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Abstract—Reconfigurable intelligent surfaces (RISs), consisting
of many low-cost elements that reflect the incident waves by an
adjustable phase shift, have attracted sudden attention for their
potential of reconfiguring the signal propagation environment
and enhancing the performance of wireless networks. The passive
nature of RISs is indeed beneficial, but the lack of radio frequency
(RF) chains at the RIS has made channel estimation extremely
challenging. We face this challenge by proposing a joint channel
estimation and transmit precoding framework for RIS-aided
multiple-input multiple-output (MIMO) systems. Specifically,
the effective cascaded channel of the reflected transmitter-RIS-
receiver link is decomposed into multiple subchannels, each of
which corresponds to a single RIS element. Then our joint RIS-
transmitter precoding model is formulated for the individual
subchannels of each reflecting element. Finally, we develop a two-
stage precoding design for successively determining the required
phase shifts of each reflecting element of the RIS and the digital
baseband precoder of the transmitter, only relying on the channel
state information (CSI) of the subchannels. The performance of
the proposed subchannel estimation and joint precoding method
is evaluated by extensive simulations. Our numerical results show
that the proposed designs provide an attractive solution to RIS-
aided MIMO systems.

Index Terms—Reconfigurable intelligent surface, channel esti-
mation, precoding, MIMO, channel decomposition.

I. INTRODUCTION

THE last decade has witnessed the tremendous devel-

opment of wireless communications. The wireless tele-

traffic has been escalating, and is projected to be as high

as 77 exabytes per month by 2022 [1], [2]. Although the

spectral efficiency of wireless systems has been substantially

improved by various technological advances, including mas-

sive multiple-input multiple-output (MIMO), millimeter wave

(mmWave) communications, etc, it is desirable to reduce both
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the required high hardware implementation cost and the energy

consumption [3].

Recently, the new concept of reconfigurable intelligent

surfaces (RISs) has emerged and has been adopted for wireless

communication [4], [5]. RISs, also referred to as intelligent

reflecting surfaces (IRSs), rely on man-made planar arrays that

consist of numerous low-cost passive elements. More explic-

itly, based on reconfigurable electromagnetic (EM) material,

each of the elements is able to reflect the incident waves

by an adjustable phase shift. Conventionally, RISs have been

used to implement reconfigurable reflect-array antennas by

illuminating the nearby reflecting surface with the aid of active

antennas at the transmitter [6]–[8]. However, it has also been

proposed to place the RIS somewhere between the transmitter

and the receiver, so that a reflected transmitter-RIS-receiver

link is established in addition to the direct transmitter-receiver

link. In this manner, the signal propagation can be conveniently

reconfigured by appropriately modifying the phase shift of the

reflecting elements (REs), without requiring any extra power

for complex signal processing or retransmission operations. As

a benefit, the performance of wireless systems is expected to be

considerably enhanced by adaptively “adjusting” the wireless

propagation environment [9]–[11].

In order to realize the attractive potential of RISs, the

state-of-the-art studies aimed to jointly optimize the baseband

digital precoder of the transmitter and the phase shifts of

the RIS elements. Most contributions focused on the RIS-

aided multi-user multiple-input-single-output scenario [12]–

[15]. Specifically, the transmission power consumption was

minimized under the users’ individual communication rate

constraints [12]. In [13], the weighted sum-rate of the users

was maximized with the aid of fractional programming. The

authors of [14] considered the practical hardware limitations

and optimized the achievable rate using limited discrete phase

shifts of the REs. The benefits of the RIS are investigated in

multigroup multicast systems by alternately solving a pair of

second-order cone programming (SOCP) problems [15]. As

for RIS-aided MIMO scenarios, the performance metrics of

both channel capacity [16], [17] and symbol error rate [18] are

studied for point-to-point MIMO systems, while the associated

sum-rate is maximized in multi-cell MIMO systems [19]. It is

important to note that all the above-mentioned investigations

have assumed perfect knowledge of the channels involved

in both the direct and the reflected links. However, channel

estimation is a challenging issue for RIS-aided systems. As

discussed in [20], most of current research works assume

that the nearly-passive RISs are not equipped with sensing
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elements or radio frequency (RF) chains,1 and therefore, it is

impractical to directly estimate the channels of the reflected

link, i.e., the incident channel spanning from the transmitter

to the RIS, and the reflected channel spanning from the RIS to

the receiver.2 Without accurate channel state information (CSI)

of the reflected link, using the existing precoding designs may

not be feasible, which thus limits the practical applications of

RISs.

