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Brain-computer interface is a growing field of interest in human-computer interaction with diverse applications ranging from
medicine to entertainment. In this paper, we present a system which allows for classification of mental tasks based on a joint time-
frequency-space decorrelation, in which mental tasks are measured via electroencephalogram (EEG) signals. The efficiency of this
approach was evaluated by means of real-time experimentations on two subjects performing three different mental tasks. To do
so, a number of protocols for visualization, as well as training with and without feedback, were also developed. Obtained results
show that it is possible to obtain good classification of simple mental tasks, in view of command and control, after a relatively
small amount of training, with accuracies around 80%, and in real time.
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1. INTRODUCTION

Research on human-computer interfaces (HCIs) for disabled
people has lead to the so-called brain-computer interface
(BCI) systems that use brain activity for communication pur-
poses. When the brain activity is monitored through elec-
troencephalogram (EEG) measurements, one has an EEG-
based BCI, henceforth simply called BCI.

Current BCIs use the following noninvasive EEG signals.

(i) Event-related potentials (ERPs), which appear in re-
sponse to some specific stimulus. ERPs can provide
control when the BCI produces the appropriate stim-
uli. The advantage of an ERP-based BCI is that little
training is necessary for a new subject to gain con-
trol of the system. The disadvantage is that the subject
must wait for the relevant stimulus presentation [1].

(ii) Steady-state visual-evoked responses (SSVERs), which
are elicited by a visual stimulus that is modulated at a
fixed frequency. The SSVER is characterized by an in-
crease in EEG activity at the stimulus frequency. With
biofeedback training, subjects learn to voluntarily con-

trol their SSVER amplitude. Changes in the SSVER re-
sult in control actions occurring at fixed intervals of
time [2].

(iii) Slow cortical potential shifts (SCPSs) that are shifts of
cortical voltage, lasting from a few hundred millisec-
onds up to several seconds. Subjects can learn to pro-
duce slow cortical amplitude shifts in an electrically
positive or negative direction for binary control. This
skill can be acquired if the subjects are provided with
a feedback on the course of their SCP and if they are
positively reinforced for correct responses [3].

(iv) Spontaneous signals (SSs) that are recorded in the
course of ordinary brain activity. These signals are
spontaneous in the sense that they do not constitute
the responses to a particular stimulus.

A BCI based on SSs generates a control signal at given in-
tervals of time based on the classification of EEG patterns
resulting from a particular mental activity (MA) [4, 5].

The development in BCI research was mainly moti-
vated by the hope that it could serve as an augmentative
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communication option for people with motor disabilities
[6]. However, efficient BCIs can serve as additional com-
mand and control means when the hands are used for other
tasks, as in the case of pilots. The application that motivated
our research was the design of an immersive environment
where people could interact, between themselves and the en-
vironment, by simply thinking.

The achievement of a successful BCI system depends on
system design factors (classification algorithm, communica-
tion bit rate, and feedback strategy) as well as on subject mo-
tivation.

There is a subject dependency because the subject should
learn how to control his EEG in order to interact with the
system. Human factors such as fatigue, stress, or boredom are
of great influence; one of the first questions when designing
a BCI should be how to motivate the subject.

In this paper, we present a time-frequency SS-based BCI.
We designed five operational modes (OMs) going from the
simple real-time visualization of EEG in a 3D environment
to object control. In this way, the subject can become famil-
iar with the system and get motivated because of the 3D en-
vironment where the interaction takes place.

2. GENERAL CONCEPTS

A BCI can be defined as a communication system that in-
volves two entities: a human subject and a machine. The
subject communicates by producing EEG and the machine
responds with “actions.” In this research, the machine is a
computer and the computer actions are dynamic multime-
dia signals (3D scenes, images, videos, or sounds).

The subject performs MAs to control the computer ac-
tions. These MAs are characterized by the presence of pat-
terns in recorded EEG signals.

The correspondence between EEG patterns and com-
puter actions constitutes a machine-learning problem since
the computer should learn how to recognize a given EEG pat-
tern. In order to solve this problem, a training phase is nec-
essary, in which the subject is asked to perform MAs and a
computer algorithm is in charge of extracting the EEG pat-
terns characterizing them.

When the training phase is finished, the subject can start
to control the computer actions with his thoughts. This is
the application phase and constitutes the ultimate goal of our
research.

2.1. EEG acquisition

EEG signals are measured at the scalp by affixing an array
of electrodes according to the 10-20 international system
(Figure 1) and with reference to digitally linked ears (DLE).

DLE voltages are obtained by using the average of volt-
ages at both earlobes as reference. The earlobes are selected
because they constitute an almost quiet reference. In fact,
they present small influences due to temporal activity [7].

