
Joint Subcarrier-Relay Assignment and Power
Allocation for Decode-and-Forward Multi-Relay

OFDM Systems
Hua Mu, Meixia Tao, Wenbing Dang, and Yao Xiao

Department of Electronic Engineering
Shanghai Jiao Tong University, Shanghai, China

Emails: hua.mu@sjtu.org,{mxtao, dwb87514, xiaoyaorhythm}@sjtu.edu.cn

Abstract—Joint power allocation, relay selection, and sub-
carrier assignment are critical and challenging for achieving
full benefits of OFDM based cooperative relay networks. In
this paper, we study such a problem in a dual-hop multi-relay
OFDM system with an objective of maximizing the spectral
efficiency under a total power constraint. The system consists
of a pair of source and destination and multiple decode-and-
forward relays. We formulate the joint optimization of the three
types of resources: power, subcarrier and relay nodes, as a
problem of subcarrier-relay assignment and power allocation.
We show that it can be decomposed into2N + 1 sub-problems
through dual relaxation, with N being the total number of
subcarriers. An optimal algorithm with polynomial complexity is
presented. A suboptimal algorithm that decouples the subcarrier-
relay assignment and power allocation is also proposed to tradeoff
between performance and computational complexity.

I. I NTRODUCTION

The technology combination of relay-based network ar-
chitecture and orthogonal frequency division multiplexing
(OFDM) has been considered as a promising architecture
choice for future wireless broadband networks [1]–[3]. One
of the key problems in relay-based OFDM communication
systems is dynamic resource allocation. Compared with tra-
ditional single-hop OFDM or OFDMA systems, the resource
allocation in relay-based multi-hop OFDM systems is much
more challenging. It involves a coordination of power and sub-
carrier adaptation between different hops [4]–[7]. In addition,
when multiple relay candidates are available, relay selection
needs to be done. In this paper we consider a dual-hop multi-
relay OFDM system, which consists of a single pair of source-
destination and multiple relay nodes. The aim is to seek the
joint optimization of relay selection, subcarrier assignment
and power control. Such joint optimization regarding the three
types of resources: power, subcarrier and relay nodes, is crucial
in terms of achieving the maximum system performance.

Relay selection has been well investigated in the literature
for narrow band wireless multi-relay networks. A common
relay selection strategy is to choose the relay with the best
equivalent end-to-end channel gain [8]. Extending the similar
idea to broadband multi-relay OFDM networks is simple but
may not be efficient. This is because selecting one relay
based on the equivalent channel gain over the whole OFDM
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band, i.e. the so-calledsymbol-basedrelay selection, cannot
exploit the frequency diversity among different subcarriers.
Subcarrier-basedrelay selection, which selects one best relay
for each subcarrier, was then proposed in [9] to exploit
both node diversity and frequency diversity. Note, however,
the subcarrier-based relay selection in [9] is based on the
assumption that the signals received on different subcarriers of
the same relay are processed individually, rather than jointly.
Such approach is suboptimal in the decode-and-forward (DF)
relay protocol, wherein the OFDM symbol in the first hop is
decoded as a whole at the relay node and then transmitted over
the second hop. This motivates us to considersubcarrier-set
basedrelay selection in this paper, which is also referred to
assubcarrier-relay assignment.

The contribution of this paper is to formulate the joint opti-
mization of subcarrier-relay assignment and power allocation
under a total power constraint in the DF multi-relay OFDM
system. The total power constraint is motivated by the fact
that in some networks, such as sensor networks, where long-
term total power consumption is a major concern, restricting
the total transmit power is usually a convenient and effective
approach to satisfy the long-term power constraint. In the con-
text of wireless spectrum optimization problem for multicarrier
systems, dual decomposition is widely adopted [10], [11]. A
key result shown in [12] is that as the number of subcarri-
ers increases, the duality gap for the capacity maximization
problem vanishes, thus dual decomposition leads to the global
optimal resource allocation even if the primal problem is not
convex. In this paper, we show that the joint subcarrier-relay
assignment and power allocation optimization problem can be
decomposed into2N+1 sub-problems through dual relaxation,
whereN is the number of subcarriers. Each sub-problem has
a closed-form solution, and the global optimal solution can
be achieved by jointly optimizing the subproblems through
proper adjustment of dual variables.

