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Joint Strategy Fictitious Play With
Inertia for Potential Games

Jason R. Marden, Gürdal Arslan, and Jeff S. Shamma

Abstract—We consider multi-player repeated games involving a
large number of players with large strategy spaces and enmeshed
utility structures. In these “large-scale” games, players are inher-
ently faced with limitations in both their observational and com-
putational capabilities. Accordingly, players in large-scale games
need to make their decisions using algorithms that accommodate
limitations in information gathering and processing. This disquali-
fies some of the well known decision making models such as “Ficti-
tious Play” (FP), in which each player must monitor the individual
actions of every other player and must optimize over a high dimen-
sional probability space. We will show that Joint Strategy Fictitious
Play (JSFP), a close variant of FP, alleviates both the informational
and computational burden of FP. Furthermore, we introduce JSFP
with inertia, i.e., a probabilistic reluctance to change strategies, and
establish the convergence to a pure Nash equilibrium in all general-
ized ordinal potential games in both cases of averaged or exponen-
tially discounted historical data. We illustrate JSFP with inertia on
the specific class of congestion games, a subset of generalized or-
dinal potential games. In particular, we illustrate the main results
on a distributed traffic routing problem and derive tolling proce-
dures that can lead to optimized total traffic congestion.

Index Terms—Fictitious play (FP), joint strategy fictitious play
(JSFP).

I. INTRODUCTION

W E consider “large-scale” repeated games involving
a large number of players, each of whom selects a

strategy from a possibly large strategy set. A player’s reward,
or utility, depends on the actions taken by all players. The
game is repeated over multiple stages, and this allows players
to adapt their strategies in response to the available information
gathered over prior stages. This setup falls under the general
subject of “learning in games” [2], [3], and there are a variety
of algorithms and accompanying analysis that examine the long
term behavior of these algorithms.
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In large-scale games players are inherently faced with limi-
tations in both their observational and computational capabil-
ities. Accordingly, players in such large-scale games need to
make their decisions using algorithms that accommodate lim-
itations in information gathering and processing. This limits
the feasibility of different learning algorithms. For example,
the well-studied algorithm “Fictitious Play” (FP) requires in-
dividual players to individually monitor the actions of other
players and to optimize their strategies according to a proba-
bility distribution function over the joint actions of other players.
Clearly, such information gathering and processing is not fea-
sible in a large-scale game.

The main objective of this paper [1] is to study a variant of FP
called Joint Strategy Fictitious Play (JSFP) [2], [4], [5]. We will
argue that JSFP is a plausible decision making model for certain
large-scale games. We will introduce a modification of JSFP to
include inertia, in which there is a probabilistic reluctance of
any player to change strategies. We will establish that JSFP with
inertia converges to a pure Nash equilibrium for a class of games
known as generalized ordinal potential games, which includes
so-called congestion games as a special case [6].

Our motivating example for a large-scale congestion game is
distributed traffic routing [7], in which a large number of vehi-
cles make daily routing decisions to optimize their own objec-
tives in response to their own observations. In this setting, ob-
serving and responding to the individual actions of all vehicles
on a daily basis would be a formidable task for any individual
driver. A more realistic measurement on the information tracked
and processed by an individual driver is the daily aggregate con-
gestion on the roads that are of interest to that driver [8]. It turns
out that JSFP accommodates such information aggregation.

We will now review some of the well known decision making
models and discuss their limitations in large-scale games. See
the monographs [2], [3], [9]–[11] and survey article [12] for a
more comprehensive review.

The well known FP algorithm requires that each player views
all other players as independent decision makers [2]. In the FP
framework, each player observes the decisions made by all other
players and computes the empirical frequencies (i.e. running av-
erages) of these observed decisions. Then, each player best re-
sponds to the empirical frequencies of other players’ decisions
by first computing the expected utility for each strategy choice
under the assumption that the other players will independently
make their decisions probabilistically according to the observed
empirical frequencies. FP is known to be convergent to a Nash
equilibrium in potential games, but need not converge for other
classes of games. General convergence issues are discussed in
[13]–[15].

The paper [16] introduces a version of FP, called “sampled
FP”, that seeks to avoid computing an expected utility based on
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the empirical frequencies, because for large scale games, this
expected utility computation can be prohibitively demanding.
In sampled FP, each player selects samples from the strategy
space of every other player according to the empirical frequen-
cies of that player’s past decisions. A player then computes an
average utility for each strategy choice based off of these sam-
ples. Each player still has to observe the decisions made by all
other players to compute the empirical frequencies of these ob-
served decisions. Sampled FP is proved to be convergent in iden-
tical interest games, but the number of samples needed to guar-
antee convergence grows unboundedly.

