ∈ �   Index of a time period for the discretized planning horizon �
s ∈ �  Index of an orebody scenario in the set of orebody scenarios �
s

e
∈ �

E
  Index of an equipment performance scenario in the set of equipment 

scenarios �
E

� ∈ ℙ ∪ ℍ  Index of an attribute in the unified set of primary attributes ℙ and 
hereditary attributes ℍ in the mining complex

d ∈ �  Index of a destination in the set of destinations � in the mining complex
a ∈ �  Index of a mining area in the set of all mining areas �
i ∈ � ∪ �  Index of a location i in the mining complex, whereas � ∪ � contains all 

locations in the mining complex
b ∈ �  Index of a mining block in the set of all blocks �
�

a
  Set of blocks belonging to area a

g ∈ �  Index of a group g of material in the set of all material groups �
l ∈ �  Index of a shovel operating in the mining complex in the set of all shov-

els �
m ∈ �  Index of a truck-type operating in the mining complex in the set of all 

truck-types �

2.2.2  Parameters for mining complex

ph,i,t  The unit price of hereditary attribute h in location i in period t, which 
can be positive (revenue) or negative (cost)

c
−

�,t
, c

+

�,t
  Associated costs for shortage (−) or excess (+) of a primary or here-

detary attribute � ∈ ℙ ∪ ℍ in period t
Ton

b
  The tonnage of block b

H
t  Scheduled working hours per period
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CostSmooth  Penalty cost for unconnected blocks, enforcing the extraction of 
blocks in a connected (smooth) pattern

2.2.3  Equipment-related parameters

L
Max

a
  The maximum number of shovels that can work simultane-

ously in the same area a
T

Max

m
, T

Min

m
  The maximum and minimum number of trucks of truck-type 

m that are to be scheduled for any time period
Prod

t

l,s
e

  Stochastic production rate of shovel l (tons per period) for 

equipment scenario s
e
 in period t

Capm  Nominal truck capacity (tons) of truck-type m
A

t

m,s
e

  Stochastic availability factor of truck-type m for equipment 

scenario s
e
 in period t

CT
b,s

  Truck cycle time required to haul material of block b to its 
destination for orebody scenario s

CostOpTruckm  Cost of having one truck of truck-type m in operation ($ per 
period)

CostMove
l,a,a′

  Cost of moving a shovel l from area a to area a′ between 
period t − 1 and t ($ per move)

LostProd
l,a′,a

  Lost shovel production (tonnes per period) that occurs when 
moving a shovel l from area a′ to area a between period t − 1 
and t

CostShovelShortage  Penalty cost per tonne of not extracted material ($ per tonne) 
due to missing shovel capacity

CostTruckShortage  Penalty cost for not transported material ($ per tonne and 
truck hour) due to missing truck capacity

2.2.4  Decision variables

x
t

b
  Binary variable which equals 1, if block b is mined in period t, 0 

otherwise
zt

g,d
  Binary variable which equals 1 if a group of material g is sent to desti-

nation d in period t, 0 otherwise
�

t

l,a
  Binary variable which equals 1 if shovel l is located in area a at period 

t, 0 otherwise
�

t

l,a,a′
  Binary variable which equals 1 if a shovel l has moved from area a to 

area a′ between period t − 1 and t, 0 otherwise
�

t

m
  Integer variable which reflects the number of trucks of truck-type m 

scheduled in period t
yt

b
  Integer smoothing variable which reflects the number of adjacent 

blocks of block b that are not extracted in the same period t
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�
t

d,r,s
  Continuous variable [0,1] which represents the proportion of material 

sent out from destination d (e.g., a stockpile) to a receiving destination 
r (e.g., a concentrator) for an orebody scenario s in period t

dshovelt
a,se

  Continuous variable which represents shovel production deviations in 

area a for equipment scenario s
e
 in period t

dtruck
t

s,s
e

  Continuous variable which represents haulage capacity deviations for 

each orebody scenario s and equipment scenario s
e
 in period t

vp,i,t,s  Continuous variable which represents the value of primary attribute p 
in location i for orebody scenario s in period t

v
h,i,t,s

  Continuous variable representing the value of hereditary attribute h 
in location i for orebody scenario s in period t, which is obtained by 
applying linear or non-linear functions fh,i

(

vp,i,t,s

)

 on the amount of 
primary attributes

d
−

�,i,t,s
 , d+

�,i,t,s
  Continuous variables modelling either shortage (−) or surplus (+) of 

primary or heredetary attribute � ∈ ℙ ∪ ℍ at location i in period t in 
orebody scenario s

