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Abstract - This paper describes an application of 
sequential Monte Carlo model-based approaches to 
perform joint target tracking and identification. While a 
geometric shape is moving inside the field of view of a 
CCD camera, alternatively getting closer and moving 
away while rotating, the data processing system is 
confronted to challenging tasks: track the moving shape 
in real 3D space, i.e. estimate its position and orientation, 
and at the same time dynamically estimate its dimensions 
and, if required, identify it. The system is based on class-
specific Bayesian filters. More originally, the issue of the 
fixed hyper-parameter estimation, here the geometric 
shape dimensions, is solved by combining two different 
techniques. The first one consists of Markov Chain Monte 
Carlo moves that rescale both the trajectory and the 
shape; it benefits from an efficient statistic which 
summaries the trajectory with regard to moves. The 
second one is an artificial deformation diffusion of the 
shape. 

Keywords: Video tracking, identification, particle 
filtering, parameter estimation, MCMC 

1 Introduction 
The paper presents a didactic application of digital CCD 

video tracking of basic geometric shapes (such as cubes, 
parallelepipeds, spheres and hemispheres). It illustrates the 
issues developed in the associated paper [1], which deals 
with sequential Monte Carlo approaches for joint tracking 
and identification. In the tracking scenario, a shape moves 
inside the field of view (FOV) of a CCD camera, 
alternatively getting closer and moving away while 
rotating (Figure 1). 
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Figure 1. The didactic application 

In order to focus on the tracking issues and not to deal 
with very specific image processing problems, the 
scenario is simplified: 
- The environment is uncluttered (a black cloth has 

been laid behind the target) , 
- The lighting conditions are correct, providing good 

conditions for feature extraction. 
- There is no occultation of the target (the target is 

suspended by threads). 
The goals of the application are: 
(a) Track the shapes in the real 3D space, i.e. estimate 

simultaneously the position and the orientation of the 
moving shape (the so-called target pose), 

(b) Estimate sequentially also, if they are unknown, the 
dimensions of  the shape (e.g. radius of a sphere, 
length/width/height of a parallelepiped), 

(c) Identify the shape, when there is a prior uncertainty 
on the class (e.g.: sphere or hemisphere, cube or 
parallelepiped). 

 
The main characteristics of the shape video joint 

tracking and identification (JTI) application are: 
 The general architecture is based on class-specific 

filters [1],[2]: each shape model class holds its own 
inference process to estimate the posterior 
distributions. Moreover, outputs are collected to 
perform the estimation of the class probabilities. With 
this architecture, each shape model class is able to 
have its own state space (which dimension differs 
from one class to another class, depending on the 
symmetry level of the shapes) and its own related 
dynamic model. While [2] illustrates behaviour-based 
identification, this application illustrates feature-based 
identification. 

 The inference engines of each model class are based 
on a recent particle filtering technique [3],[4], that is a 
sequential adaptation of annealed importance 
sampling [5] and is also called “bridging densities”. 
For convenience, it will be called subsequently 
Simulated Annealed Particle Filter (SAPF). Briefly 
speaking, SAPF avoids the degeneracy phenomenon 
by computing gradually the posterior distribution and 
performing resample-MCMC (Markov Chain Monte 
Carlo) moves [6]. A similar technique has already 
been used for human body video tracking [7] 

0-7803-9286-8/05/$20.00 © 2005 IEEE



 The fixed parameters, which are here dimensions of 
the shapes, are added to the dynamic state vector, 
leading to a hybrid state vector. More originally, the 
dimension estimation is performed by the combined 
use of two fixed-parameter estimation techniques. The 
first one consists of MCMC moves that re-scale both 
the trajectory and the shape; it benefits from an 
efficient statistic that summarises the trajectory with 
regard to moves. The second one is an artificial 
evolution of deformation of the shape that diffuses 
across the layers of the SAPF. 

 The likelihood function uses extracted features 
(foreground and edges) that are provided by an image 
processing stage and compares them to an expected 
projection of the shape requiring a shape model and a 
camera model. 