There are convergent learning algorithms for a large class of
coordination games called “weakly acyclic” games [9]. In adap-
tive play [17] players have finite recall and respond to the re-
cent history of other players. Adaptive play requires each player
to track the individual behavior of all other players for recall
window lengths greater than one. Thus, as the size of player
memory grows, adaptive play suffers from the same computa-
tional setback as FP.

It turns out that there is a strong similarity between the JSFP
discussed herein and the regret matching algorithm [18]. A
player’s regret for a particular choice is defined as the differ-
ence between 1) the utility that would have been received if
that particular choice was played for all the previous stages and
2) the average utility actually received in the previous stages.
A player using the regret matching algorithm updates a regret
vector for each possible choice, and selects actions according
to a probability proportional to positive regret. In JSFP, a player
chooses an action by myopically maximizing the anticipated
utility based on past observations, which is effectively equiv-
alent to regret modulo a bias term. A current open question is
whether player choices would converge in coordination-type
games when all players use the regret matching algorithm
(except for the special case of two-player games [19]). There
are finite memory versions of the regret matching algorithm
and various generalizations [3], such as playing best or better
responses to regret over the last stages, that are proven to
be convergent in weakly acyclic games when players use some
sort of inertia. These finite memory algorithms do not require
each player to track the behavior of other players individually.
Rather, each player needs to remember the utilities actually
received and the utilities that could have been received in the
last stages. In contrast, a player using JSFP best responds
according to accumulated experience over the entire history by
using a simple recursion which can also incorporate exponential
discounting of the historical data.

There are also payoff based dynamics, where each player ob-
serves only the actual utilities received and uses a Reinforce-
ment Learning (RL) algorithm [20], [21] to make future choices.
Convergence of player choices when all players use an RL-like
algorithm is proved for identical interest games [22]–[24] as-
suming that learning takes place at multiple time scales. Finally,
the payoff based dynamics with finite-memory presented in [25]
leads to a Pareto-optimal outcome in generic common interest
games.

Regarding the distributed routing setting of Section IV, there
are papers that analyze different routing strategies in conges-
tion games with “infinitesimal” players, i.e., a continuum of
players as opposed to a large, but finite, number of players. Ref-
erences [26]–[28] analyze the convergence properties of a class

of routing strategies that is a variation of the replicator dynamics
in congestion games, also referred to as symmetric games, under
a variety of settings. Reference [29] analyzes the convergence
properties of no-regret algorithms in such congestion games and
also considers congestion games with discrete players, as con-
sidered in this paper, but the results hold only for a highly struc-
tured symmetric game.

The remainder of the paper is organized as follows. Section II,
sets up JSFP and goes on to establish convergence to a pure
Nash equilibrium for JSFP with inertia in all generalized or-
dinal potential games. Section III presents a fading memory
variant of JSFP, and likewise establishes convergence to a pure
Nash equilibrium. Section IV presents an illustrative example
for traffic congestion games. Section IV goes on to illustrate the
use of tolls to achieve a socially optimal equilibrium and derives
conditions for this equilibrium to be unique. Finally, Section V
presents some concluding remarks.

II. JOINT STRATEGY FICTITIOUS PLAY WITH INERTIA

A. Setup

Consider a finite game with -player set
where each player has an action set and a utility
function where .

For , let denote the profile of
player actions other than player , i.e.,

With this notation, we will sometimes write a profile of actions
as . Similarly, we may write as .

A profile of actions is called a pure Nash equilibrium1

if, for all players

(1)

We will consider the class of games known as “generalized
ordinal potential games”, defined as follows.

Definition 2.1 (Potential Games): A finite -player game
with action sets and utility functions is a po-
tential game if, for some potential function

for every player, for every and for every
. It is a generalized ordinal potential game if, for some po-

tential function

for every player, and for every and for every
.

In a repeated version of this setup, at every stage
, each player, , selects an action .

This selection is a function of the information available to
player up to stage . Both the action selection function and

1We will henceforth refer to a pure Nash equilibrium simply as an equilib-
rium.
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the available information depend on the underlying learning
process.