If we denote by Ve the voltage at any of the electrodes,
and VA1 and VA2 the voltages at the left earlobe and right
earlobe, respectively, then the DLE-referenced voltage of
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Figure 1: International 10-20 system of electrodes placement.
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An EEG signal is thus composed of the DLE signals of

each electrode. When a measure is composed of such single
composite measures, it is called multivariate [8].

2.2. Training phase

The objective of this phase is two-fold: to extract EEG pat-
terns that uniquely characterize MAs, and to train the sub-
ject. The results of this phase are MA models that will serve
as references for the application phase.

This phase can be performed with two approaches,
namely, training without feedback and training with feed-
back.

In the case of training without feedback, the subject is
asked to perform MAs during a given period of time (with
repetitions if necessary) while his EEG signals are recorded
for ulterior MA model construction.

In the case of training with feedback, clue information
is provided to the subject that tells him if his EEG pattern
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Figure 2: Basic scheme of a BCI in its application phase.

was successfully identified (positive feedback) or not (neg-
ative feedback). According to neuroscience results [9, 10],
the human brain is able to modulate its activity in order to
minimize the number of negative feedbacks. Training with
feedback is possible only if an MA model exists, that is,
the information of a previous training without feedback is
available.

2.3. Application phase

The basic scheme of a BCI in its application phase is shown in
Figure 2. The computer action at recognition time tk is gen-
erated by the classification of the EEG pattern present in the
EEG signals (Sk) recorded during the T seconds preceding
the recognition time. In the sequel, we will call this EEG seg-
ment of duration T a trial.

The time interval between two successive recognition
times is denoted by TI (interaction period or computer ac-
tions period). The choice of TI and T is the result of a trade-
off between computer actions rate, EEG pattern misclassifi-
cation probability, and computational cost.

As EEG signals are contaminated by noise, a preprocess-
ing step is necessary. The trial Sk is then passed trough the
preprocessing module whose output is a clean trial Xk or a
special message if Sk is too perturbed to be useful.

The pattern estimation module extracts the EEG patterns
Fk contained in Xk. The nature of Fk is determined by the
classification algorithm.

Finally, a classifier module decides which computer ac-
tion to consider based on a distance measure between MA
model representatives and the pattern Fk.

3. PROPOSED BCI SYSTEM

3.1. BCI-system modules

According to Figure 2, a BCI in its application phase is com-
posed of the following modules: signal acquisition, preprocess-

ing, pattern estimation, pattern classification, and computer
actions generator.

In the training phase, the same modules are used plus an
MA model builder. The role of the computer actions genera-
tor is however different here as it is used to display visual cues
(indicating which MA to perform) and to provide feedback.

Since BCI technology is still in its experimental phase,
these modules and their relationships should be as flexible as
possible.

3.2. OMs of the BCI

Five OMs1 were implemented; they allow the subjects to per-
form various experiments from simple to more complex.

Visualization OM (VOM)

In this OM, the subject can watch a visual representation of
his EEG in real time. Specific EEG features, such as the power
values in the typical frequency bands (δ, θ, α, β), interelec-
trode coherences, and total power at a given electrode, are
mapped to a 3D virtual environment and are regularly up-
dated. The objectives of this OM are to familiarize the subject
with the system as well as to calibrate the latter.

Training without feedback OM (NFOM)

In this OM, the subject is asked (by means of visual or audio
cues) to perform a defined MA. The produced EEG is then
recorded for offline MA model construction.

Training with feedback OM (FOM)

The subject is asked to perform an MA and a feedback is pro-
vided. This feedback is positive when the computer recog-
nizes the MA and is negative otherwise. This is possible as
MA models were calculated during a previous training with-
out feedback. MA models can be updated in the course of a
FOM (dynamic update) or at the end of it [11].

Control OM (COM)

Since the results of previous OMs are MA models, the sub-
ject can start to control the system by performing the MAs
for which the system has been trained. In this OM, visual or
sound cues are no longer necessary.

Multisubject simultaneous training OM (MUOM)

This is a particular form of the FOM. It consists in a multi-
subject game whose goal is to gain control of an object by
performing an MA. This OM was chosen because of its more
stimulating effect when compared to a simple feedback.

3.3. System architecture

We grouped the system modules listed before into three com-
ponents: signal production, signal processing, and multime-
dia renderer.

1In [11], the OMs were called experiments.
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Figure 3: BCI-system architecture.

We propose a distributed architecture in which each
component offers specific services to the others in an efficient
and transparent way.

Figure 3 depicts the architecture diagram of our BCI sys-
tem.