The organisation of the paper is as follows. Section 2 
presents the SAPF filter and the model-based approach. 
Next Section 3 describes the combination of two methods 
to estimate target features. Section 4 gives results for two 
scenarios. Finally, Section 5 gives the concluding remarks. 
 
2 Simulated Annealed Particle Filter 
2.1 Principles 

Simulated Annealed Particle filters (SAPF), known as 
“bridging densities” [3],[4], are a sequential adaptation of 
annealed importance sampling [5]. SAPF turns out to be 
useful when no good importance density is available, 
meaning when the likelihood is centred far away from the 
points sampled from the importance distribution. For 
example, this is the case when, through lack of an efficient 
importance density, the prior ( )1−kk xxp  is used but has a 

much broader distribution than the likelihood ( )kk xyp . In 
such a situation, resample-move techniques [6], which add 
MCMC iterations in order to avoid sample 
impoverishment, might have a very few accepted moves 
and consequently the procedure might be very 
computationally expensive. The basic idea of SAPF 
algorithms is then to use intermediate distributions in 
order that each step is small enough to avoid the 
degeneracy problem and that the particles progressively 
migrate and concentrate in the likely parts of the state 
space. Furthermore, replacing a single large transition with 
a series of smaller transitions is supposed to reduce the 
Monte Carlo variations of the posterior distribution.   

Between the initial distribution ( ) ( )kkkk yxxqx ,10 −∝Π  
( ( )⋅q  is the importance density) and the final distribution 

( ) ( )kkkM yxpx :11 ∝Π + , 1−M  intermediate distributions 
( )km xΠ  are defined according to an appropriate schedule, 

such as: 
 ( ) ( ) ( ) mm

kkkkkkm yxpyxxqx αα −
− ⋅∝Π 1

:11,  (1) 

The sequence { } 1,...,0 += Mmmα , with 

0...1 110 =<<<<= +MM αααα , determines the 
cooling schedule of this simulated annealing method. 
Using the prior distribution as the importance density, (1) 
can be rewritten as: 

 ( ) ( ) ( ) m
kkkkkm xypyxpx α−

− ⋅∝Π 1
1:1  (2) 

Notice that the gradual introduction of the likelihood is 
then evident. 

The SAPF aims to move the set of particles through this 
sequence of distributions while respecting Bayesian 
inference; the resulting weighting samples are eventually 
distributed according the posterior distribution ( )kk yxp :1 . 

 
2.2 The SAPF algorithm 

The pseudo-code of a SAPF recursion is shown below: 
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Apply MCMC moves with a Markov chain transition 
kernel that keeps ( )km xΠ  invariant. 

 End for 
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intermediate distribution ( )km xΠ . The following steps do 
not change that distribution. The resampling step reduces 
the degeneracy of the samples and the MCMC moves 
diversify the samples and explore the probable areas of 
state space. The algorithm is illustrated in Figure 2 with a 
number of simulated annealing layers equal to 3. Starting 
from the importance distribution 0Π  (dark grey), the 
likelihood (clear grey) is progressively introduced, so that 
at each layer the particles concentrate more and more in 
the probable parts of the state space. Eventually, the 
particles are distributed according to the posterior 
distribution 3Π . 

 

Figure 2. SAPF principles 

Remark: In the JTI video application, it has been chosen 
to perform the resampling step systematically. As the 
resampling step helps to regain the entire efficient particle 
set, it improves the exploration of the state-space for the 
next move step. Notice that if 0=M , there is no bridging 
densities and the algorithm corresponds to the “Resample-
Move” algorithm. 