B. Fictitious Play

We start with the well known Fictitious Play (FP) process [2].
Define the empirical frequency, , as the percentage of

stages at which player has chosen the action up to
time , i.e.,

where is player ’s action at time and is the
indicator function. Now define the empirical frequency vector
for player as

...

where is the cardinality of the action set .
The action of player at time is based on the (incorrect)

presumption that other players are playing randomly and inde-
pendently according to their empirical frequencies. Under this
presumption, the expected utility for the action is

(2)

where and
. In the FP process, player uses this expected

utility by selecting an action at time from the set

The set is called player ’s best response to
. In case of a non-unique best response, player makes

a random selection from .
It is known that the empirical frequencies generated by FP

converge to a Nash equilibrium in potential games [30].
Note that FP as described above requires each player to ob-

serve the actions made by every other individual player. More-
over, choosing an action based on the predictions (2) amounts
to enumerating all possible joint actions in at every stage
for each player. Hence, FP is computationally prohibitive as a
decision making model in large-scale games.

C. JSFP

In JSFP, each player tracks the empirical frequencies of the
joint actions of all other players. In contrast to FP, the action of
player at time is based on the (still incorrect) presumption
that other players are playing randomly but jointly according to
their joint empirical frequencies, i.e., each player views all other
players as a collective group.

Let be the percentage of stages at which all players
chose the joint action profile up to time , i.e.,

(3)

Let denote the empirical frequency vector formed by the
components . Note that the dimension of is the
cardinality .

Similarly, let be the percentage of stages at which
players other then player have chosen the joint action profile

up to time , i.e.,

(4)

which, given , can also be expressed as

Let denote the empirical frequency vector formed by
the components . Note that the dimension of

is the cardinality .
Similarly to FP, player ’s action at time is based on an

expected utility for the action , but now based on the
joint action model of opponents given by2

(5)

In the JSFP process, player uses this expected utility by se-
lecting an action at time from the set

Note that the utility as expressed in (5) is linear in .
When written in this form, JSFP appears to have a computa-

tional burden for each player that is even higher than that of FP,
since tracking the empirical frequencies of the
joint actions of the other players is more demanding for player

than tracking the empirical frequencies
of the actions of the other players individually, where de-
notes the set of probability distributions on a finite set . How-
ever, it is possible to rewrite JSFP to significantly reduce the
computational burden on each player.

To choose an action at any time, , player using JSFP needs
only the predicted utilities for each . Sub-
stituting (4) into (5) results in

which is the average utility player would have received if ac-
tion had been chosen at every stage up to time and other
players used the same actions. Let .
This average utility, , admits the following simple recur-
sion

2Note that we use the same notation for the related quantities ��� � � �,
��� � � �, and ��� � � �, where the latter two are derived from the first as
defined in (2) and (5), respectively.
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The important implication is that JSFP dynamics can be imple-
mented without requiring each player to track the empirical fre-
quencies of the joint actions of the other players and without
requiring each player to compute an expectation over the space
of the joint actions of all other players. Rather, each player using
JSFP merely updates the predicted utilities for each available ac-
tion using the recursion above, and chooses an action each stage
with maximal predicted utility.

An interesting feature of JSFP is that each strict Nash equilib-
rium has an “absorption” property as summarized in Proposition
2.1.

Proposition 2.1: In any finite -person game, if at any time
, the joint action generated by a JSFP process is a

strict Nash equilibrium, then for all .
Proof: For each player and for all actions ,

Since is a strict Nash equilibrium, we know that for all
actions

By writing in terms of and

Therefore, is the only best response to , i.e., for
all

A strict Nash equilibrium need not possess this absorption
property in general for standard FP when there are more than
two players.3

The convergence properties, even for potential games, of
JSFP in the case of more than two players is unresolved.4 We
will establish convergence of JSFP in the case where players
use some sort of inertia, i.e., players are reluctant to switch to a
better action.

D. JSFP With Inertia

The JSFP with inertia process is defined as follows. Players
choose their actions according to the following rules:

JSFP-1: If the action chosen by player at time
belongs to , then .