2.3  Objective function

Unlike most optimization formulations for short-term mine planning, the objec-
tive is to maximize metal production and profit of the mining complex as a whole, 
instead of minimizing operational costs. The minimization of costs alone neglects 
the fact that material can be blended and possibly sent to different available process-
ing streams, which affects generated revenues from metal products that should be 
maximized. In the following, the objective function, (1), of the proposed mathemati-
cal model is presented.
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Part (I) of the objective function, (1), summarizes revenues from products 
and operational costs that are generated in all modelled locations in the mining 
complex. Penalties for positive or negative deviations from production targets are 
accounted for in part (II). As in Goodfellow and Dimitrakopoulos (2016), these 
two parts form the basis of the simultaneous stochastic optimization of mining 
complexes. The remaining parts of the objective function are new, reflecting the 
aspects related to mining fleet management. The new parts are explained in con-
junction with all newly added constraints in the remainder of this section.

Parts (III) and (IV) of the objective function are equipment-related, aiming 
to reduce the risk of not meeting short-term production targets associated with 
the mining fleet. Stochastic shovel production targets are controlled in part (III), 
whereas stochastic truck haulage capacity is controlled in part (IV). Additional 
cost factors related to equipment use are accounted for in parts (V) and (VI). Part 
(V) sums up the costs related to moving a shovel from one area to another. Part 
(VI) includes the operational costs of the trucks that need to be in operation, so 
as to be able to haul the scheduled material per period. Part (VII) enforces the 
grouping of mining blocks in connected (smooth) patterns to generate physically 
mineable shapes (Dimitrakopoulos and Ramazan 2004). Typically, a practical 
extraction sequence is created this way.

(1)

Maximize
1

�

∑

t∈�

∑

s∈�

∑

h∈ℍ

∑

i∈�∪�

ph,i,t ⋅ vh,i,t,s

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Revenues and costs in mining complex (I)

−
1

�

∑

t∈�

∑

s∈�

∑

i∈�∪�

∑

�∈ℙ∪ℍ

(

c+
�,t
⋅ d+

�,i,t,s
+ c−

�,t
⋅ d−

�,i,t,s

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Penalties for deviations from production targets (II)

−
1

�E

∑

t∈�

∑

se∈�E

∑

a∈�

CostShovelShortage ⋅ dshovelt
a,se

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Reduce risk of not achieving shovel production target per mining area (III)

−
1

� ⋅ �E

∑

t∈�

∑

s∈�

∑

se∈�E

CostTruckShortage ⋅ dtruckt
s,se

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Reduce risk of falling short of truck haulage capacity (IV)

−
∑

t∈��{1}

∑

l∈�

∑

a∈�

∑

a�∈��{a}

CostMovel,a,a� ⋅

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Shovel movement cost(V)

�
t
l,a,a�

−
∑

t∈�

∑

m∈�

CostOpTruck ⋅ � t
m

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Account for costs of trucks
in operation (VI)

−
∑

t∈�

∑

b∈�

CostSmooth ⋅ yt
b

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Enforce smooth mining schedule (VII)
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2.4  Constraints

Reserve constraints, precedence constraints, constraints related to ore targets, 
metal targets and deleterious elements, as well as the downstream allocation of 
materials in the mining complex, considering stockpiles and multiple processing 
facilities, have been defined and are available in previous publications (Goodfel-
low and Dimitrakopoulos 2016). However, all equipment-related constraints are 
new and defined next.

2.4.1  Constraints related to shovel allocation

While most of the literature that includes fleet management in optimization for-
mulations assumes constant shovel production rates, some articles have consid-
ered their stochastic nature by employing (1) discrete-event simulation models 
(Awuah-Offei et al. 2003; Upadhyay and Askari-Nasab 2018), (2) robust optimi-
zation techniques for mathematical programming (Ta et al. 2005; Bakhtavar and 
Mahmoudi 2018), and (3) stochastic integer programming with recourse (Villalba 
Matamoros and Dimitrakopoulos 2016; Quigley and Dimitrakopoulos 2019).