 
2.3 Interests for the JTI application 
- Through the lack of a good importance distribution, the 
SAPF algorithm is able to deal with a multi-modal 
likelihood without becoming misguided by local maxima 

and being at a complete standstill in a specific mode. It 
just so happened with the likelihood of the application, 
which is described further. Besides, the high dimension 
state space induces rather peaked likelihood functions and 
posterior distributions. SAPF is adapted to deal with high 
dimensional state spaces [3],[4] and moreover to output  
good maximum a posteriori (MAP) estimates. 
- Since SAPF is derived from resample-MCMC move 
techniques, it is rather straightforward and natural to add 
target attribute moves inside the MCMC move step in 
order to perform fixed-parameter estimation. As the 
dimension of the state space becomes higher and the 
search of the good modes more challenging, an 
appropriate cooling schedule and suitable proposal 
distributions are even more required to lead to efficient 
annealed algorithms. 
- Concerning the model selection goal, SAPF is able to 
receive whether reversible jump MCMC inside the 
MCMC move step or to compute the outputs needed by 
the class-specific filters approach to estimate the class 
probabilities. The latest approach is chosen for the JTI 
video application: the particle weights must not be 

normalised in the resampling step (**) so that ∑ =

N

i
i
kw

1
 

eventually approximates the predictive density of the 
measurement ky  (given the model class). The expected 
reduction of the Monte Carlo variations should benefit the 
accuracy of the class probability estimates. 

Remark: An adaptive cooling schedule [4] monitors the 
size of the successive steps 1−−=∆ mmm ααα  so that the 

rate of efficient particles 
T

eff

N
N̂

 remains roughly constant 

in the SAPF resampling step and the degeneracy is under 
control ( mα∆  can be determined by any numerical 
optimisation routine). Consequently, the number of steps 
varies, depending on the difference between the proposal 
distribution (here the prior for the video application) and 
the posterior distribution. Thus, the first measurement 
requires the most important computational effort and the 
highest number of steps since the prior knowledge 

( )θ,0xp  is then vaguely informative, while the next 
measurements starting from a quite informative 
prior ( )1:1, −kk yxp θ  require less computation.  
 
2.4 MCMC proposal distribution 

The MCMC move step used in the video application is 
based on the MH scheme with a symmetric (Gaussian) 
random walk proposal (Metropolis algorithm). It consists 
in a transition move TK , simultaneously on the position, 
the velocity and the orientation of the target. The variance 
of the proposal distribution decreases at each layer of the 
SAPF recursion as the important moves become less and 
less possible and the distribution freezes. The variance 
evolution is tuned in order to assure more or less a rate of 



acceptance move around 30%. Other moves dedicated to 
target features are presented further. 
 
2.5 Model-based approach 

In this section, we briefly describe the models chosen 
for this specific application. 
 
Hybrid state space model 

The state space is defined according to the shape class. 

A hybrid state vector [ ]TSkk Θxχ =  describes the 
target state at time k . 
- kx  is the dynamic part that includes the position vector 
of the target (3 coordinates), its velocity vector (3 
coordinates and its orientation. The target orientation is 
described by the Euler angles. Depending on the level of 
symmetry of the shape, none of them are required (sphere) 
to the full three Euler angles are required (parallelepiped). 
- SΘ  is the attribute state of the target, i.e. the shape 
dimensions.  Basically it depends on the shape: [ ]rS =Θ  
(radius) for spheres and hemispheres, [ ]lS =Θ  (length) 

for cubes, [ ]TS hwl=Θ  (length, width, height) for 
parallelepipeds. Of course, this state part is fixed. 
 
Dynamic model 

The dynamic model is a (second order) piecewise 
constant white acceleration model [11] on the position 
component and a random walk on the orientation 
component. 
 
Observation model 

Similarly to [7], a pre-processing step of feature 
extraction is applied to the current image. Two image 
features are extracted: the edges and the foreground (cf. 
Figure 3). Notice that both the lighting effects (part of the 
shape not very exposed) and the blurring effects may 
cause some of the edges to be undetected, altering the 
information given by the image. 
 

   
Figure 3 - Feature extraction 

Associated with a shape particle and its state vector 

[ ]TSkk Θxχ =
 at time k , a shape model and a 

standard pinhole camera model are used to determine the 
expected image features of such a particle. The shape 
model generates edge and foreground sampling points, 
according to the class of the shape and its pose.  