3To see this, consider the following 3 player identical interest game. For all
� � � , let � � ��� ��. Let the utility be defined as follows: ���� �� �� �
���� �� �� � �, ���� �� �� � ���� �� �� � �, ���� �� �� � ���� �� �� � �,
���� �� �� � ��, ���� �� �� � ����. Suppose the first action played is
���� � ��� �� ��. In the FP process each player will seek to deviate in the
ensuing stage, ���� � ��� �� ��. The joint action ��� �� �� is a strict Nash equi-
librium. One can easily verify that the ensuing action in a FP process will be
���� � ��� �� ��. Therefore, a strict Nash equilibrium is not absorbing in the
FP process with more than 2 players.

4For two player games, JSFP and standard FP are equivalent, hence the con-
vergence results for FP hold for JSFP.

JSFP-2: Otherwise, player chooses an action, , at
time according to the probability distribution

where is a parameter representing player ’s will-
ingness to optimize at time , is any prob-
ability distribution whose support is contained in the set

, and is the probability distribution
with full support on the action , i.e.,

...

...

where the “1” occurs in the coordinate of associated
with .

According to these rules, player will stay with the previous
action with probability even when there is
a perceived opportunity for utility improvement. We make the
following standing assumption on the players’ willingness to
optimize.

Assumption 2.1: There exist constants and such that for
all time and for all players

This assumption implies that players are always willing to opti-
mize with some nonzero inertia.5

The following result shows a similar absorption property of
pure Nash equilibria in a JSFP with inertia process.

Proposition 2.2: In any finite -person game, if at any time
the joint action generated by a JSFP with inertia

process is 1) a pure Nash equilibrium and 2) the action
for all players , then for

all .
We will omit the proof of Proposition 2.2 as it follows very

closely to the proof of Proposition 2.1.

E. Convergence to Nash Equilibrium

The following establishes the main result regarding the con-
vergence of JSFP with inertia.

We will assume that no player is indifferent between distinct
strategies.6

Assumption 2.2: Player utilities satisfy the following: for all
players , actions , , and joint actions

(6)

Theorem 2.1: In any finite generalized ordinal potential game
in which no player is indifferent between distinct strategies as in

5This assumption can be relaxed to holding for sufficiently large �, as opposed
to all �.

6One could alternatively assume that all pure equilibria are strict.
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Assumption 2.2, the action profiles generated by JSFP with
inertia under Assumption 2.1 converge to a pure Nash equilib-
rium almost surely.

We provide a complete proof of Theorem 2.1 in the Appendix.
We encourage the reader to first review the proof of fading
memory JSFP with inertia in Theorem 3.1 of the following sec-
tion.

F. Relationship Between Regret Matching and JSFP

It turns out that JSFP is strongly related to the learning algo-
rithm regret matching, from [18], in which players choose their
actions based on their regret for not choosing particular actions
in the past steps.

Define the average regret of player for an action
at time as

(7)

In other words, player ’s average regret for would rep-
resent the average improvement in his utility if he had chosen

in all past steps and all other players’ actions had re-
mained unaltered. Notice that the average regret in (7) can also
be expressed in terms of empirical frequencies, i.e.,

where

In regret matching, once player computes his average re-
gret for each action , he chooses an action , ,
according to the probability distribution defined as

for any , provided that the denominator above is positive;
otherwise, is the uniform distribution over . Roughly
speaking, a player using regret matching chooses a particular
action at any step with probability proportional to the average
regret for not choosing that particular action in the past steps.
This is in contrast to JSFP, where each player would only select
the action that yielded the highest regret.

If all players use regret matching, then the empirical fre-
quency of the joint actions converges almost surely to the
set of coarse correlated equilibria, a generalization of Nash equi-
libria, in any game [18]. We prove that if all players use JSFP
with inertia, then the action profile converges almost surely to a
pure Nash equilibrium, albeit in the special glass of generalized
ordinal potential games. The convergence properties of regret
matching (with or without inertia) in potential games remains
an open question.

III. FADING MEMORY JSFP WITH INERTIA

We now analyze the case where players view recent infor-
mation as more important. In fading memory JSFP with inertia,
players replace true empirical frequencies with weighted empir-
ical frequencies defined by the recursion

for all times where is a parameter
with being the discount factor. Let denote the
weighted empirical frequency vector formed by the compo-
nents . Note that the dimension of is
the cardinality .

One can identify the limiting cases of the discount factor.
When we have “Cournot” beliefs, where only the most
recent information matters. In the case when is not a constant,
but rather , all past information is given equal impor-
tance as analyzed in Section II.