(1) The signal production component is responsible for
signal acquisition, digitalization, and efficient data transmis-
sion through the network.

(2) The signal processing component is in charge of signal
preprocessing, pattern extraction, MA model construction,
and pattern classification.

(3) The rendering component is used to display multime-
dia cues in NFOM and FOM, as well as to provide the feed-
back for the FOM. Furthermore, it acts as renderer in the
VOM, COM, and MUOM.

The communication rules between these components
were designed over the CORBA specification [12], and im-
plemented in JAVA (for networking) and C and Matlab (for
processing).

4. EEG SIGNALS PREPROCESSING

The purpose of EEG signal preprocessing is to maximize the
signal-to-noise ratio (SNR). Noise sources can be nonneural
(eye movements, muscular activity, 50 Hz power-line noise)
or neural (EEG features other than those used for control)
[6].

In this research, we centered our analysis on nonneu-
ral noise such as eye-movement artefacts, muscular artefacts,
and the 50 Hz power-line noise.

Since the frequencies of interest in EEG are mainly lo-
cated below 40 Hz, we filtered the signals between 1 and
40 Hz. The 50 Hz power-line noise was therefore attenuated.

For eye-movement artefacts and muscular artefacts, we
chose to reject a trial containing any of these artefacts and,
consequently, such a trial could not generate any computer
action.

In the case of muscular activity, one of the best ap-
proaches for detection consists in using independent com-
ponent analysis (ICA) of EEG. However, ICA is basically an
offline method since it is only meaningful when the amount
of data is large enough [13].

0 1 2 3

0.5 s

Fp1

Fp2

EEG trial contaminated
by an eye blink

Figure 4: Rejection of an EEG trial contaminated by an eye-blink
artefact.

A practical method for detecting muscular artefacts is
based on the fact that these artefacts are characterized by
high frequencies (above 20 Hz) and high amplitudes. In [14],
muscle artefact detection is achieved by considering the ab-
solute and relative power over 25 Hz. In this paper, we set a
threshold on the power at this frequency band based on vi-
sual inspection and ICA during a calibration step.

For eye-movement artefacts detection, many methods
have been proposed [15]. They are fundamentally offline be-
cause they are mainly oriented to clinical research.

We implemented a method based on the power at pre-
frontal electrodes (Fp1 and Fp2) because eye-movement
artefacts are characterized by an abrupt change in amplitude
mainly localized at Fp1 and Fp2 (Figure 4). The signal power
at Fp1 and Fp2 is computed every half second and compared
to the mean power of the preceding two seconds. If the cur-
rent power subtracted from the mean is larger than some
multiple of the standard deviation of the two-second power,
the trial is marked as contaminated by an eye artefact and
thus rejected. The threshold is determined in the calibration
step.

5. EEG SIGNALS CLASSIFICATION

The classification of EEG signals based on the patterns char-
acterizing the MAs constitutes a fundamental part of a BCI.
As a matter of fact, the choice of the temporal parameters T
and TI is strongly dependent on the classification method.

An EEG signal is multivariate because it is composed of
signals coming from several electrodes. In this paper, we pro-
pose a decomposition of the multivariate classification into
univariate classifications. Figure 5 depicts the general scheme
of our method.

In the following subsections, we first present the univari-
ate classification algorithm and then the decomposition of
the multivariate signals (MVSs) into univariate representa-
tive signals.
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5.1. Univariate signal classification in the
time-frequency domain

In this subsection, the objects to be classified are univariate-
signals (henceforth simply called signals).

Time-frequency representation

Time-frequency representations (TFRs) of a signal can be
divided into two groups according to the nature of their
transformations: linear (short-time Fourier transform), and
quadratic (based on the Wigner-Ville distribution). Here we
focus on the quadratic representation.

According to [16], all TFR of a signal s(t) can be obtained
from2

C(t, ω) =
1

4π2

∫∫∫

s∗
(
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2
τ

)

s

(

u +
1

2
τ

)

× φ(θ, τ)e− jθt− jτω+ jθu dudτ dθ,

(3)

where t is the time, ω is the frequency, τ is the time lag (usu-
ally called doppler), θ is the frequency lag (usually called de-
lay), and φ(θ, τ) is a two-dimensional function called the ker-
nel.

The choice of the kernel is guided by the desire to have a
TFR satisfying some established properties with regard to the
application. Here, we designed a kernel with the objective of
efficient signal classification.