In this article, stochastic shovel production scenarios (in tons per period) are 
created by sampling a distribution of historical production rates for each shovel 
and quantify the available shovel production and its associated risk of underper-
formance in the mining complex. These shovel production rates can be optimally 
allocated to each area using the binary shovel-allocation variables, �t

l,a
 , which 

together form the first term of constraint (2). Note that production losses associ-
ated with shovel movements are included, whereas their absence in modelling is 
seen as one of the limitations of current algorithms (Afrapoli and Askari-Nasab 
2017). Here, the shovel production in area a will be reduced if a shovel l was 
moved from another area a′ to a between period t − 1 and t. By summing the 
scheduled extraction per area (note extraction variables x

t

b
 ), the shortfalls of 

shovel production are offset in constraint (2) by the deviation variable dshovelt
a,se

 

for each scenario, area, and time period, which will be penalized in part (III) of 
the objective function.

Other shovel-related constraints ensure that a shovel is only allocated to one 
area per period in constraint (3), and limit the maximum number of shovels, LMax

a
 , 

that are allowed to work in one area in constraint (4). The usefulness of the latter 
constraint will be emphasized later in the case study.

(2)

∑

l∈�

(

Prodt
l,se

⋅ �t
l,a
−

∑

a�∈��{a}

LostProdl,a�,a ⋅ �l,a�,a

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Scenario−dependent shovel
production per area

−
∑

b∈�a

xt
b
⋅ Tonb

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Scheduled extraction
per area

+dshovelt
a,se

≥ 0

∀t ∈ � , a ∈ �, se ∈ �E
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2.4.2  Constraints related to truck haulage

Truck allocation has been considered in recent publications for combined production 
scheduling and fleet management optimization (Torkamani and Askari-Nasab 2015; 
Villalba Matamoros and Dimitrakopoulos 2016; Blom et  al. 2017; Upadhyay and 
Askari-Nasab 2018; Quigley and Dimitrakopoulos 2019). The number of required 
trips of individual trucks or truck types to individual shovels is typically chosen as 
a decision variable, which ignores the fact that single trips of trucks to shovels are 
often decided by truck dispatching algorithms in real-time. Instead, the proposed 
short-term optimization model optimizes the decisions of how many trucks of truck-
type m should be optimally utilized per period. Here, the mine planner has the pos-
sibility of setting an upper and lower bound on the number of trucks per truck-type 
m, which is seen in constraint (5).

The transportation of mined materials by the hauling fleet is defined by the ton-
nage, as well as the required time for a truck to haul materials from the excavation 
location to the destination and the return to the excavation point (commonly referred 
to as truck cycle time). Ignoring cycle time requirements in short-term production 
scheduling can lead to unexpected haulage requirements to be accomplished by the 
truck fleet, which is clarified in Fig. 1. In this example, a constraint (red line) that 
keeps mined tonnage per period under a threshold is obeyed consistently in every 
period by the resulting mine plan (blue line). However, when measuring the required 
haulage capacity (black line), defined as the product of tonnage and truck cycle time, 
haulage requirements differ substantially over the time horizon than previously indi-
cated by extracted tonnage. The requirement of truck haulage is overestimated in the 
first period where cycle times are typically shorter due to shallower depths in the pit 
but are underestimated in periods 8 to 10, as noted through the steep rise above pre-
vious periods. Furthermore, it is possible that there is an increase of required truck 
haulage (black line) despite a decrease of total tonnage (blue line), as seen in periods 
7 and 12. All these differences can be explained by different cycle times of the mate-
rials to be removed, depending on their respective position in the mining complex.

Constraint (6) accounts for the abovementioned cycle time requirements by defin-
ing required haulage capacity as a product of cycle time of individual blocks, CT

b,s
 , 

and the respective tonnage of a block to be hauled, Ton
b
 . Since the material type 

and metal quantity of a mining block can change from one orebody simulation to 
another, the destination of the material in a mining block can change due to two 
underlying reasons. First, a different material type (e.g., oxide vs. sulfide material) 

(3)
∑

a∈�

�
t

l,a
= 1 ∀t ∈ T , l ∈ L

(4)
∑

l∈�

�
t

l,a
≤ L

Max

a
∀t ∈ T , a ∈ A

(5)T
Min

m
≤ �

t

m
≤ T

Max

m
∀t ∈ T , m ∈ M
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might require a different mineral processing method. Second, the grade of a block 
can change so that the most profitable destination might now be a different proces-
sor or the waste dump. Hence, the required cycle time to transport the material to a 
certain destination depends on orebody scenario s. The effect of geological uncer-
tainty on the cycle time of material is also the reason why the median (P50) of the 
required haulage capacity is reported in Fig. 1. By modelling cycle times utilizing 
exact block positions in the mining complex and their possible destination, limita-
tions due to mining block aggregation, as noted earlier, are removed.