At present, most channel estimation related works consid-

ered single-antenna receivers in RIS-aided systems [24]–[28].

The basic methodology adopted by these studies is to estimate

the equivalent cascaded channel involved in the reflected link,

instead of estimating the incident and the reflected channels.

However, since the cascaded channels are routinely defined

with respect to single receiver antennas, the majority of

current research has been focused on multiple-input-single-

output (MISO) scenarios, while precoding designs have not

yet been considered relying on the cascaded CSI for point-

to-point RIS-aided MIMO systems. As for the scenario of

MIMO communications, the channels involved in the reflected

link are typically estimated based on the methodology of

sparse matrix factorization and completion, using techniques

such as message passing [29], [30], and compressive sensing

[31], which are however only appropriate for sparse channel

conditions and impose a potentially high signal processing

complexity. Therefore, there is a paucity of solutions for RIS-

aided MIMO systems, which thus motivates this contribution.

In this paper, a feasible channel estimation and joint pre-

coding framework is proposed for RIS-aided MIMO commu-

nication systems, where both the transmitter and the receiver

are equipped with multiple antennas. In lieu of estimating the

incident and the reflected channels directly, we decompose

the effective channel of the reflected link into multiple sub-

channels, and solve the channel estimation as well as joint

precoding problems for each of the subchannels. In contrast

to the cascaded channels that are defined with respect to the

receiver antennas, such as in [27], [32], every subchannel

corresponds to a specific RIS reflecting element which consti-

tutes a separate transmitter-RIS-receiver reflecting path. Given

its distinct physical interpretation as well as mathematical

formulation, a series of new precoding methods can be derived

based on this subchannel model. Our main contributions are

summarized as follows.

• A channel decomposition model is proposed for RIS-

aided MIMO communications. The effective channel of

the reflected link is decomposed into multiple subchan-

nels, each of which corresponds to a single RIS element.

We show that it is feasible to estimate the subchannels,

1Surfaces with active elements, namely that RF circuits and signal pro-
cessing units are embedded in the surface, are generally referred to as active
Holographic Multiple Input Multiple Output Surface (HMIMOS), or Large
Intelligent Surface (LIS) [21]. For an active HMIMOS, conventional channel
estimation methods developed for MIMO systems can be readily applied.

2Recently, there are also some works on RIS-based architectures that
include active elements for channel estimation. In [22], the authors investigate
an architecture, where the RIS is equipped with a few elements that are active
and connected to the baseband of the RIS controller. The authors of [23]
consider a RIS comprising a single RF chain used for baseband measurements,
in addition to a controller and many passive elements.

and exploit their knowledge for joint precoding without

performance loss.

• We develop a subchannel estimation mechanism based

on multi-round pilot training, where the REs of the RIS

configure the phase shifts in each round according to a

preset codebook. A sufficient condition is derived for the

codebook to minimize the mean square error (MSE) of

the subchannel estimator, and then both the Hadamard

matrix based and the discrete Fourier transform (DFT)

aided codebooks are used for practical implementations.

• We reformulate the joint RIS-transmitter precoding prob-

lem based on the above-mentioned channel decomposi-

tion model, wherein the digital precoder of the transmitter

and the phase shifts of the REs can be designed by purely

relying on the CSI of the subchannels. In this way, joint

precoding becomes feasible in practical systems.

• A two-stage precoding design is proposed based on only

the knowledge of the subchannels. Firstly, the reflecting

phase shifts are determined by solving an approximation

of the original problem using a fixed-point based method.

After that, the baseband precoder of the transmitter is

optimized given the phase shifts.

• We evaluate the performance of the proposed channel

estimation and joint precoding methods for different

simulation settings, including the transmission power

constraint, the number of REs, and channel propagation

conditions. Our numerical results show that the channel

decomposition based framework provides a viable solu-

tion for RIS-aided MIMO systems.

Noting that an alternating optimization (AO) method is also

developed for RIS-aided point-to-point MIMO systems [17],

we employ this design as a benchmark, and show that our

proposed precoding scheme has advantages over its AO-based

counterpart.

The rest of this paper is organized as follows. In Section

II, we introduce the system model, while in Section III, we

define the subchannels and propose the subchannel estimation

method. In Section IV, our precoding technique is designed

purely relying on the CSI of the subchannels. Numerical

results are presented in Section V and the paper is concluded

in Section VI.

The following notations are adopted throughout this paper.