There are a number of alternative ways for writing the
general class of time-frequency distributions that are the
most convenient for the classification application. One of
them is the characteristic function (CF) formulation. We re-
call that the CF M(θ, τ) is the double Fourier transform of

2All the integrals where the limits are not indicated span from −∞ to
+∞.

the TFR [16]:
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Combining (3) and (4), we obtain
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where A(θ, τ) is the symmetrical ambiguity function (AF) of
s(t), defined as
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and ŝ(ω) is the Fourier transform of s(t).
Equation (6) allows us to interpret the AF as a measure of

the joint time-frequency auto-correlation of s(t). The θ − τ
plane is commonly called ambiguity plane.

The kernel function that can be seen as a mask in the
ambiguity plane has the goal of enhancing the regions in the
plane θ−τ that better discriminate the signals to be classified.

In this research, we consider the classification problem
with respect to the modulus of the CF. The kernel is then
designed so as to enhance the regions where this modulus is
more discriminative.

Kernel design

Given a training set

Υ =
{

s
q1
w1 (t), s

q2
w2 (t), . . . , s

qW
wW (t); qk = 1, . . . , Qwk ;

1 ≤ k ≤W
} (7)

of labeled signals, where W is the number of classes, Qwk the
number of labeled signals belonging to class wk, and s

qk
wk (t)

the qkth signal belonging to class wk, we wish to determine a
kernel function φ(θ, τ) so that we can compare the CF mod-
ulus of an unknown signal s(t) to that of each class and assign
s(t) to its most likely class.

We define the set ϑ(Υ) as
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In order to detect the regions where the class differences
are maximal, we define the contrast function Γ(θ, τ) as
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is the mean AF modulus corresponding to class wk. The vari-
ance of the AF modulus corresponding to class wk is
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The discrete version of the θ − τ plane allows us to select
the κ points of maximum contrast.

We group these points in a max-contrast set K defined as

K =
{(

m1 · ∆θ, n1 · ∆τ
)

,
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, . . . ,
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where ∆θ and ∆τ are the discretization steps.
We design the kernel as a discrete binary function, where

the points in K are set to “1” while the others are set to “0,”
as follows:

φ(m · ∆θ, n · ∆τ) =







1 if (m · ∆θ, n · ∆τ) ∈ K,

0 otherwise.
(15)

Class model

The model of the class wk is composed of its mean AF mod-
ulus, its variance AF modulus, and the kernel. All these ele-
ments are considered in their discrete form.

By an adequate choice of units, we can set the discretiza-
tion steps ∆θ and ∆τ to 1.

The model of the class wk can be written as follows:
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In an alternative way, the set K can be included instead of
φ(m,n) as follows:

Model
(

wk

)

=
{

E
[∣

∣Awk (m,n)
∣

∣

]

,VAR
[∣

∣Awk (m,n)
∣

∣

]

, K
}

.
(17)

Unlabeled signals classification

In order to assign an unknown signal s(t) to a class, we need
a distance measure between s(t) and a class model. We take

as a distance measure

d
(

s(t),model
(
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where |A(mi, ni)| is the discrete AF modulus of s(t) at point
(mi, ni).

In fact dswk
is the Mahalanobis distance between the AF

modulus of s(t) and the mean AF modulus of class wk at the
points where the kernel φ(m,n) is different from zero.

The most likely class of s(t) is given by its classification
defined by

classification
(

s(t)
)

= argmin
wk

(

dswk

)

. (19)

Classification error rate

The classification error rate is defined, with respect to a la-
beled signal set (test set), by the ratio between the number of
correctly classified signals and the total number of signals in
the labeled set.

The choice of the parameter κ (number of contrast points
that we take into account) remains to be detailed. This pa-
rameter should be chosen so as to minimize the classification
error in a test set of labeled signals. This can be achieved by
increasing the value of κ until a minimal classification error
rate is obtained.

5.2. MVS classification in the time-frequency domain

A MVS S(t) can be written in a vector form S(t) =

[s1(t), . . . , sN (t)]t, where the si(t) are the components of
S(t). We can easily adapt the formulation of the univariate-
classification problem in Section 3.1 to the multivariate case
as follows.

Given a training set of labeled MVSs

Υ =
{

S
q1
w1 (t), S

q2
w2 (t), . . . , S

qW
wW (t); qk = 1, . . . , Qwk ;

1 ≤ k ≤W
}

,
(20)

where W is the number of classes, Qwk the number of la-
beled MVSs belonging to class wk, and S

qk
wk (t) the qkth MVS

belonging to class wk, we wish to characterize each class
by a model so that we can compare an unknown MVS S(t)
to each class-model and assign S(t) to its most likely
class.