Utility prediction and action selection with fading memory
are done in the same way as in Section II, and in particular, in
accordance with rules JSFP-1 and JSFP-2. To make a decision,
player needs only the weighted average utility that would
have been received for each action, which is defined for action

as

One can easily verify that the weighted average utility
for action admits the recursion

Once again, player is not required to track the weighted em-
pirical frequency vector or required to compute expecta-
tions over .

As before, pure Nash equilibria have an absorption property
under fading memory JSFP with inertia.

Proposition 3.1: In any finite -person game, if at any time
the joint action generated by a fading memory JSFP

with inertia process is 1) a pure Nash equilibrium and 2) the
action for all players , then

for all .
We will omit the proof of Proposition 3.1 as it follows very

closely to the proof of Proposition 2.1.
The following theorem establishes convergence to Nash equi-

librium for fading memory JSFP with inertia.
Theorem 3.1: In any finite generalized ordinal potential game

in which no player is indifferent between distinct strategies as in
Assumption 2.2, the action profiles generated by a fading
memory JSFP with inertia process satisfying Assumption 2.1
converge to a pure Nash equilibrium almost surely.

Proof: The proof follows a similar structure to the proof
of Theorem 6.2 in [3]. At time , let . There exists
a positive constant , independent of , such that if the current
action is repeated consecutive stages, i.e.

, then
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for all players.7 The probability of such an event is at least
, where is the number of players. If the joint ac-

tion is an equilibrium, then by Proposition 3.1 we are done.
Otherwise, there must be at least one player such that

and hence
.

Consider now the event that, at time , exactly
one player switches to a different action, i.e.,

for some player
where . This event happens with prob-
ability at least . Note that if is a generalized
ordinal potential function for the game, then .

Continuing along the same lines, if the current action is
repeated consecutive stages, i.e.

, then for
all players. The probability of such an event is at least

. If the joint action is an equilibrium, then by Propo-
sition 3.1, we are done. Otherwise, there must be at least one
player such that and hence

.
One can repeat the arguments above to construct a sequence

of profiles , where for all
, with the property that

and is an equilibrium. This means that given ,
there exist constants

both of which are independent of , such that the following event
happens with probability at least is an equilibrium
and for all players .
This implies that converges to a pure equilibrium almost
surely.

IV. CONGESTION GAMES AND DISTRIBUTED TRAFFIC ROUTING

In this section, we illustrate the main results on congestion
games, which are a special case of the generalized ordinal po-
tential games addressed in Theorems 2.1 and 3.1. We first re-
call the definition of player utilities that constitute a conges-
tion game. We illustrate these results on a simulation of dis-
tributed traffic routing. We go on to discuss how to modify
player utilities in distributed traffic routing to allow a central-
ized planner to achieve a desired collective objective through
distributed learning.

7To see this, notice that at time ��� , the weighted empirical frequencies are
equal to

�� ��� � � � �� ��� �� � � ��� �� �� ����

Therefore, when� is sufficiently large, the best response set,�� ��� ���� ��,
does not depend on the old weighted empirical frequencies, �� ���. Further-
more, note that this sufficiently large time � is independent of �. Since no player
is indifferent between distinct strategies, the best response to the current action
profile, �� �� �, is a singleton.

A. Congestion Games

Congestion games are a specific class of games in which
player utility functions have a special structure.

In order to define a congestion game, we must specify the ac-
tion set, , and utility function, , of each player. Towards
this end, let denote a finite set of “resources”. For each re-
source , there is an associated “congestion function”

that reflects the cost of using the resource as a function of the
number of players using that resource.

The action set, , of each player, , is defined as the set of
resources available to player , i.e.,

where denotes the set of subsets of . Accordingly, an ac-
tion, , reflects a selection of (multiple) resources,

. A player is “using” resource if . For an action profile
, let denote the total number of players

using resource , i.e., . In a congestion game, the
utility of player using resources indicated by depends only
on the total number of players using the same resources. More
precisely, the utility of player is defined as

(8)

The negative sign stems from reflecting the cost of using
a resource and reflecting a utility or reward function. Any
congestion game with utility functions as in (8) is a potential
game [6].8

A congestion game can be generalized further by allowing
player utilities to include player specific attributes [31]. For ex-
ample, each player may have a personal preference over re-
sources, in which case player utilities take the form

where is the fixed utility player receives for using
resource . Congestion games of this form are also potential
games [31].