C
n denotes the n-dimensional complex space, and C

m×n is

the space of m × n complex matrices. A is a matrix and a

is a vector. The transpose, conjugate transpose and inverse

operators are denoted by (·)T, (·)H and (·)−1, respectively.

tr(·) is the trace operator, and rank(·) is the rank of a matrix.

The operator | · | denotes the magnitude for complex numbers,

the entry-wise magnitude for vectors, and the determinant

for matrices. ‖ · ‖1, ‖ · ‖2 and ‖ · ‖F denote the 1-norm, 2-

norm and Frobenius norm, respectively. [A](m1:m2,n1:n2) is the

corresponding subcomponent of A, with row indices spanning

from m1 to m2, and column indices spanning from n1 to

n2. The diagonal matrix with diagonal entries {a1, · · · , an}
is denoted by diag{a1, · · · , an}, In is the n × n identity

matrix, 0n is the n-dimensional all-zero vector, and 0 denotes

zero vector or matrix of appropriate dimension. A complex

number a ∈ C is represented by a = |a|ej∠a. We use ⊗ for
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Fig. 1. A RIS-aided point-to-point MIMO system, where the transmitter and
the receiver are equipped with Nt and Nr antennas, respectively, and the RIS
employs M REs.

the Kronecker product, vec(·) for the vectorization operation,

and E{·} for the expectation operator, respectively.

II. SYSTEM MODEL

A. Signal Model

We consider the RIS-aided point-to-point MIMO system,

as illustrated in Fig. 1, where the transmitter employs Nt

transmit antennas (TAs) to forward Ns data streams to the

receiver equipped with Nr receiving antennas (RAs), with

Ns ≤ min{Nt, Nr}. The RIS consists of M REs that can

modify the incident signal by an adjustable phase shift, and is

coordinated by the transmitter using a wireless or wired control

link. The signals from both the direct transmitter-receiver link

and the reflected transmitter-RIS-receiver link are superposed

at the receiver.

The transmitter applies an Nt ×Ns baseband precoder W

for transmitting an Ns × 1 symbol vector s, with E{ssH} =
ρINs , where ρ is the total transmission power, and the precoder

is normalized such that ‖W ‖2F ≤ 1 to enforce the power

constraint. The mth element of the RIS reflects the signal from

the transmitter with a phase shift of ωm ∈ [0, 2π) (1 ≤ m ≤
M ). Given the narrowband block-fading channel model, the

Nr × 1 received signal is obtained as

y = H0Ws︸ ︷︷ ︸
Direct link

+Hrdiag(µ)HtWs︸ ︷︷ ︸
Reflected link

+z

= (H0 +Hrdiag(µ)Ht)Ws+ z,

(1)

where µ = ejω = [ejω1 , . . . , ejωM ]T is the M × 1 phase

shift vector, z ∈ C
Nr is the noise vector following z ∼

CN
(
0Nr

, σ2INr

)
. Furthermore, H0 ∈ C

Nr×Nt is the direct

channel from the transmitter to the receiver, Ht ∈ C
M×Nt

is the incident channel from the transmitter to the RIS, and

finally Hr ∈ C
Nr×M is the reflected channel from the RIS to

the receiver. All the channels involved are assumed to be quasi-

static, i.e., approximately constant during both estimation and

precoding. With the subscripts omitted for simplicity, the

channels are expressed as H = βH̄ , where β is the path

loss, and H̄ is the small-scale Rician fading given by [12],

[17], [34]3

H̄ =

√
K

1 +K
ejΩH̄(LOS) +

√
1

1 +K
H̄(NLOS), (2)

3The channel model of (2) is used for numerical simulation. However, the
proposed subchannel estimation and precoding methods are not limited to
this model and can be applied to general channel models without any extra
requirements.

where K is the Rician factor, H̄(LOS) is the line-of-sight

(LOS) component, H̄(NLOS) is the non-LOS (NLOS) com-

ponent, and Ω is a random phase shift.4 The columns of

H̄(NLOS) follow the complex symmetric Gaussian distri-

bution with a zero mean and a covariance matrix of R,

i.e. CN (0,R),5 while H̄(LOS) is expressed as H̄(LOS) =
ar

(
φ(r), ϕ(r)

)
aH

t

(
φ(t), ϕ(t)

)
, where φ(r) (ϕ(r)) and φ(t) (ϕ(t))

are the azimuth (elevation) angles of arrival and departure

(AOA and AOD), and ar(φ, ϕ) (at(φ, ϕ)) are the TA (RA)

array response vectors. For an NH ×NV uniform planar array

(UPA), the array response vector aUPA(φ, ϕ) is expressed as

aUPA(φ, ϕ) =
1√

NHNV

[
1 · · · ej 2π

λ
D(h sinφ sinϕ+v cosϕ)

· · · ej 2π
λ

D((NH−1) sinφ sinϕ+(NV−1) cosϕ)
]T

,

(3)

where λ is the transmission wavelength, and D is the spacing

between adjacent array elements, 0 ≤ h ≤ (NH − 1), and

0 ≤ v ≤ (NV − 1).