Time-frequency-space representation of MVS

The multivariate ambiguity function (MAF) of an MVS S(t)
is defined by [17]

MA(θ, τ) =

∫

S

(

t +
τ

2

)

SH
(

t −
τ

2

)

e jθt dt, (21)

where H stands for conjugate transpose.
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Another way to write (21) in a matrix form is presented
as follows:

MA(θ, τ) =









a11 · · · a1N

...
. . .

...
aN1 · · · aNN









, (22)

where a11 =
∫

s1
∗(t − τ/2)s1(t + τ/2)e jθtdt, a1N =

∫

sN∗(t −
τ/2)s1(t + τ/2)e jθtdt, aN1 =

∫

s1
∗(t − τ/2)sN (t + τ/2)e jθtdt,

and aNN =
∫

sN∗(t − τ/2)sN (t + τ/2)e jθtdt.
In (22), the terms on the diagonal are the auto-ambiguity

functions (commonly called AFs) and the off-diagonal terms
are called cross-ambiguity functions.

In Section 5.1 we mentioned the fact that the AF could
be interpreted as a measure of the joint time-frequency auto-
correlation. The generalization of this interpretation implies
that the MAF is an indicator of the joint time-frequency-
space autocorrelation of a MVS. The space dimension is
taken into account by the cross-ambiguity functions.

Spatial decorrelation

A common approach when dealing with multivariate data is
to find a number of components satisfying some statistical
properties that can generate the original multivariate data by
applying a linear transformation. The most common tech-
niques are the principal component analysis (PCA) whose
components are linearly statistically independent and ICA
whose components are statistically independent.

In both PCA and ICA the correlation between the new
transformed components (TRCs) is zero. Therefore, PCA
and ICA lead to MVSs whose components are spatially decor-
related.

Furthermore, the MAF matrix of a spatial decorrelated
MVS is diagonal.

Besides PCA and ICA, other decorrelation methods can
be used. As in the case of the kernel design, we can design a
decorrelation method whose goal is to find components that
maximally discriminate among the classes. A way to achieve
this goal is to use a feature extraction based on eigenvector
analysis [18]. An example of application in the BCI frame-
work can be found in [19], where an interpretation in terms
of spatial filters is presented. However, only two classes can
be classified at a time.

We present below a decorrelation method based on the
joint diagonalization of the autocorrelation matrices of each
class.

We denote by Z(t) the transformed MVS (TMVS) result-
ing from the premultiplication of S(t) by the matrix P:

Z(t) = P · S(t). (23)

The labeled MVS belonging to the training set Υ are P-
projected to generate the following transformed set PΥ:

PΥ =
{

Z
q1
w1 (t), Z

q2
w2 (t), . . . , Z

qW
wW ;

qk = 1, . . . , Qwk ; 1 ≤ k ≤W
}

,
(24)

where Z
qk
wk (t) = P · S

qk
wk (t).

The signal components (transformed components) of
Z
qk
wk (t) are {ℓz

qk
wk (t); 1 ≤ ℓ ≤ N}.

The discrete version of the set PΥ is constituted of the
matrices Z

qk
wk whose elements are the values of Z

qk
wk (t) at the

sampling instants.
We wish to determine the matrix P such that

E
[

Zwk · Z
t
wk

]

= P · E
[

Swk · S
t
wk

]

· Pt

= P ·





1

Qwk

Qwk
∑

qk=1

S
qk
wk ·

(

S
qk
wk

)t



 · Pt

= P · Rwk · P
t = Dwk ; k = 1 · · ·W,

(25)

where Dwk are diagonal matrices and Rwk are called the
autocorrelation matrices of the class wk. Thus the matrix P
simultaneously diagonalizes the set {Rwk | 1 ≤ k ≤W}.

As a matter of fact, the matrix P that exactly diago-
nalizes this set exists when the Rwk are normal3 commut-
ing matrices [20]. According to (25), the Rwk are normal
but they do not necessarily commute. However, it is pos-
sible to find a matrix that approximately diagonalizes the
set {Rwk | 1 ≤ k ≤ W} [20] by optimizing a joint di-
agonality criterion (minimization of the square sum of the
off-diagonal elements). An iterative procedure consisting in
the application of plane rotations so as to satisfy the joint-
diagonality criterion is presented in [20]. Because of the effi-
ciency and the good results of such method, we used it in our
work.

In order to characterize the discrimination potential of
each of the components of Z(t), we define the contrast func-
tion Ω(ℓ), where ℓ = 1, . . . , N is the TRC index, as follows:

Ω(ℓ)

=

∑

1≤k1<k2≤W

(

E
[

∫ (

ℓzwk1 (t)
)2
dt
]

− E
[

∫ (

ℓzwk2 (t)
)2
dt
])2

∑W
k=1 VAR

[

∫ (

ℓzwk (t)
)2
dt
] ,

(26)

where 1 ≤ ℓ ≤ N .
The function Ω(ℓ) measures the contrast of the ℓth trans-

formed component when the energy in that component is
used as a discrimination parameter between the classes.