The rest of the paper is organized as follows. In Section
II we introduce the system model and formulate the joint
optimization problem as a mixed integer programming prob-
lem. This problem is solved by introducing the time-sharing
concept and using dual decomposition in Section III. Then
in Section IV, a suboptimal solution is presented to tradeoff
complexity with performance. Simulation results are shown in
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Fig. 1. System model

Section V. Finally we conclude this paper in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a dual-hop OFDM relay system in Fig. 1, which
consists of one source node, one destination node, and a
set K = {1, . . . ,K} of relay nodes. Assume that perfect
channel state information can be obtained in this system. Let
N = {1, 2, · · ·N} denote the set of orthogonal subcarriers
for each hop. A time-division based half duplex DF protocol
is utilized. In the first timeslot, the source transmits signals
over all the subcarriers while all relay nodes listen. In the
second timeslot, the relay nodes decode the received signal,
re-encode it and then transmit it to the destination. LetΩi,k

denote the subcarrier set assigned to relayk over thei-th hop.
To avoid interference cancellation, in each hop a subcarrier
is only assigned to one relay. In other words, subcarrier sets
assigned to different relays over each hop must be mutually
exclusive.

Let α̃n,k,i denote the channel gain of relayk on subcarrier
n over hopi, which is assumed to remain invariant during a
frame transmission and be independent for differentk and i.
The transmission ratern,k,i (nat/sec/Hz) achieved by relayk
on subcarriern over hopi can be expressed as

rn,k,i =
1
N

ln
(

1 +
α̃n,k,ipn,k,i

N0ΓB/N

)
,

where N0 denotes the noise spectrum density,Γ denotes
the SNR gap,B denotes the system bandwidth, andpn,k,i

is the power allocated on subcarriern when it is assigned
to relay k over hop i. For notation brevity, we redefine
αn,k,i := α̃n,k,iN/N0ΓB as the normalized channel gain in
the remainder of this paper. The end-to-end transmission rate
achieved by relayk is the minimum of the rates achieved over
the two hops,

Rk =
1
2

min

 ∑
n∈Ω1,k

rn,k,1,
∑

n∈Ω2,k

rn,k,2

 .

Our objective is to maximize the end-to-end transmission
rate under a total network power constraint, given byPT . This

optimization problem can be formulated as follow

P1 : max
{p,Ω}

K∑
k=1

1
2

min

 ∑
n∈Ω1,k

rn,k,1,
∑

n∈Ω2,k

rn,k,2

 (1)

s.t.
N∑

n=1

2∑
i=1

∑
k∈Ωi,k

pn,k,i ≤ PT , (2)

Ωi,k ∩ Ωi,k′ = ∅, ∀i, ∀k 6= k′, (3)

∪K
k=1Ωi,k = N , ∀i, (4)

pn,k,i ≥ 0, ∀k, i , (5)

wherep = {pn,k,i} andΩ = {Ωi,k} denote the sets of opti-
mization variables. This is a mixed integer nonlinear program-
ming problem. Since each subcarrier can be assigned to any of
theK relays for both hops, there areK2N possible subcarrier-
relay assignments. The complexity is thus prohibitive for large
N andK. In the next section, we transform it into a convex
optimization problem and solve it with polynomial complexity.

III. O PTIMAL RESOURCEALLOCATION

To solve P1, we first relax the constraint of exclusive
subcarrier assignment and introduce time-sharing parameters
{ρn,k,i}, for n ∈ N , k ∈ K, and i = 1, 2. Eachρn,k,i denotes
the portion of time that subcarriern is assigned to relayk in
the i-th hop and satisfies

∑K
k=1 ρn,k,i = 1,∀n, i. Besides, we

introduce a new variablesn,k,i = pn,k,iρn,k,i to denote the
actual power consumed on subcarriern when it is assigned to
relayk over hopi. Variablesrk, for k ∈ K are also introduced
to transform the max-min problem into a convex one, whose
optimality is guaranteed by allowing time-sharing. Then the
relaxed optimization problem can be written as

P2 : max
{r,ρ,s}

K∑
k=1

rk (6)

s.t.
N∑

n=1

ρn,k,i ln
(

1 + αn,k,i
sn,k,i

ρn,k,i

)
≥ rk, ∀k, i, (7)

N∑
n=1

K∑
k=1

2∑
i=1

sn,k,i ≤ PT , (8)

K∑
k=1

ρn,k,i = 1, ∀n, i, (9)

sn,k,i ≥ 0, ρn,k,i ≥ 0, ∀n, k, i . (10)

As shown in [12] this optimal solution achieved by time
sharing will be very close to the value that can be achieved
subject to integer channel allocations. In fact, this gap has
been empirically shown to be close to zero when there are
only 8 tones in practice (e.g., [13]). Thus, we will concentrate
on solving the relaxed problem P2. Our simulation in Section
V also justifies this approach.