B. Distributed Traffic Routing

We consider a simple scenario with 100 players (drivers)
seeking to traverse from node A to node B along 10 different
parallel roads as illustrated in Fig. 1. Each driver can select any
road as a possible route. In terms of congestion games, the set
of resources is the set of roads, , and each player can select
one road, i.e., .

Each road has a quadratic cost function with positive (ran-
domly chosen) coefficients,

8In fact, every congestion game is a potential game and every finite potential
game is isomorphic to a congestion game [30].
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Fig. 1. Network topology for a congestion game.

where represent the number of vehicles on that particular road.
The actual coefficients are unimportant as we are just using this
example as an opportunity to illustrate the convergence prop-
erties of the algorithm fading memory JSFP with inertia. This
cost function may represent the delay incurred by a driver as a
function of the number of other drivers sharing the same road.

We simulated a case where drivers choose their initial routes
randomly, and every day thereafter, adjusted their routes using
fading memory JSFP with inertia. The parameters are
chosen as 0.5 for all days and all players, and the fading memory
parameter is chosen as 0.03. The number of vehicles on each
road fluctuates initially and then stabilizes at a Nash equilibrium
as illustrated in Fig. 2. Fig. 3 illustrates the evolution of the con-
gestion cost on each road. One can observe that the congestion
cost on each road converges approximately to the same value,
which is consistent with a Nash equilibrium with large number
of drivers. This behavior resembles an approximate “Wardrop
equilibrium” [32], which represents a steady-state situation in
which the congestion cost on each road is equal due to the fact
that, as the number of drivers increases, the effect of an indi-
vidual driver on the traffic conditions becomes negligible.

Note that FP could not be implemented even on this very
simple congestion game. A driver using FP would need to track
the empirical frequencies of the choices of the 99 other drivers
and compute an expected utility evaluated over a probability
space of dimension .

It turns out that both JSFP and fading memory JSFP are
strongly connected to actual driver behavioral models. Con-
sider the driver adjustment process considered in [8] which
is illustrated in Fig. 4. The adjustment process highlighted is
precisely JSFP with Inertia.

C. Incorporating Tolls to Minimize the Total Congestion

It is well known that a Nash equilibrium may not minimize the
total congestion experienced by all drivers [33]. In this section,
we show how a global planner can minimize the total congestion
by implementing tolls on the network. The results are applicable
to general congestion games, but we present the approach in the
language of distributed traffic routing.

Fig. 2. Evolution of number of vehicles on each route.

Fig. 3. Evolution of congestion cost on each route.

Fig. 4. Example of a driver adjustment process.

The total congestion experienced by all drivers on the net-
work is
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Define a new congestion game where each driver’s utility takes
the form

where is the toll imposed on road which is a function of
the number of users of road .

The following proposition outlines how to incorporate tolls
so that the minimum congestion solution is a Nash equilib-
rium. The approach is similar to the taxation approaches for
nonatomic congestion games proposed in [31], [34].

Proposition 4.1: Consider a congestion game of any network
topology. If the imposed tolls are set as

then the total negative congestion experienced by all drivers,
, is a potential function for the congestion

game with tolls.
Proof: Let and . We will

use the shorthand notation to represent . The change
in utility incurred by the driver in changing from route to
route is

The change in the total negative congestion from the joint action
to is

Since

the change in the total negative congestion is

Expanding the first term, we obtain

Therefore

By implementing the tolling scheme set forth in Proposi-
tion 4.1, we guarantee that all action profiles that minimize the
total congestion experienced on the network are equilibria of the
congestion game with tolls. However, there may be additional
equilibria at which an inefficient operating condition can still
occur. The following proposition establishes the uniqueness of
a strict Nash equilibrium for congestion games on parallel net-
work topologies such as the one considered in this example.

Proposition 4.2: Consider a congestion game with nonde-
creasing congestion functions where each driver is allowed to
select any one road, i.e. for all drivers. If the conges-
tion game has at least one strict equilibrium, then all equilibria
have the same aggregate vehicle distribution over the network.
Furthermore, all equilibria are strict.