The contrast measure allows us to assign to each trans-
formed component (27) a classification weight

ρℓ =
Ω(ℓ)

∑N
l=1 Ω(l)

. (27)

Class model

The model of the class wk is composed of the projection ma-
trix P, the set of classification weights {ρℓ | 1 ≤ ℓ ≤ N}, and

3A matrix A is normal when A = AH .
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the univariate model of each component (see Section 5.1):

Model
(

wk

)

=
{

P, ρ(ℓ), E
[∣

∣
ℓAwk (m,n)

∣

∣

]

,

VAR
[∣

∣
ℓAwk (m,n)

∣

∣

]

, ℓK ; 1 ≤ ℓ ≤ N
}

,

(28)

where E[|ℓAwk (m,n)|], VAR[|ℓAwk (m,n)|], and ℓK are, re-
spectively, the mean AF modulus of the ℓth component as-
sociated to the class wk, the variance AF modulus of the ℓth
associated to the class wk, and the max-contrast set of the ℓth
component.

Unlabeled signals classification

Given an MVS S(t), we first compute its TMVS Z(t) (see
(23)) and obtain the TRCs z1(t), z2(t), . . . , zN (t). Then the
distances between each component and the model of each
class associated with that component are calculated as fol-
lows:

dℓwk
=

∑

(mi ,ni)∈Kℓ

(∣

∣
ℓA
(

mi, ni
)∣

∣− E
[∣

∣
ℓAwk

(

mi, ni
)∣

∣

])2

VAR
[∣

∣ℓAwk

(

mi, ni
)∣

∣

] , (29)

where |ℓA(mi, ni)| is the modulus of the AF of zℓ(t). Finally,
the global distance between S(t) and the class wk is

DS(t)
wk
=

N
∑

ℓ=1

ρ(ℓ) · dℓwk
. (30)

The most likely class of S(t) is given by its classification
defined as

classification
(

S(t)
)

= argmin
wk

(

DS(t)
wk

)

. (31)

6. EXPERIMENTAL METHODS AND PROTOCOL

Two male and healthy volunteers (S1 and S2), 29 and 23 years
old, participated in six sessions of 20 minutes distributed
over five weeks. The subjects were comfortably sitting in an
armchair and placed in front of a computer screen. The ex-
perimentation room was quiet and slightly illuminated.

The subjects started each session by five minutes of the
VOM. During the VOM, we controlled the recording condi-
tions and set the threshold parameters for artefact rejection
(see Section 4). Furthermore, the VOM allowed subjects to
get familiar with the system.

The EEG signals were recorded with reference to DLE
(see Section 2.1) and from electrodes Fp1, Fp2, F3, F4 C3, C4,
P3, P4, O1, and O2 of the 10/20 international system, at a rate
of 256 Hz per channel. The electrodes Fp1 and Fp2 were used
only for eye-movement artefacts detection and they were not
included in the classification analysis.

Both subjects were asked to perform the following imag-
ined MAs: vertical movements of the left and right index
fingers (MA1 and MA2) and incremental mental counting
(MA3).

Visual cues were used to indicate which MA to perform.
In the case of MA1 and MA2, a horizontal arrow pointing to
the left or to the right was displayed on the computer screen;
for MA3, the first two-digit number was displayed.

The first recording session was carried out without
feedback and the next five with feedback. In the first ses-
sion, the first MA models were calculated; this allowed us to
provide feedback in the second session. During the feedback
sessions, the MA models were updated incrementally as ex-
plained in Section 6.2.

The temporal parameters T and TI were both set to 0.5
second (see Section 2.3). The goal was therefore to train MA
models able to correctly classify half-second EEG segments
(trials).

6.1. Protocol of a training-without-feedback session

The first five minutes were spent with the VOM. The remain-
ing 15 minutes were divided into three five-minute slices in
which, respectively, MA1, MA2, and MA3 were trained.

The five-minute slices were as well divided into one-
minute recordings and thirty-second break as depicted in
Figure 6. The one-minute recordings were organized in the
following way. At the beginning, the corresponding visual
cue was displayed and lasted five seconds. Then a break sig-
nal appeared, indicating five-second break. This process was
repeated during the one-minute recording (Figure 6).

At the end of this session, the MA models for the three
MAs were computed. These models are calculated as ex-
plained in Section 5.