It can be shown that all the inequality constraints in P2 are
convex. The equality constraints and the objective function are



all linear. Therefore, P2 is convex and the strong duality holds.
The Lagrangian of P2 can be expressed as

J(r, s,ρ,µ, β,ν)

=
2∑

i=1

K∑
k=1

µk,i

[
N∑

n=1

ρn,k,i ln
(

1 + αn,k,i
sn,k,i

ρn,k,i

)
− rk

]

+
2∑

i=1

N∑
n=1

νn,i

(
1−

K∑
k=1

ρn,k,i

)

+β

(
PT −

N∑
n=1

K∑
k=1

2∑
i=1

sn,k,i

)
+

K∑
k=1

rk , (11)

whereµ = {µk,1, µk,2} � 0, β ≥ 0, andν = {νn,1, νn,2}
are the Lagrange multipliers for the constraints (7)-(9). Define
D as the set of all primal variables that satisfyρn,k,i ≥ 0 ,
sn,k,i ≥ 0 and rk ≥ 0. Then the dual objective function can
be expressed as:

g(µ, β,ν) , max
{r,s,ρ}∈D

J(r, s,ρ,µ, β,ν) , (12)

and the dual optimization problem is

min
{µ,β,ν}

g(µ, β,ν) (13)

s.t. µ � 0, β ≥ 0 .

In the following subsections we solve this dual problem.

A. Computing dual function

Observing (11), we find that the dual function defined in
(12) can be decomposed into2N + 1 independent functions,
as follows

g(µ, β,ν) = g0(µ) +
N∑

n=1

gn,1(µ, β,ν) +
N∑

n=1

gn,2(µ, β,ν)

+βPT +
2∑

i=1

N∑
n=1

νn,i . (14)

Here

g0(µ) , max
r∈D

J0(r,µ) = max
r∈D

K∑
k=1

(1− µk,1 − µk,2)rk , (15)

and

gn,i(µ, β,ν) , max
{s,ρ}∈D

Jn,i(s,ρ,µ, β,ν)

= max
{s,ρ}∈D

K∑
k=1

[
µk,iρn,k,i ln

(
1 + αn,k,i

sn,k,i

ρn,k,i

)
−νn,iρn,k,i − βsn,k,i

]
,∀n, i = 1, 2. (16)

With the above decomposition, we show that for given dual
variablesµ and β, we can obtain a closed-form expression
of pn,k,i. Moreover, finding the optimal value of time-sharing
factorsρn,k,i as well as determining the optimal value ofνn,i

has a complexityO(NK).

We solveg0(µ) first. J0(r,µ) in (15) is a linear function
of rk. The optimalr∗k that maximizesJ0(r,µ) should satisfy

r∗k =

0, when µk,1 + µk,2 > 1
any, when µk,1 + µk,2 = 1, ∀k ∈ K.
∞, when µk,1 + µk,2 < 1

(17)

Whenµk,1 +µk,2 < 1, theng(µ, β,ν) = ∞. This means that
the dual function cannot be minimized. Hence, the optimal
dual variables cannot lie in the region{µk,1, µk,2 | µk,1 +
µk,2 < 1}. Whenµk,1 + µk,2 ≥ 1, we haveg0(µ) ≡ 0.

Now let us solve forgn,i(µ, β,ν). Assume that subcarrier
n is assigned to relayk in hop i for a time periodρn,k,i.
Since Jn,i(s,ρ,µ, β,ν) is a concave function insn,k,i, the
KKT condition can be applied. Taking the derivative of
Jn,i(s,ρ,µ, β,ν) in (16) with respect tosn,k,i, equating it
to zero and considering the boundary constraints∗n,k,i ≥ 0,
we obtainp∗n,k,i as

p∗n,k,i =
s∗n,k,i

ρn,k,i
=
(

µk,i

β
− 1

αn,k,i

)+

, (18)

where(.)+ = max(0, .). Substituting (18) into (16), we obtain
that

Jn,i(ρ,µ, β,ν) =
K∑

k=1

ρn,k,i(Hn,k,i − νn,i) , (19)

where

Hn,k,i = µk,i

[
ln
(

µk,iαn,k,i

β

)]+
− β

(
µk,i

β
− 1

αn,k,i

)+

.