Proof: Suppose action profiles and are equi-
libria with being a strict equilibrium. We will again
use the shorthand notation to represent . Let

and be the
aggregate vehicle distribution over the network for equilibrium

and . If , there exists a road such that
and a road such that . Therefore, we

know that

Since and are equilibrium with being strict

Using the above inequalities, we can show that

which gives us a contradiction. Therefore . Since
is a strict equilibrium, then must be a strict equilibrium as

well.
When the tolling scheme set forth in Proposition 4.1 is ap-

plied to the congestion game example considered previously,
the resulting congestion game with tolls is a potential game in
which no player is indifferent between distinct strategies. Propo-
sition 4.1 guarantees us that the action profiles that minimize the
total congestion experienced by all drivers on the network are
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Fig. 5. Evolution of total congestion experienced by all drivers.

in fact strict equilibria of the congestion game with tolls. Fur-
thermore, if the new congestion functions are nondecreasing,9

then by Proposition 4.2, all strict equilibria must have the same
aggregate vehicle distribution over the network, and therefore
must minimize the total congestion experienced by all drivers on
the network. Therefore, the action profiles generated by fading
memory JSFP with inertia converge to an equilibrium that min-
imizes the total congestion experienced by all users, as shown
in Fig. 5.

D. Distributed Traffic Routing—General Network Topology

In this section, we will simulate the learning algorithm
fading memory JSFP with inertia over a more general network
topology.

Consider a congestion game with a 100 players seeking to
traverse through a common network encompassing 20 different
resources or roads denoted by . Now, an action for each player
consists of multiple resources, i.e., . Each player’s ac-
tion set consists of 20 different actions chosen randomly over
the set . Each road has a quadratic cost function with posi-
tive (randomly chosen) coefficients

where represent the number of vehicles on that particular road.
This setup can be used to model a variety of network topolo-
gies. In such a setting, a player’s action sets would consist of
all routes, or set of resources/roads, connecting his origin and
destination.

We simulated a case where drivers choose their initial routes
randomly, and every day thereafter, adjusted their routes using
fading memory JSFP with inertia. The parameters are
chosen as 0.5 for all days and all players, and the fading
memory parameter is chosen as 0.5. The number of vehicles

9Simple conditions on the original congestion functions can be established
to guarantee that the new congestion functions, i.e congestion plus tolls, are
nondecreasing.

Fig. 6. Evolution of number of vehicles on each route.

on each road fluctuates initially and then stabilizes as illustrated
in Fig. 6. The final routing profile is a Nash equilibrium.

V. CONCLUSION

We have analyzed the long-term behavior of a large number
of players in large-scale games where players are limited in both
their observational and computational capabilities. In particular,
we analyzed a version of JSFP and showed that it accommo-
dates inherent player limitations in information gathering and
processing. Furthermore, we showed that JSFP has guaranteed
convergence to a pure Nash equilibrium in all generalized or-
dinal potential games, which includes but is not limited to all
congestion games, when players use some inertia either with
or without exponential discounting of the historical data. The
methods were illustrated on a transportation congestion game, in
which a large number of vehicles make daily routing decisions
to optimize their own objectives in response to the aggregate
congestion on each road of interest. An interesting continuation
of this research would be the case where players observe only
the actual utilities they receive.

The method of proof of Theorems 2.1 and 3.1 relies on in-
ertia to derive a positive probability of a single player seeking
to make a utility improvement, thereby increasing the potential
function. This suggests a convergence rate that is exponential in
the game size, i.e., number of players and actions. It should be
noted that inertia is simply a proof device that assures conver-
gence for generic potential games. The proof provides just one
out of multiple paths to convergence. The simulations reflect
that convergence can be much faster. Indeed, simulations sug-
gest that convergence is possible even in the absence of inertia
but not necessarily for all potential games. Furthermore, recent
work [35] suggests that convergence rates of a broad class of
distributed learning processes can be exponential in the game
size as well, and so this seems to be a limitation in the frame-
work of distributed learning rather than any specific learning
process (as opposed to centralized algorithms for computing an
equilibrium). An important research direction involves charac-
terizing the convergence rates for general multi-agent learning
algorithms such as JSFP.
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APPENDIX

A. Proof of Theorem 2.1

The appendix is devoted to the proof of Theorem 2.1. It will
be helpful to note the following simple observations:

1) The expression for in (5) is linear in .
2) If an action profile, , is repeated over the interval

, i.e.,

then can be written as

and likewise can be written as

We begin by defining the quantities , , , and as
follows. Assume that player played a best response at least
one time in the period , where . Define

In other words, is the last time in the period
at which player played a best response. If player never
played a best response in the period , then we adopt the
convention . Note that

Now define

where denotes integer ceiling.
The proof of fading memory JSFP with inertia relied on a no-

tion of memory dominance. This means that if the current action
profile is repeated a sufficient number of times (finite and inde-
pendent of time) then a best response to the weighted empirical
frequencies is equivalent to a best response to the current action
profile and hence will increase the potential provided that there
is only a unique deviator. This will always happen with at least
a fixed (time independent) probability because of the players’
inertia.