Theoretically, we have 180 trials per MA for training the
MA models. However, the first trial after the presentation of
the visual cue is rejected because of the presence of evoked
potentials—due to visual stimulation—and about 20% of the
trials are rejected because of artefacts. In practice, no more
than 150 trials per MA were available.

6.2. Protocol of a training-with-feedback session

The twenty minutes are distributed between visualization,
MAs, and breaks in the same way as in the precedent case
(Figure 7).

During the MAs, a feedback is provided to the subject
in the form of a sphere that moves left, right, or upwards
if MA1, MA2, or MA3 are correctly identified. If the MA is
wrongly classified, the sphere does not move. The feedback is
provided for each half second but the first after the visual cue
indicates which MA to perform (see Figure 7).

During the last break period of each five-minute slice, the
MA models are updated with the new recorded data.

Table 1 shows the MAs that were trained in each five-
minute slices of the session with feedback.

7. RESULTS AND DISCUSSIONS

We divided the results presentation into two parts: the results
of the first session where no feedback was provided and those
of sessions where feedback was provided (two to six).
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Recording session

Visualization modality 5-minute slice 5-minute slice 5-minute slice

0 5 10 15 20
minutes

Five-minute slice

1-minute
recording Break
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recording Break
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0 1.0 1.5 2.5 3.0 4.0 5.0
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Visual cue
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0 5 10 50 55 60
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Break cue

Figure 6: Training-without-feedback protocol.
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Break cue
MA with feedback
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Feedback

Figure 7: Training-with-feedback protocol.
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Figure 8: Results for S1. Left: structure of the matrix P. Right: classification weights of each TRC.
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Figure 9: Results for S2. Left: structure of the matrix P. Right: classification weights of each TRC.

First session (without feedback)

The number of retained trials in the first session (after arte-
fact rejection) per subject and per MA is reported in Table 2.

We used 100 trials to compute the matrix P, the mean

AF modulus, and the variance AF modulus of each TRC (see
Section 5.2). The remaining trials were used as a test set to
determine the optimal number of contrast points, in the am-
biguity plane, associated with each TRC.
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Table 1: MAs trained during the three five-minute slices of each
feedback session.

Session

2 3 4 5 6

5
-m

in
sl

ic
e 1 MA1 MA2 MA3 MA1 MA2

2 MA2 MA2 MA3 MA1 MA1

3 MA3 MA3 MA1 MA2 MA3

Table 2: Number of retained trials per subject and per MA in the
first session (after artefact rejection).

Mental activity

MA1 MA2 MA3

Su
b

je
ct S1 149 144 148

S2 146 143 142

In Figures 8 and 9 (for S1 and S2, respectively), the ab-
solute values of the coefficients of the matrix P are repre-
sented in a comparative graph (left). This graph gives us the
information about the composition of each TRC as a linear
combination of signals coming from different electrodes. In
the right part, the classification weights associated with each
TRC, calculated according to (27), are depicted.

The results of Figures 8 and 9 show that for both subjects
there are five TRCs that seem to be more important for the
classification than the others (1, 2, 3, 5, and 8 for S1, and 1,
2, 3, 6, and 8 for S2). In order to confirm this impression, we
computed the classification error associated with each TRC
and the optimal number of contrast points. These results are
shown in Figures 10 and 11 (for S1 and S2, respectively).
From these results, we can say that the smaller error rates
correspond to those components with largest classification
weights.

We also present the optimal contrast points for the four
TRCs that have the smallest error rate. Only the first quad-
rants were represented since the modulus of the AF is sym-
metric with respect to the origin.

Sessions from two to six (with feedback)

In Table 3, we report the number of retained trials after arte-
fact elimination for each five-minute slice from sessions two
to six.

During the second session, each MA was trained with
feedback (see Table 1). Such feedback was produced by tak-
ing as reference the models built after the first session.
In Table 4, we present the percentage of trials that were
not correctly classified among the nonrejected trials (error
rate).

Table 3: Number of retained trials after artefact elimination in the
sessions where feedback was provided.

S1

Session

2 3 4 5 6

5
-m

in
sl

ic
e 1 145 141 142 147 148

2 147 151 144 148 144

3 150 152 150 149 146

S2

Session

2 3 4 5 6

5
-m

in
sl

ic
e 1 146 144 146 144 149

2 142 145 148 148 139

3 145 147 143 142 150

Table 4: Percentage of misclassified trials during the second session
(first session where feedback was provided). The MA models used
for producing feedback were built after the first session where no
feedback was provided.