In constraint (6), the required haulage capacity is opposed with the scenario-
dependent haulage capacity of the heterogeneous truck fleet, which is modelled as a 
product of truck payload, Capm , stochastic availability, A

t

m,s
e

 per truck-type m, 

accounting for the uncertainty that the truck fleet has a natural risk of underperform-
ing, planned working hours of the planning horizon, Ht , and the integer truck deci-
sion variable, � t

m
 . Deviations are, similar to shovel production, offset by the devia-

tion variable dtruck
t

s,s
e

 for each equipment scenario, orebody scenario, and time 

period.

(6)

∑

m∈�

Capm ⋅ At
m,se

⋅ Ht
⋅ �

t
m

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Scenario−dependent haulage
capacity of truck fleet

−

∑

b∈�

CTb,s ⋅ Tonb ⋅ xt
b

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Required haulage capacity

+dtruckt
s,se

≥ 0 ∀t ∈ T , se ∈ �E, s ∈ S

Fig. 1  Analysis of truck haulage requirement comparing mined tonnage (upper line, blue) with the prod-
uct of mined tonnage and required haulage cycle time (lower line, black). (Color figure online)
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3  Metaheuristic solution method

For the optimization of large and potentially non-linear instances of the mathemati-
cal model for joint short-term optimization of mining complexes (note the possibil-
ity of blending materials including stockpiled material and applying non-linear ben-
eficiation processes on blended material), a simulated annealing (SA) metaheuristic 
is adopted herein, extending that in Goodfellow and Dimitrakopoulos (2016, 2017). 
The use of SA stems from its past successful use for single open-pit mine planning 
and production scheduling (Godoy 2002; Kumral and Dowd 2005; Kumral 2013; 
Mousavi et  al. 2016b), as well as its excellent performance in major case studies 
for long-term simultaneous stochastic optimization of production planning in min-
ing complexes (Montiel et al. 2016; Montiel and Dimitrakopoulos 2018; and others).

Let Φ be the current solution of the optimization problem, which is partitioned 
into solution vectors of individual decision variables � = (x, z, �,�, �) . Here, the 
solution Φ consists of the vector of the extraction sequence, x, which stores the 
period of extraction for each block, the vector of the destination decisions, z, which 
stores the current destination of each material group for each period, the vector of 
downstream allocation decisions, δ (all similar to Goodfellow and Dimitrakopoulos 
2016), and the newly added fleet management components, consisting of the vector 
of shovel allocation decisions, λ, and the vector of hauling fleet decisions, τ. Note 
that all other variables are calculated as a result of the described decision vectors 
above.

Let v(�) be the objective function value of the current solution and v
(

�
′
)

 the 
objective function value of a feasible modified solution, Φ’. For a maximization 
problem, the Metropolis et  al. (1953) acceptance probability criterion for SA is 
given in Eq. (7).

As the algorithm progresses, the annealing temperature, temp, gradually 
decreases using a cooling schedule. This cooling schedule is defined by the initial 
temperature, temp0, a reduction factor, k, and the number of iterations, niter, before 
the reduction factor is applied. Goodfellow and Dimitrakopoulos (2016) introduce 
a modification, which uses multiple annealing temperatures depending on the type 
of decision variable that is perturbed for obtaining a feasible modified solution, 
Φ′. Furthermore, a diversification strategy reinitiates the cooling schedule after a 
defined set of iterations, ndivers, to broaden the search of the solution space.

A modified solution, Φ′, is obtained by applying a perturbation rule to the solu-
tion vector, chosen from a set of available perturbation rules, commonly referred 
to as a neighbourhood N

k

(

k = 1… k
max

)

 in a finite set of neighbourhood structures 
(Mladenovic and Hansen 1997). For example, the extraction sequence, x, can be 
modified by (1) changing the extraction period of a single block, (2) swapping the 
periods of extraction of two blocks, or (3) changing the extraction period of a block 
and its entire predecessor set, and so on. Many perturbation rules for the mining 

(7)P
(
v
(
�

�
)
, v(�), temp

)
=

{
1, if v

(
�

�
)
≥ v(�)

exp
(
−
|v(��)−v(�)|

temp

)
, otherwise
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block extraction sequence, destination decisions, and the utilization of processing 
streams are detailed in previous publications (Goodfellow 2014; Goodfellow and 
Dimitrakopoulos 2016).