In the non-discounted case the memory dominance approach
will not work for the reason that the probability of dominating
the memory because of the players’ inertia diminishes with time.
However, the following claims show that one does not need to
dominate the entire memory, but rather just the portion of time
for which the player was playing a suboptimal action. By domi-
nating this portion of the memory, one can guarantee that a uni-
lateral best response to the empirical frequencies will increase

the potential. This is the fundamental idea in the proof of The-
orem 2.1.

Claim 6.1: Consider a player with . Let be
any finite integer satisfying

If an action profile, , is repeated over the interval
, i.e.,

then

i.e., player ’s best response at time cannot be a
worse response to than .

Proof: Since ,

Expressing as a summation over the intervals
, , and and using the

definition (5) leads to

Now

and , meaning that the first term above
is negative, and so

This implies that

or, alternatively

If the quantity in brackets were positive, this would violate the
definition of —unless . In either case
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There are certain action profile/empirical frequency values
where the next play is “forced”. Define the time-dependent
(forced-move) set as

So the condition , implies that for all ,
“today’s” action necessarily lies in “tomorrow’s” best response,
i.e.,

By the rule JSFP-1, the next play is forced for
all .

Now define

(9)
If this is never satisfied, then set .

For the sake of notational simplicity, we will drop the explicit
dependence on and and simply write instead of

.
A consequence of the definition of is that for a given

and , 1) must be repeated over the interval
. Furthermore, at time , at least one player can

improve (over yet another repeated play of ) by playing a
best response at time . Furthermore, the probability
that exactly one player will switch to a best response action at
time is at least .

The following claim shows that this improvement opportunity
remains even if is repeated for longer than (because
of inertia).

Claim 6.2: Let and be such that . Let
be any integer satisfying . If

then

Proof: Let be such that

and

The existence of such an is assured by the definition of .
Pick . We have

Since , we must have

This implies

Claim 6.3: If, at any time, is not an equilibrium, then
.

Proof: Let . Since is not an equilibrium

Pick so that . If

then

Claim 6.4: Consider a finite generalized ordinal potential
game with a potential function with player utilities satis-
fying Assumption 2.2. For any time , suppose that

1) is not an equilibrium; and
2) for some .

Define

Then and

and

Proof: Since is not an equilibrium, Claim 6.3 implies
that , which in turn implies the above upper bound on

.
First consider the case where , i.e., .

According to the definition of in (9), must be repeated
as a best response in the period . Furthermore, we
must have
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and for at least one player .
The probability that exactly one such player will switch to a
choice different than at time is at least .
But, by Claim 6.1 and no-indifference Assumption 2.2, such an
event would cause

Now consider the case where , i.e., .
In this case

Moreover, the event

will occur with probability at least10 . Conditioned
on this event, Claim 6.2 provides that exactly one player will
switch to a choice different than at time with prob-
ability at least . By Claim 6.1 and no-indifference
Assumption 6, this would cause

Proof of Theorem 2.1: It suffices to show that there exists a
non-zero probability, , such that the following statement
holds. For any , , and , there exists
a finite time such that, for some equilibrium

(10)

In other words, the probability of convergence to an equilibrium
by time is at least . Since does not depend on , ,
or , this will imply that the action profile converges to an
equilibrium almost surely.

We will construct a series of events that can occur with posi-
tive probability to establish the bound in (10).

Let . All players will play a best response at time
with probability at least . Therefore, we have

(11)

Assume that is not an equilibrium. Otherwise, according
to Proposition 2.2, for all .

From Claim 6.4, define and as

10In fact, a tighter bound can be derived by exploiting the forced moves for a
duration of ����.

where . By Claim 6.4

and

Similarly, for we can recursively define

and

where

and

as long as is not an equilibrium.
Therefore, one can construct a sequence of profiles

with the property that
. Since in a finite generalized

ordinal potential game, cannot increase indefinitely as
increases, we must have

where comes from (11). Finally, from Claim 6.1 and As-
sumption 2.2, the above inequality together with

implies that for some equilibrium,
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where

Since does not depend on this concludes the proof.
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