The likelihood function ( )kyp χ  is then the product of 

a likelihood ( )k
E
y

L χ  based on the edges and a likelihood 

( )k
F
y

L χ  based on the foreground. Both are computed 

from the above mentioned sampling points. 
 

3 Shape feature estimation 
Combined techniques are used to perform the estimation 

of the shape features. The first technique is a genuine 
resample-MCMC move that is here applied to re-scale 
both the dimensions of the target and its whole trajectory. 
Then, as described for the point 2D bearings-only tracking 
problem [12], a sufficient statistic can sum up the whole 
trajectory so that the computational and memory 
requirements of the re-scaling moves are reasonable. 

In order to be able to reach any point of the hyper-
parameter space, other moves are needed. They consist in 
deformation moves that change the shape dimensions 
without keeping the proportions. Since no efficient 
statistics are here available and since anyway the 
degeneracy of the past of the trajectory would strongly 
bias the evaluation and the resulting estimates, an artificial 
evolution is applied, consisting in a deformation diffusion 
through the layers of the SAPF.  
 
3.1 Re-scaling MCMC Move λK  

Denoting the whole trajectory kΛ  (states at all time 
points and parameters) at time k , the re-scaling move λK  
consists in: 

[ ] [ ]***
0

*
0 ...... SS ΘxxΛΘxxΛ kk

K
kk =→= λ , where 

*
0x ,…, *

kx  correspond to a reduction or amplification of 

the position and velocity parts of the states 0x ,…, kx  by 
the same factor λ , the orientation part remaining 
unchanged. As for the parameters, SS ΘΘ ⋅= λ* , i.e. the 
moved shape is the homothetic of the original shape by the 
factor λ  (the proportions remain unchanged). As a matter 
of fact, the move is nothing else than envisaging that the 
shape-particle is bigger or smaller, but respectively further 
or closer in such a way that the expected measurements 
would be unchanged. 

In order to construct a Markov chain transition kernel 
λK  that keeps the joint posterior 

distribution ( )kk yxp :1:0 ,θ  invariant, a Metropolis-Hastings 

method is chosen with a proposal ( )kkq ΛΛ* . The 
acceptance probability of the move is: 
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Since the successive likelihood remains unchanged after 
the move, the previous ratio is equal to: 

 ( )
( ) ( )

( ) ( )S

S

Θxxx

Θxxx

,

,

,

0

1

0
1

**
0

1

0

**
1

*

pp

pp

k

i
ii

k

i
ii

kk

⋅












⋅












=ΛΛ

∏

∏
−

=
+

−

=
+

ρ  (5) 

As the dynamic model gives: 
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It is then possible to obtain:  
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Denoting kγ  the mean of the quadratic acceleration of the 
target and developing the prior, it eventually leads to the 
simple expression: 
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The sufficient statistic ( )kvr γ,,, 00 SΘ  sums up all the 

information needed to evaluate the re-scaling move λK . 
Thus, it only requires to add the quadratic acceleration 

mean kγ  to the state and to update it recursively, which is 
straightforward, at each time k . Notice also that the 
associated re-scaling move is then: kk γλγ ⋅= 2* . Although 
there is an unavoidable degeneracy in the past of the 
particles, it has appeared that in the video tracking 
application the distribution of kγ , for a given trajectory 
scale, is quite narrow. Thus, the committed error is quite 
negligible in proportion to a proposed re-scaling move λ . 

As in [6], an uniform symmetric proposal density 
( ) ( )**

kkkk qq ΛΛΛΛ =  is chosen for the re-scaling move 

λK , i.e. [ ]11 /1~ λλλ U ; the value of the chosen 
constant 1λ  is tuned and decreases in time in order to 
assure more or less a rate of acceptance move around 30%.  

The re-scaling move λK  is added to the transition 
MCMC move TK  of the SAPF recursion described in 
Section 5.1, resulting in a cycle hybrid Kernel λKKT ⋅ . 
 