The model presented herein introduces new fleet management decisions to the 
simultaneous optimization of mining complexes, thus new perturbation rules are 
introduced for alternating shovel and truck allocation decisions. All newly defined 
perturbation structures are detailed in “Appendix”. Perturbation rules are chosen 
with equally likely probability at the start, and as the algorithm progresses, the prob-
ability of selecting each perturbation rule is adapted depending on their performance 
in terms of improving the objective function (Burke et al. 2013; Lamghari and Dim-
itrakopoulos 2018). An initial solution to the metaheuristic is obtained by randomly 
assigning values to variables within the feasible solution domain while obeying 
slope constraints. All utilized parameters for the metaheuristic are given in Table 1. 

4  Application at a gold mining complex

The gold mining complex considered includes two open pits that are sub-divided 
into six spatially distinct mining areas (A1–A6) for short-term production schedul-
ing, depicted in Fig. 2. This mining complex operates with a shared mining fleet, 
whereas material is excavated and hauled to a milling and grinding circuit (first 
processing stream), a stockpile connected to the mill, a heap leach facility (second 
processing stream), or the waste dump that is located closest to each pit, as seen in 
Fig. 3.

4.1  Optimization parameters

Economic parameters for the optimization are given in Table  2. The scheduled 
material comprises the year of extraction defined by a long-term production 
schedule. The annual production horizon, to be scheduled on a monthly discre-
tization, comprises 6,382 blocks (15 × 15 × 12  m3). Uncertainty of metal grade 
(Au) is accounted for by utilizing fifteen equally probable orebody scenarios 
using geostatistical simulation techniques (Goovaerts 1997). Other optimization 
parameters, given in Table 3, define the targets of the mining complex to be met 
by optimization. The milling and grinding circuit has a maximum throughput 
capacity of 360 kt of ore per month. Penalty costs are applied for exceeding this 

Table 1  Parameters for 
simulated annealing 
metaheuristic

Parameter Value

Initial temperature temp0 0.15

Reduction factor k 0.95

Iterations before cooling niter 300

Iterations before diversification ndivers 80,000

Number of diversifications 4
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tonnage and consider metal and material type uncertainty stemming from the geo-
logical reserve, as seen in Table 3. Furthermore, shovel allocation is controlled by 
applying penalty costs if uncertain shovel production falls short of the material to 
be extracted per mining area and period using constraint (2). The schedule of a 
heterogeneous truck fleet is optimized by applying penalty costs if required truck 
haulage capacity, measured as a product of tonnage and required truck cycle time, 
is not met by the scheduled truck fleet, using constraint (6). Generally, higher 

Fig. 2  Mining areas in the gold mining complex

Fig. 3  Components of the gold mining complex
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penalty costs reflect more risk-averse behaviour for meeting the respective pro-
duction target. 

Total truck cycle time is measured as a combination of two components. The first 
component consists of the time required to haul material from its position in the pit, 
measured per mining block, to the pit exit of the nearest connected ramp, which is visu-
alized in Figs. 4 and 5. The second component defines the time required to haul mate-
rial from the pit exit to its destination, shown in Table 4. Both cycle time calculations 
also include the time for the truck to return to the shovel.

The available heterogeneous truck fleet in the mining complex incudes two truck-
types, whose respective payloads, operational costs, and stochastic availability factors 
are presented in Table 5. The expected production rates and standard deviation of the 
four individual shovels in the mining complex are presented in Table 6. Costs of shovel 
movements are provided in Table 7, which are calculated by multiplying the expected 
travel time (h), approximated by the length of connecting ramp segments and shovel 
travelling speeds, and the mine-specific operational costs ($/h) of moving a shovel to 
a different mining area. This hourly rate includes a premium for the higher consump-
tion of resources and the increased maintenance costs, along with the shovel’s standard 
operational costs. Lost production due to shovel movements are presented in Table 8, 
which are the product of expected travel time (h) and production rate (t/h) per shovel.