(20)
It is clear thatJn,i(ρ,µ, β,ν) is a linear function ofρn,k,i.
In order to maximizeJn,i(ρ,µ, β,ν), the optimal valueρ∗n,k,i

should satisfy

ρ∗n,k,i ∈

{1}, when Hn,k,i > νn,i

[0, 1] , when Hn,k,i = νn,i

{0}, when Hn,k,i < νn,i .
(21)

Therefore we have

gn,i(µ, β,ν) =
K∑

k=1

(Hn,k,i − νn,i)
+

. (22)

Substituting (22) into (14) we obtain the closed-form expres-
sion of the dual function

g(µ, β,ν) = βPT +
2∑

n=1

N∑
n=1

[
K∑

k=1

(Hn,k,i − νn,i)
+ + νn,i

]
.

To minimize g(µ, β,ν) over all dual variables{µ, β,ν},
we first solveg(µ, β) = minν g(µ, β,ν). This process easily
leads to

ν∗n,i = max
k
{Hn,k,i} , (23)

which follows a similar result in [11]. The corresponding dual
function is

g(µ, β) =
2∑

i=1

N∑
n=1

max
k
{Hn,k,i}+ βPT . (24)



From above, we conclude that for subcarriern over hopi,
if there exists a unique relayk∗n,i which has the largestHn,k,i,
then the optimal subcarrier-relay assignment is to assign this
subcarrier to the relayk∗n,i with ρ∗n,k∗

n,i,i
= 1, and ρ∗n,k,i =

0, ∀k 6= k∗n,k . If there exists more than one relay which
has the maximalHn,k,i simultaneously, then this subcarrier
n should be time-shared by these relays. However, the values
of time-sharing factorsρ∗n,k,i do not affect the value of dual

function g(µ, β,ν) as long as
∑K

k=1 ρn,k,i = 1 is satisfied.
Thus we can obtain the optimal end-to-end transmission rate
achieved by time-sharing by evaluating the optimal value of
dual functiong∗(µ, β).

B. Finding dual variables

After obtaining the closed-form expression ofg(µ, β) in
(24), we solve the dual problem:

min g(µ, β) (25)

s.t. µ � 0, β ≥ 0.

Since the dual problem is always convex, it can be readily
solved by a gradient-based method. In the following we
present a subgradient ofg(µ, β), based on which subgradient
method or ellipsoid method can be employed to find the
optimal dual variablesβ∗ andµ∗.

We firstly introduce a lemma to reduce the number of
variables to solve, the proof of which is given in the Appendix.

Lemma 1: There always exists the optimal dual variables
(β∗,µ∗) that satisfyµk,1 + µk,2 = 1, for all k ∈ K.

Define rk,i =
∑N

n=1 ρn,k,i ln
(
1 + sn,k,iαn,k,i

ρn,k,i

)
, which is

the transmission rate achieved by relayk over hop i. Let
{r∗k,i(µ, β), s∗n,k,i(µ, β)} denote the rates and powers that
maximize J(µ, β, r, s) over D for fixed values of{µ, β}.
Using Lemma 1, we obtain a subgradient ofg(µ, β) similar
as Proposition 1 in [10] and Proposition 1 in [11]

∇β = PT −
K∑

k=1

N∑
n=1

[
s∗n,k,1(µ, β) + s∗n,k,2(µ, β)

]
,

∇µk,1 = r∗k,1(µ, β)− r∗k,2(µ, β), ∀k.