B. Pilot Training Model

The transmitter sends the pilot signal X =
[xT

1 ,x
T
2 , . . . ,x

T
Nt

]T ∈ C
Nt×τ to the receiver, where

xn ∈ C
1×τ , 1 ≤ n ≤ Nt is the pilot of length τ , loaded on

the nth antenna element. The pilot matrix is normalized such

that ‖X‖2F = τρ. Given the phase shifts adjusted by the REs

of the RIS during the transmission of X , the receiver sees an

Nr ×Nt effective channel of

He(µ) = H0 +Hrdiag(µ)Ht. (4)

The Nr × τ received signal is then expressed as Y =
He(µ)X +Z, where Z ∈ C

Nr×τ is the noise matrix whose

column vectors follow the same distribution as z in (1).6 In

general, orthogonal pilots are employed, and the length of the

pilot signal is designed such that τ ≥ Nt. Thus, the effective

channel can be estimated using the typical least-square (LS)

algorithm:

Ĥe(µ) = Y XH(XXH)−1 = He(µ) + Z̃, (5)

where Z̃ = ZXH(XXH)−1∈ C
Nr×Nt is the effective noise,

and Ĥe(µ) ∈ C
Nr×Nt is the estimate of He(µ). As shown

in (4)-(5), the full CSI of Hr and Ht, required by most

current precoding methods, cannot be readily acquired using

4As discussed in [34], the phase shift in the LoS part is uniformly distributed
on [0, 2π), and varies in each channel realization. However, the derivation of
our proposed estimation and precoding schemes does not rely on any specific
channel model.

5According to [35], the Rayleigh fading channel is actually spatially
correlated for receivers equipped with planar arrays. Given NH×NV uniform
planar arrays with inter-element spacing of D, the entries of the covariance

matrix is determined by [R]n,m = γ
sin(2π‖un−um‖2D/λ)

2π‖un−um‖2D/λ
, where λ is

the carrier wavelength, γ is a normalizing factor, and un = [0, i(n), j(n)]T

with i(n) = mod(n− 1, NH) and j(n) = ⌊(n− 1)/NV⌋.
6For single-antenna receivers, the reflected channel becomes hr ∈ CM .

The equivalent cascaded channel is then defined as Hcas = diag(hH
r )Ht

such that hH
r diag(µ)Ht = µTHcas. Most existing studies have been

focused on the estimation of Hcas, and have considered MISO scenarios
based on the cascaded channels, while precoding designs using the cascaded
CSI for multi-antenna receivers have not yet been investigated in the open
literature.
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conventional pilot-aided training. The only available knowl-

edge of Ĥe(µ) acquired from pilot-aided training will limit

the practical applications of the existing precoding designs. In

the next section, instead of estimating Hr and Ht, we propose

to decompose the effective channel into multiple subchannels

and estimate the subchannels by repeating the pilot training

a number of times and beneficially adjusting the RIS phase

shifts.

III. CHANNEL DECOMPOSITION AND SUBCHANNEL

ESTIMATION

In this section, we detail the proposed channel-

decomposition-based subchannel estimation methods. Firstly,

the effective channel of (4) is decomposed into multiple

subchannels, each of which corresponds to a single RIS RE.

Afterwards, we show that the subchannels can be estimated

using multi-round pilot training, by appropriately configuring

the reflecting phase shifts in each training round. Moreover,

the optimal phase adjustment is designed by minimizing

the MSE of the subchannel estimator based on both the

Hadamard matrix and the DFT matrix. Finally, we provide a

performance analysis of the proposed method.

A. Channel Decomposition Based Subchannel Estimation

Note that the incident and the reflected channels, Hr and

Ht, cannot be directly estimated due to the lack of RF

chains at the RIS. However, the information concerning Hr

and Ht can still be inferred from the effective channel He.