4.2  Optimization results

The following results compare the proposed joint short-term optimization of a 
mining complex to a two-step approach where a production schedule is generated 

Table 2  Economic parameters 
in mining complex

a Optimal economic cut-off grade that distinguishes waste and leach-
ing material, which has been provided by the strategic mine plan for 
the year of extraction
b Optimal economic cut-off grade that distinguishes leaching and 
milling material, which has been provided by the strategic mine plan 
for the year of extraction

Parameter Value

Periods 12 months

Gold price $1250/oz

Refinery cost $13/oz

Cut-off  gradea (waste/leaching) 0.0041 oz/t

Cut-off  gradeb (leaching/mill) 0.0105 oz/t

Leach cost $2.30/t

Recovery leach 45%

Mill cost $7.80/t

Recovery mill 88%

Stockpile rehandling cost $0.15/t

Operational costs for moving a shovel $950/h
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Fig. 4  Horizontal (top) and vertical (bottom) sections of required truck cycle time in pit 1 based on block 
positions

Fig. 5  Horizontal (top) and vertical (bottom) sections of required truck cycle time in pit 2 based on block 
positions
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first using a stochastic model that optimizes all components of a mining com-
plex. The latter model (Goodfellow and Dimitrakopoulos 2016) excludes all the 
equipment-related components presented earlier in this manuscript. In a separate 
second step, equipment allocation is performed, which minimizes the number of 
shovel moves and the truck hauling effort, based on the fixed production sched-
ule given by the previous step. In this second step, variable equipment perfor-
mance is also accounted for by using a set of stochastic availability scenarios per 

Table 4  Truck cycle times from pit exit to destinations and return

Location Waste dump 1 Waste dump 2 Heap leach (h) Stockpile (h) Crusher 
(mill) 
(h)

Pit 1 0.21 h – 0.35 0.39 0.43

Pit 2 – 0.19 h 0.31 0.35 0.39

Table 5  Payload, costs and stochastic availabilities of heterogeneous hauling fleet

Hauling equip-
ment

Payload (t) OPEX ($/h) Availability 
(%)

Number of 
trucks in 
place

Parameters used for joint 
optimization

Mean SD Maximum 
number 
(

T
Max

m

)

Minimum 
number 
(

T
Min

m

)

Truck type 1 100 124 0.81 0.0405 10 8 5

Truck type 2 140 176 0.83 0.0415 14 11 7

Table 6  Expected production 
rate and standard deviation of 
individual shovels based on 
historical data

Loading equipment Production (t/h)

Mean SD

Large Shovel 1 2597 129.8

Large Shovel 2 2538 126.9

Small Shovel 1 1310 65.5

Small Shovel 2 1283 64.1

Table 7  Costs caused by 
shovel movement from one 
area to another, calculated by 
multiplying expected travelling 
time (h) with shovel moving 
cost ($/h), exemplary for Large 
Shovel 1

$ in ‘000 s To A1 To A2 To A3 To A4 To A5 To A6

From A1 0.0 5.7 8.6 6.7 39.0 36.1

From A2 6.7 0.0 10.5 10.5 39.9 37.1

From A3 9.5 8.6 0.0 3.8 39.9 37.1

From A4 7.6 9.5 2.9 0.0 39.0 37.1

From A5 40.9 40.9 43.7 39.9 0.0 8.6

From A6 38.0 39.0 40.9 37.1 7.6 0.0
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equipment type, as discussed earlier in the manuscript. Generally, both optimi-
zation methods schedule mining equipment with high variability in performance 
rather conservatively. It is shown next that the proposed joint optimization of pro-
duction schedule and equipment allocation in a mining complex is superior to the 
described two-step approach.

Figure 6 visualizes the optimized shovel allocation to mining areas, as well as 
the resulting shovel movements both for the two-step approach and the joint opti-
mization. By observing the case where shovels are assigned separately to a previ-
ously optimized production schedule (upper part of Fig. 6), there is an inevitably 
high number of shovel movements from area to area. This is because the previ-
ously optimized production schedule is only concerned with providing ore to the 
processors taken from any location of the mining complex. By performing a joint 
optimization, however, the production schedule adapts to the available equipment 
(lower part of Fig. 6). As a result, the lower number of shovel moves leads to a 
56% decrease in shovel movement costs and a 54% decrease in shovel production 
losses caused by relocation, as summarized in Table 9. Most notably, the number 
of necessary shovel moves between pits is reduced from five to two moves. Fur-
thermore, the joint optimization of the production schedule and mining fleet can 

Table 8  Lost production caused 
by shovel movement from one 
area to another, calculated by 
multiplication of expected travel 
time (h) and shovel production 
rate (t/h), exemplary for Large 
Shovel 1