C. Obtaining primal variables

After finding the optimal dual variablesβ∗ and µ∗ of
problem P2, we now turn to recover the optimal primal
variables. Since the optimal objective value achieved by time
sharing is very close to the one achieved by integer channel
assignment as we mentioned earlier, here we focus on the inte-
ger constrained case, i.e., the power allocation and subcarrier-
relay assignment satisfying (2)-(5) in problem P1 using the
optimal dual variables of problem P2. Substitutingβ∗ andµ∗

into (22) and then as discussed in Section III-A, without loss
of the optimality for the dual problem, we can simply let

ρ∗n,k =
{

1, if k = arg maxk{Hn,k,i}
0, otherwise (26)

If there are more than one relay that achieves the maximum
value in (26), we will just randomly assign the channel to one
of them.

Then the optimal subcarrier setsΩ∗
k,1 andΩ∗

k,2 are obtained
and the optimal power allocation can be performed based
on this subcarrier-relay assignment. This problem can be
expressed as

P3 : max
{p,r}

K∑
k=1

rk

s.t.
∑

n∈Ω∗
k,i

ln(1 + αn,k,ipn,k,i) ≥ rk, ∀k, i

K∑
k=1

2∑
i=1

∑
n∈Ω∗

k,i

pn,k,i = PT ,

pn,k,i ≥ 0, ∀n, k, i ,

which is a convex optimization problem. This problem can
be solved by utilizing a similar two-nested binary search as
in [14]. Note that in this paper, no direct link between source
and destination exists and there is only one destination (user).

The computational complexity of this optimal algorithm
is mainly determined by the complexity of solving the dual
problem, since it is much higher than the complexity of
recovering the optimal primal variables after the optimal dual
variables are found. As we know, the complexity of ellipsoid
method is polynomial in its dimension, which isK +1 in our
algorithm. Besides, in each iteration of the ellipsoid method,
solving the dual function has a complexityO(NK). Therefore,
the computational complexity of the optimal algorithm is
polynomial in the number of relay nodes and subcarriers.

IV. SUBOPTIMAL SOLUTION

Although the algorithm in Section III provides an optimal
resource allocation solution, its computational complexity may
still be too high for practical implementation. In this section,
we propose a suboptimal solution, which performs subcarrier-
relay assignment first, and then allocates the power optimally
with the given assignment. This suboptimal solution employs
subcarrier-based relay selection as well as subcarrier pairing.

The algorithm is sketched as follows.
(1) For each relayk, compute the equivalent channel gain

for all the N2 possible subcarrier pairs(n, n′) under a total
power constraint, which is given by [4]

αeq
n,k,n′ =

αn,k,1αn′,k,2

αn,k,1 + αn′,k,2
.

(2) For each pair(n, n′), select the relayk∗(n, n′) =
arg maxk{αeq

n,k,n′} to occupy this pair and letα∗n,n′ =
maxk{αeq

n,k,n′}.
(3) Form anN ×N matrix A = [α∗i,j ]N×N . Since in each

hop a subcarrier can be assigned to only one relay, from
each row and each column only one element can be selected.
The Hungarian method can be used to select the subcarrier
pairs from this matrix. Alternatively, the greedy algorithm that
always selects the maximum element at each time can also be
used.

(4) Using the subcarrier pairs obtained from Step (3), we
now have accomplished the subcarrier-relay assignment. Then



power allocation is performed for this given assignment, as
described in Subsection III-C.

V. NUMERICAL RESULTS

The DF based dual-hop OFDM system under consideration
includes one source, multiple relays and one destination. The
distance between the source and the destination is 2Km.
All relays are allocated on a circle centered at the middle
of the line connecting the source and the destination. The
radius of the circle is 200m. Stanford University Interim (SUI)
channel model with a central frequency at around 1.9 GHz
is used to approximate the fixed broadband wireless channel
with 1MHz bandwidth. The broadband channel consists of 6
taps. The signal fading on the first tap is characterized by
a Ricean distribution with K-factor equal to 1, while fading
on the other five taps follows a Rayleigh distribution. No
shadowing is considered here. The noise spectrum density is
set to4.14× 10−21W/Hz and the pathloss exponent is set to
be 3.5. The number of subcarriers is fixed atN = 64.

As a benchmark scheme, the OFDM symbol based relay
selection is also presented. In this scheme, we first assume
uniform power allocation and then select the relayk∗ that
maximizes the end-to-end transmission rate:

k∗ = arg max
k

{
1
2

min
{ N∑

n=1

ln (1 + αn,k,1PT /2N) ,

N∑
n=1

ln (1 + αn,k,2PT /2N)
}}

.