Specifically, He can be decomposed as follows

He(µ) = H0 +
M∑

m=1

µm[Hr](:,m)[Ht](m,:)

= H0 +
M∑

m=1

µmHm,

(6)

where µm = ejωm is the mth entry of the phase shift vector,

[Hr](:,m) is the mth column of the reflected channel Hr,

[Ht](m,:) is the mth row of the incident channel Ht, and

Hm , [Hr](:,m)[Ht](m,:)∈ C
Nr×Nt is defined as the mth

subchannel of He, for 1 ≤ m ≤ M . By defining the

augmented phase shift vector as µ̄ = [1,µT]T, we can rewrite

He(µ) as

He(µ) = (µ̄T ⊗ INr
)[HT

0 , HT
1 , . . . , HT

M ]T. (7)

Noting that different effective channels He(µ) can be derived

by varying the phase shift vector µ, we now show that the

M + 1 subchannels, Hm, for 0 ≤ m ≤ M , can be estimated

via multiple observations of He(µ) obtained by repeating the

LS algorithm of (5) for L (L ≥ M + 1) times.

Based on (5) and (7), let µ̄l = [1,µT
l ]

T, 1 ≤ l ≤ L be the

augmented phase shift vector configured by the RIS in the lth
round of training. Then the LS algorithm yields

Ĥe,l = He(µl) + Z̃l

= (µ̄T
l ⊗ INr) · [HT

0 , HT
1 , . . . , HT

M ]T + Z̃l,
(8)

where Ĥe,l∈ C
Nr×Nt is the observed effective channel, and

Z̃l∈ C
Nr×Nt is the effective noise in the lth training round. By

implementing the overall L rounds of LS training, and defining

Σ , [µ̄∗
1, . . . , µ̄∗

L]∈ C
(M+1)×L, we have the following

observations of Ĥe,l that can be used for estimating the

subchannels Hm:



Ĥe,1

...

Ĥe,L


 =

(
ΣH ⊗ INr

)
·




H0

...

HM


+




Z̃1

...

Z̃L


 , (9)

It is seen from (9) that, by beneficially choosing µ̄l to ensure

that Σ has full row rank, i.e., rank(ΣΣH) = M + 1, the

subchannels can be estimated by the classic LS algorithm,

yielding:



Ĥ0

...

ĤM


 =

((
(ΣΣH)−1Σ

)
⊗ INr

)
·




Ĥe,1

...

Ĥe,L




=




H0

...

HM


+




Ẑ0

...

ẐM


 ,

(10)

where Ĥm is the estimate of Hm, 0 ≤ m ≤ M , and



Ẑ0

...

ẐM


 =

((
(ΣΣH)−1Σ

)
⊗ INr

)
·




Z̃T
1
...

Z̃T
L


 (11)

is the equivalent noise.7 By denoting Ĥs =
[ĤT

0 , . . . , ĤT
M ]T, Hs = [HT

0 , . . . , HT
M ]T,

Ξ̂ = [ẐT
0 , . . . , ẐT

M ]T, and Ξ̃ = [Z̃T
1 , . . . , Z̃T

L ]
T

(Ĥs, Hs, Ξ̂ ∈ C
(M+1)Nr×Nt , and Ξ̃ ∈ C

LNr×Nt ), the MSE

of Ĥs is obtained as

MSE(Ĥs) = E(‖Ĥs −Hs‖2F ) = E(‖Ξ̂‖2F )

= E

(∥∥∥
[(
(ΣΣH)−1Σ

)
⊗ INr

]
Ξ̃

∥∥∥
2

F

)
.

(12)

Thus, the MSE of the subchannel estimator can be minimized

by appropriately designing Σ.

The pilot pattern of the proposed subchannel estimation

method is presented in Fig. 2, where the Nt × τ pilot matrix

in the lth training round is denoted by X(l) = [x̂
(l)
1 · · · x̂(l)

τ ]

for 1 ≤ l ≤ L, and x̂
(l)
n ∈ C

Nt×1 is the nth pilot vector,

1 ≤ n ≤ τ . It is seen that the training overhead is given

by τL.8 Although the RIS phase shift vector µl can be

specifically designed for minimizing both the MSE of the

subchannel estimator and the computational complexity of the

LS algorithm, the training overhead cannot be reduced by

simply changing the RIS phase shifts. The innovative method

discussed in [25] can be applied to alleviate the overhead by

grouping the RIS elements and adopting a common phase

shift in each group, which is detailed in Section III-C for

7Although it is somewhat surprising, the rank-deficient nature of the
subchannels does not affect the estimation process. It is observed from (10)
that the estimation method is feasible only if Σ has full row rank.