Remarks concerning (8): 
- If 0=kγ , there is no apparent motion and (8) 

indicates that all the re-scaling moves are possible, 
meaning for example that the target could be just as 
well further and bigger, which is exactly the 
uncertainty of the information provided by only one 
measurement. 

- Low values of λ  correspond to high values of the 
trajectory part of the ratio ( )*, kk ΛΛρ ; that means that 
closer trajectories are favoured as long as the prior 
allows it. According only to the dynamic model, 
closer trajectories are more likely since they undergo 
less important acceleration and deceleration. 

- The higher the dynamic noise ϑσ  is, the more likely 
the further trajectories are. 

- While k  increases, the possible moves become 
smaller and smaller.   

 
3.2 Deformation artificial diffusion 

To complement the re-scaling move λK  and to be able 
to reach any point of the parameter space, a 
complementary deformation moves DK  has to be 
performed, consisting of:  

[ ] [ ]*
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K
kk

D =→= . The 
trajectory of the shape-particle is unaltered; only its 
dimensions are changed now without trying to keep the 
proportions. 
 

Choosing again a MH method, the ratio of the 
acceptance probability of the move is: 
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As it was previously mentioned in Section 4, such a move 
would necessitate the evaluation of all the likelihood terms 
corresponding to all the past measurements, leading to 
computational and memory requirements increasing in 
time. Furthermore, the evaluation would be biased since 
the joint distribution ( )ik yp *

:0 , SΘx  is not really estimated 

prior trajectory 



by the particle filter and the past of the particles is highly 
degenerated. Each evaluation of ( )*, SΘx iiyp  would be 

distorted, as ix  is a very specific point of the state space, 
not really more likely than other points that have been 
forgotten. This is illustrated in the extreme situation of 
Figure 3 where a parallelepiped appears in front of the 
camera; two completely different likely orientations are 
represented, belonging to two separated modes I and II of 
the posterior distribution space. A few measurements later, 
as one of the two modes is kept from this past 
measurement, moves in the length dimension are possible 
(Mode I) or impossible (Mode II). The posterior 
distribution on the length will undoubtedly suffer from the 
arbitrariness of the selected mode. 
 

  
Figure 3. Arbitrary of the move evaluation 

And yet, the deformation move DK  can be easily 
evaluated at the time of the 1st measurement where: 
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More, it can be fully integrated with the transition move 
TK  of the SAPF recursion so that the final probability 

ratio, corresponding to the joint MCMC move DTK ⊕ , is:  
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The proposal distribution on the parameter moves is 
chosen in the same way as the one of the transition move 
described previously. Notice that, for the 1st measurement, 
the SAPF designed for the video tracking application 
strictly behaves as a simulated annealing importance 
sampling based on MCMC moves. 
 

For the next measurements, an artificial diffusion of 
deformation is used through the successive layers of the 
SAPF. It is derived from Gaussian Kernel smoothing and 
solves the degeneracy problem by introducing a slow 
random walk evolution of the target dimensions.  

At time k , from the previous posterior parameter 

samples { } SN
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i
k w 111, =−−θ  approximating ( )1:1 −kyp θ , 

Gaussian kernel smoothing would consist in: 
 ( ) ( )1

2
11 ,~ −−− k

i
kk

i
kk VhNp θθθθ  (12) 

where h  is the kernel bandwidth ( h  can be chosen 
according to the optimal bandwidth that assumes an 
underlying Gaussian density) and 1−kV  the empirical 

covariance matrix of  { } SN
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i
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i
k w 111, =−−θ . 

 An adaptation is required to use such a method through 
the simulated annealing recursion of the SAPF where 
intermediate densities and samples are handled. At the 
layer m , the parameter undergoes the random walk: 
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where 
)1(

1
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−
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kθ  is the nearest neighbour of 
)1(

1
−

−
mi

kθ  

among  the set of samples { } SN
i

i
k 11 =−θ . This empirical 

method allows a slow diffusion through the layers while 
still referencing from the samples at time 1−k  and their 
related smooth Kernel density. In addition to (13), it is 
checked that the parameters remain in the support of the 
prior ( )*

SΘp . 
 