Oncek∗ is found, we then perform the optimal power allo-
cation, which can be carried out in a similar way to the two-
nested binary search algorithm in Subsection III-C. Note that
only one relay node is selected for use in each transmission
in the benchmark scheme.

Fig. 2 shows the end-to-end average transmission rate of
different schemes using 8 relay nodes. We can observe that
the proposed optimal subcarrier-relay assignments with and
without time-sharing (denoted as “Opt-TS” and “Opt-no TS”
in the figure respectively) have almost the same performance.
The subcarrier-based suboptimal solution proposed in Section
IV also performs well although it has a much lower complex-
ity, compared with the optimal algorithm. From this figure it is
also observed the proposed optimal algorithm achieves a gain
of 0.5 bit/s/Hz in spectral efficiency over the symbol-based
benchmark scheme.

Fig. 3 illustrates the end-to-end average transmission rate
achieved by using different number of relay nodes. The aver-
age rate increases as the relay numberK increases, however,
the improvement in transmission rate is diminishing whenK
is large enough.

Fig. 4 shows the information outage probability of the
proposed schemes when the target transmission rate isR0 = 4
bit/s/Hz and the relay number isK = 8. We can observe
that the optimal algorithm (Opt-no TS) outperforms both
subcarrier-based and symbol-based relay selections consider-
ably. Specifically, when outage probability is set to10−3, the
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optimal algorithm can save0.5 dB total transmit power when
compared with subcarrier-based solution and save more than
4.5 dB when compared with the symbol-based solution.

VI. CONCLUSION

We study the optimal resource allocation problem in a
relay-based OFDM system. The source transmits data over
orthogonal subcarriers to multiple relays, while each relay
fully decodes the information bits and forwards them to the
destination. A joint subcarrier-relay assignment and power al-
location problem is presented for maximizing the system end-
to-end transmission rate under a total power constraint. We
transform the mixed integer nonlinear programming problem
into a convex optimization problem, and solve it using dual
decomposition. A suboptimal algorithm that first performs
subcarrier-based relay selection and then carries out power
allocation is also proposed. Both average transmission rate
and outage probability are studied in simulation to evaluate
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the performance of the proposed schemes. It is shown that
the suboptimal algorithm performs closely to the optimal
algorithm with much less complexity. The numerical results
also show that they both outperform significantly the OFDM
symbol based relay selection with power control. Although
it is a centralized algorithm, the optimal resource allocation
algorithm presented in this paper defines the performance
bounds for any distributed algorithm.

APPENDIX

PROOF OFLEMMA 1

From (20), we can observe thatHn,k,i is a continuous
function ofµk,i. Evaluating its derivative with respect toµk,i,
we have

∂Hn,k,i

∂µk,i
=

{
0, when µk,i

β < 1
αn,k,i

ln
(

µk,iαn,k,i

β

)
> 0, when µk,i

β > 1
αn,k,i

.
(27)

Thus Hn,k,i is a non-decreasing function ofµk,i and so is
g(µ,β) in (24). From Subsection III-A, we have concluded
that the optimal dual variables{µk,1, µk,2} always lie in the
region{µk,1, µk,2 | µk,1 +µk,2 ≥ 1}. Suppose we update dual
variables{µk,i} within the region{µk,1, µk,2|µk,1 + µk,2 ≥
1} and reach an optimal point{µ∗,β∗} with g∗(µ∗,β∗) =
minµ,β g(µ,β). Assume for relayk0, we haveµ∗k0,1+µ∗k0,2 >
1. Then we can findµ′k0,1 andµ′k0,2 such thatµ′k0,1 ≤ µ∗k0,1

and µ′k0,2 ≤ µ∗k0,2, and µ′k0,1 + µ′k0,2 = 1. It is clear that
g({µ′k0,i, µ

∗
−k0,i}i=1,2, β) ≤ g∗, whereµ∗−k0,i denotes that all

relays except relayk0 will use dual variable in{µ∗}. Since
g∗ = min{µ,β} g(µ, β), we haveg({µ′k0,i, µ

∗
−k0,i}i=1,2,β) ≥

g∗. Therefore,g({µ′k0,i, µ
∗
−k0,i}i=1,2,β) = g∗, which means

{µ′k0,i, µ
∗
−k0,i}i=1,2 is also an optimal dual variable which can

minimize dual functiong(µ,β). This proves the lemma.
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