In kt To A1 To A2 To A3 To A4 To A5 To A6

From A1 0.0 15.6 23.4 18.2 106.6 98.8

From A2 18.2 0.0 28.6 28.6 109.2 101.4

From A3 26 23.4 0.0 10.4 109.2 101.4

From A4 20.8 26 7.8 0.0 106.6 101.4

From A5 111.8 111.8 119.6 109.2 0.0 23.4

From A6 104 106.6 111.8 101.4 20.8 0.0

Fig. 6  Comparison of shovel allocation per period (12 months) to mining areas (colour-coded from A1 
to A6) for separately optimized production schedule (top) and joint optimization (bottom). (Color figure 
online)
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also limit the number of shovels working in the same area in the same period, 
which is visualized in Fig.  7. By re-arranging the quantities of material to be 
handled by one shovel alone, as seen in areas A1 and A2 in this case study, space 
and safety requirements are facilitated and, at the same time, truck traffic on the 
supply ramp to these areas is also reduced, especially when they are located at the 
bottom of the pit where only one ramp is available for hauling.

The advantages of simultaneously optimizing the production schedule and truck 
fleet are discussed herein. As seen in Fig. 8, the assignment of trucks on a fixed pro-
duction schedule can cause high fluctuations that lead to, on the one hand, periods 
where the complete fleet of 24 trucks needs to be assigned to haul extracted mate-
rial (periods 8 and 9) and, on the other hand, periods where less than half of the 
truck fleet is in use (periods 6 and 12). Problems can arise when (1) the maximum 

Table 9  Key improvements of the joint optimization of short-term production schedule and fleet manage-
ment in mining complexes

Optimization parameter Two-step 
optimization

Joint optimization Difference (%)

Shovel movement costs ($ in ‘000 s) 276.5 120.7 − 56

Lost production through shovel movement (kt) 635.7 291.2 − 54

Total shovel moves (number of moves) 16 10 − 38

Total truck operational costs (M $) 23.46 22.73 − 3.1

Most haulage-intensive period (number of trucks) 24 18 − 25

Fig. 7  Comparisons of the fixed production schedule of pit 1 (left) and jointly optimized fleet allocation 
and production schedule (right), whereas joint optimization includes constraints of limiting the number 
of shovels working in the same area for A1 and A2



1737

1 3

Joint stochastic short-term production scheduling and fleet…

required number of trucks over the planning horizon is unavailable, (2) the pre-
ventive maintenance cannot be accomplished adequately if a maximum number of 
required trucks is in operation, or (3) if the workforce cannot be flexibly assigned 
over a short-term planning horizon.

By analyzing optimized truck assignments in Table 10, one notes that the joint 
optimization of the mining fleet and production schedule succeeds in consistently 
having up to 80% of trucks and over 50% of trucks of each truck-type in use. As 
a result, trucks of both truck-types are more efficiently matched to the production 
schedule of the mining complex, so that total truck operational costs are reduced 
by 3.1% over the annual planning horizon compared to the two-step optimization 
approach. Furthermore, the more balanced utilization of the truck fleet reduces 
the hauling effort of haulage-intensive periods effectively (compare periods 8–10), 
which allows for preventive truck maintenance on the remaining part of the fleet 
in every period and minimizes disruptions caused by events of unexpected break-
downs. A summary of all key improvements of the jointly optimized mine plan is 
given in Table 9.

5  Conclusions

In this article, a novel stochastic mathematical model for the joint optimization of a 
short-term production schedule and fleet management in a mining complex is pre-
sented. The model simultaneously optimizes the short-term extraction sequence, 
the shovel allocation while considering costs and lost production from relocation, 
the scheduling of a heterogeneous hauling fleet, and the downstream allocation of 

Fig. 8  Comparison of required haulage capacity per period (top lines) and the total assigned number of 
trucks per period (bottom lines) for fixed schedule and joint optimization of production schedule and 
mining fleet
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extracted materials to multiple processing facilities and stockpiles along the min-
eral value chain. Several sources of uncertainty are integrated into the mathematical 
optimization formulation, including metal and material type uncertainty stemming 
from the geological reserve, uncertainty in shovel production, uncertainty in the 
availability of haul trucks, and the uncertainty of truck cycle time.

To model required truck hauling capacity more accurately, the product of tonnage 
and required truck cycle time per block is newly defined. Furthermore, truck cycle 
times are precisely quantified block by block, taking into account the uncertain des-
tination of the material due to metal and material type uncertainty. The case study 
presented shows how the joint optimization of a production schedule and fleet man-
agement in a mining complex results in synergies that cannot be achieved through a 
conventional two-step approach, where fleet management optimization is applied on 
a previously optimized, fixed production schedule.