4 Results 
4.1 3D tracking 

Figure 4 represents the tracking of a hemisphere during 
75 measurements at the frame rate of 15 Hz. Here the 
radius of the hemisphere is known (20 cm). For a while, 
the target moves slowly and only shows its spherical face; 
after the 25th measurement, it moves faster while rotating. 
On the whole, the SAPF tracks the target well. Sometimes, 
slight imperfections occur when the extracted features of 
the image are mediocre, i.e. mainly when the edges are 
badly situated (measurements Y30, Y50 and Y65). Around 
Y35, the tracker has not found the true orientation and has 
been satisfied with a local minimum. Subsequently, it 
manages to find again the true mode 
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Figure 4. Hemisphere tracking. 

 
4.2 3D hyper-parameter estimation 

This example deals with the estimation of a 3D 
parameter, i.e. the length (L), the width (W) and the height 
(H) of a parallelepiped. The prior uncertainty on the 3 
dimensions L, W and H is the same ~ U[10 cm 30 cm]. 
The proportions are represented in the upper left part of 
Figure 5, in the plane (W*/L*,H*/L*) where L*, W* and H*  
are the sorted dimensions in a decreasing order. Black 
circles represent the true proportion while green squares 
represent the successive MMSE (Minimum Mean Square 
Error) estimator. After the 1st full MCMC based inference, 
the set of samples is tightening around the true point. The 
next hybrid inferences, based on MCMC and artificial 
diffusion, improves little by little the estimation quality. 
At time 20, the precision is around a few percents.  

 

 

 

 
Figure 5. Parallelepiped tracking. 

 
4.3 Joint tracking and identification 

 
Figure 6. Bayes factor 

 
Figure 7. Class probability 

In this second scenario, the real target is the long 
parallelepiped of Figure 1. For a while, it only shows is 
smallest square section (see measurements Y1, Y10, Y20, 
and Y30 on Figure 6-7), then rotates at around time 40 (see 
Y40) and turns its longest face towards the camera (see 
measurements Y50 and Y60). There is now two 
equiprobable ( 2

1=ip ) classes: the cube class ( r ~ U[10 

cm 30 cm] ) and the parallelepiped class ( l = 39.5 cm - w, 
h ~ U[10 cm 30 cm]), 

 
Figures 6-7 represent respectively the evolution of the 

Bayes factor and the class probability of each class. Until 
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time 40, the class cube seems to be more probable, 
essentially due to the fact that rotating the long 
parallelepiped would have shown more quickly its other 
faces. After time 40, the classification process changes its 
mind and it becomes more and more evident that it is in 
reality a long parallelepiped. Notice the few jolts of the 
Bayes factor that come from momentary mediocre edge 
extractions and a resulting distorted likelihood. 
 

4.4 Computational requirements 
The shape video JTI system, developed in Matlab and C, 

was run on a PC Pentium II (350 MHz). Using 200 
particles and 5-6 annealing layers on average, a typical 
sequence of 15 seconds  (225 frames - 15 Hz – image 
resolution 320x240 pixels) takes approximately 2 hours. 
However, the code is not optimised; better tunings of the 
SAPF and improvements of the numerical likelihood 
evaluation routines could provide, among others, sizeable 
gains. 
 
5 Conclusions 

Sequential Monte Carlo methods are powerful and 
efficient tools to perform joint tracking and identification. 
For this video application, a class specific filters 
architecture has been chosen. For each class, a 
sophisticated particle filter, called SAPF, computes the 
posterior distribution through simulated annealing layers, 
integrating various MCMC moves.  

More originally, the issue of the fixed hyper-parameter 
estimation, here the geometric shape dimensions, is solved 
by combining two different techniques. The first one 
consists of MCMC moves that rescale both the trajectory 
and the shape; it benefits from an efficient statistic which 
summaries the trajectory with regard to moves. The 
second one is an artificial deformation diffusion of the 
shape. 
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