Subject

1 2

5
-m

in
sl

ic
e 1 28 36

2 26 34

3 23 28

At the end of the second session, new MA models
were built using 100 trials (randomly chosen) to compute
the matrix P, the mean AF modulus, and the variance
AF modulus. The test set composed of the remaining tri-
als was used to compute the optimal number of contrast
points.

In Figures 12 and 13 (for S1 and S2, respectively), we rep-
resent the coefficients of the matrix P and the contrast points
for each of the five TRCs that have the largest classification
weights. We can see that the TRCs that have the largest clas-
sification weights are the same as in the case of the training
without feedback (Figures 7 and 8). This suggests that the re-
lationship between the coefficients of the matrix P remained
the same. In the case of contrast points, we can remark that
the general distribution found during the training without
feedback is generally maintained in the training with feed-
back. On the other hand, the optimal number of contrast
points has slightly changed with respect to the training with-
out feedback.
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Figure 10: Top: contrast points selected for the four TRCs with the smallest error rates (as the modulus of the AF is symmetric with respect
to the origin, only the first quadrant is represented). Down: error rates associated with each TRC (S1).

It is important to note that we built new MA models at
the end of the second session in order to make it in feed-
back conditions. In this way, it is possible to update the
models after each five-minute slice in sessions from three to
six.

In sessions from three to six, we updated the matrix P,
the mean AF modulus, and the variance of the AF modu-
lus of the trained MA for each five-minute slice. This pro-
cedure was performed by using 100 trials randomly chosen
to update those parameters and to take the remaining trials
as a test set for determining the optimal number of contrast
points.

In Figures 14 and 15 (for S1 and S2, respectively), we rep-
resent the evolution of the error rate over the sessions from
three to six. These results for each five-minute slice are re-
ported in Table 1.

As it can be seen, the error rate decreased almost al-
ways except between sessions 3 and 4 for S1. Neverthe-
less, at the end of the sixth session, we achieved the low-
est error rates for all the MAs. This result suggests that
the feedback strategy improved the performance of the sys-
tem. In fact, the subjects reported their general satisfac-
tion with regard to feedback because of its stimulating ef-
fects.

8. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a BCI system and an associated
network architecture between the components that can be
used in different OMs. We stated that the relationship be-
tween these components should be flexible since the BCI
technology is still in its experimental phase.
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Figure 11: Top: contrast points selected for the four TRCs with the smallest error rates (as the modulus of the AF is symmetric with respect
to the origin, only the first quadrant is represented). Down: error rates associated with each TRC (S2).

In order to familiarize the subjects with our BCI, we pro-
posed to precede each session with a short real-time visual-
ization of a projection of the EEG signals in a 3D environ-
ment.

We classified EEG signals from the point of view of the
joint correlation in three dimensions: time, frequency, and
space (as EEG signals are multivariate). In order to reduce
the amount of data that results from such analysis, we decor-
related the EEG signals before moving to the time-frequency
correlation part. The decorrelation process resulted in a set
of TRCs. In this way, we divided the original problem of clas-
sification of MVSs into several univariate classifications.

The training was performed in two ways: with and with-

out feedback. The obtained results show that the relation-
ship between the TRCs remains essentially the same for both
training types.

Nevertheless, as noticed in [11] the structure of the MA
models is different from person to person. Therefore, a BCI
should be personalized.

The general reduction of the classification error rate over
the sessions where feedback was provided shows that the
feedback constituted an effective strategy for the training.
Nevertheless, more experiments are necessary for confirm-
ing this hypothesis.

In the future, we plan to experiment with more subjects
during more sessions.
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Figure 12: Results for S1. TRCs with largest classification weights for the MA models built after the second session (first session with
feedback). Top: contrast points in the Doppler-delay plane. Middle: rows of the matrix P associated with the TRCs. Down: classification
error rate associated with each TRC.

As the goal is to control devices by thinking, it is
necessary to add more MAs for making, at least, a two-
dimensional control possible.

We will consider other spatial analysis techniques such as
nonlinear PCA for extracting those TRCs that can be classi-

fied in the time-frequency domain.
Another possibility could be to perform a para-

metric time-frequency analysis (multivariate autoregres-
sive models) first and then apply a spatial analysis tech-
nique.
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Figure 13: Results for S2. TRCs with largest classification weights for the MA models built after the second session (first session with
feedback). Top: contrast points in the Doppler-delay plane. Middle: rows of the matrix P associated with the TRCs. Down: classification
error rate associated with each TRC.
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Figure 14: Error rate evolution for S1 over the training sessions
from three to six. We reported the error rate for each five-minute
slice in Table 1.
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Figure 15: Error rate evolution for S2 over the training sessions
from three to six. We reported the error rate for each five-minute
slice in Table 1.
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