Future work could integrate additional sources of uncertainty into the proposed 
framework of joint short-term optimization of mining complexes, including uncer-
tainties related to plant throughput, the density of mined material, and metal recov-
ery in various processing facilities. In addition, spatial clustering techniques may be 
used for sub-dividing the material to be mined into distinct mining areas. While the 
SA-based solution approach utilized herein provides good results in reasonable time, 
further research can explore the performance of other state-of-the-art metaheuristics 
(e.g. Hansen and Mladenović 2018; Laguna 2018). Lastly, with the recent advance-
ments of sensor information collection during operations in mining complexes, such 
as real-time measurements of rock properties, equipment availability and utilization, 
as well as the performance of processing plants, the related data collected may be 
integrated into the proposed framework to facilitate real-time updates of short-term 
production plans.
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Appendix: Newly de�ned perturbation rules to obtain a modi�ed 
solution for truck- and shovel decisions using a simulated annealing 
metaheuristic

The basic aspects of the metaheuristic solution method have been described in the 
main part of the manuscript. However, all newly developed perturbation rules for 
truck and shovel decisions, which are commonly referred to as neighbourhood struc-
tures, are listed here. For optimization, the truck and shovel allocation variables are 
encoded into separate solution vectors, which are perturbed during the simulated 
annealing process to obtain modified solutions. The shovel allocation vector, λ, 
stores an encoded version of shovel assignment variables �t

l,a
 whereas each element 

�
t

l
∈ � stores the current area a that has been assigned to shovel l in period t. Note 

that shovel movements �t

l,a,a′
 are obtained as a direct result of the current state of 

shovel allocation vector λ, which are newly evaluated after an accepted perturbation 
of λ. Further, it is assumed that the position of each shovel is fixed in the first period 
without requiring shovel movements in advance. The following perturbation rules 
are developed to modify λ:

(1) Randomly-swap-shovels perturbation Randomly select a period t and two shovels 
l and l′. If the area assignment a of the first shovel differs from the area assign-
ment a′ of the second shovel, swap their area assignment, otherwise repeat the 
random selection.

(2) Targeted-swap-shovels perturbation Create a list of preferred swaps1 of shovels 
by scanning solution vector λ first. If the list is non-empty, pick and apply one 
preferred swap randomly. Otherwise, perform perturbation (1).

(3) Randomly-change-one-area perturbation Randomly select a period t and a 
shovel l allocated to area a. Randomly select a new area a′ ≠ a. After ensuring 
that a maximum number of shovels in a′ is not exceeded, assign a′ to shovel l.

(4) Targeted-change-one-area perturbation Create a list of preferred shovel moves2 
by scanning the entire solution vector λ. If the list is non-empty, pick and apply 
one preferred move randomly after checking if a maximum number of shovels 
is not exceeded in a′. Otherwise, perform perturbation (3).

(5) Balance-capacity perturbation Scan current extraction sequence vector x and 
enlist total extracted tonnage from each area. Scan current solution vector λ and 
enlist total expected shovel production allocated to each area. Randomly select 
a shovel l that has been assigned to the area of the largest surplus of shovel 
production asurpl in period t and attempt to reallocate this shovel to the area of 

1 Preferred swaps occur when shovel l is allocated to area a in two consecutive periods but allocated 
to a different area in the previous or following period, whereas another shovel l’ is allocated to a; thus, 
swapping these two shovel-to-area assignments possibly reduces the necessary shovel moves of shovel l 
by one.
2 Preferred shovel moves are closing ‘gaps’ in a sequence of shovel-to-area assignments. Exemplary, 
shovel 1 may be allocated to areas 1, 1, 2, 1, 1 in periods 1–5. Thus, a gap is identified in the third 
period. Closing this gap can lower the necessary shovel moves by two.
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largest shortfall of shovel production ashort after checking if a maximum number 
of shovels is not exceeded in ashort.

New developed perturbation rules for the integer hauling fleet variables � t

m
∈ � are 

as follows:

(6) Gradually increase truck haulage capacity Randomly select a period t and truck-
type m. If � t

m
< T

Max

m
 , increase the number of trucks in this period by one.

(7) Gradually decrease truck haulage capacity Randomly select a period t and truck-
type m. If � t

m
> T

Min

m
 , decrease the number of trucks by one.
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