8The training overhead of τL is the same as that of the tensor based
techniques proposed in [36], and it is also equal to that of the method
developed in [27], whereby the cascaded channels of every receiver antenna
are separately estimated.



5

The 1st training round The th training round 

RIS phase adjustment 
��

�� �� ��

RIS phase adjustment 

�� ��

Subchannel estimation

Fig. 2. Pilot pattern of the proposed subchannel estimation method.

the subchannel model. However, further reducing the training

overhead is left for our future research.

B. Optimal Phase Shift Design for MSE Minimization

Based on (12), given that Z̃l, 1 ≤ l ≤ L, is i.i.d., the MSE

of the LS estimator can hence be reformulated as

MSE(Ĥs) =
∥∥∥
(
(ΣΣH)−1Σ

)∥∥∥
2

F
· E(‖Z̃1‖2F ). (13)

Observing that E(‖Z̃1‖2F ) is decoupled from Σ, we have

∥∥∥
(
(ΣΣH)−1Σ

)∥∥∥
2

F
= tr

(
(ΣΣH)−1

)
=

M+1∑

m=1

1

σ2
m(Σ)

, (14)

where σm(Σ) is the mth largest singular value of Σ. The

problem of MSE minimization can thus be formulated as

follows

(P1) : Σopt =arg min
Σ∈C(M+1)×L

M+1∑

m=1

1

σ2
m(Σ)

(15)

s.t. [Σ](1,:) = 1L, (16)∣∣[Σ]i,j
∣∣ = 1, ∀ i, j, (17)

rank(ΣΣH) = M + 1. (18)

Prior to solving (P1), we present a sufficient condition for its

feasibility as follows.

Proposition 1: Problem (P1) is feasible for any L ≥ M+1.

Proof: Let us denote the feasible domain of (P1) as F(P1)

for convenience, and set Σ0 ∈ C
(M+1)×L as follows

[Σ0](i,j) =

{
1, if i ≤ j,

−1, if i > j.
(19)

The proof is completed by verifying that Σ0 satisfies the

constraints of (16)-(18).

The feasibility of (P1) verifies that the method given in

(10) is indeed applicable to the estimation of the subchannels.

Denoting the feasible domain of (P1) as F(P1), we now present

a sufficient condition for finding the optimal solution to (P1)

as follows.

Proposition 2: The optimal value of (P1) is (M + 1)/L.

Moreover, given any (M +1)×L matrix A ∈ F(P1), A is an

optimal solution to (P1) if and only if AAH = LIM+1.
Proof: Note that

M+1∑

m=1

σ2
m(Σ) = tr

(
(ΣΣH)

)
= L(M + 1). (20)

By exploiting the Cauchy-Schwarz inequality, we have

M+1∑

m=1

1

σ2
m(Σ)

≥ (M + 1)2
∑M+1

m=1 σ2
m(Σ)

=
M + 1

L
, (21)

Algorithm 1 Subchannel estimation algorithm using the opti-

mal codebook.

1: Set the iteration number l = 1.

2: repeat

3: The transmitter configures the phase shift vector as

µ̄l = [A∗](:,l).

4: The receiver enforces pilot training to obtain Ĥe,l

according to (5).

5: Update l = l + 1.

6: until l > L.

7: The receiver estimates the subchannels based on (10):

[ĤT
0 , . . . , Ĥ

T
M ]T = 1

L
(A⊗ INr)[Ĥ

T
e,1, . . . , Ĥ

T
e,L]

T.

8: The receiver feeds back the estimated subchannels to the

transmitter.

where the equality holds if all the singular values are equal,

i.e., σm(Σ) =
√
L, 1 ≤ m ≤ M +1. In this case, the optimal

value of (P1) is obtained as (M + 1)/L.

1) Sufficiency: For any (M + 1)× L matrix A ∈ F(P1), if

AAH = LIM+1, we have σm(A) =
√
L, 1 ≤ m ≤ M + 1,

which results in the equality in (21).

2) Necessity: For any A ∈ F(P1), if σm(A) =
√
L, 1 ≤

m ≤ M+1, namely that all the eigenvalues of AAH are equal

to L, upon invoking the classic eigenvalue decomposition, we

have AAH = QLIM+1Q
H = LIM+1, where Q is unitary

such that QQH = IM+1.

Based on Proposition 2, Problem (P1) can be solved by

searching for a scaled L-dimensional unitary matrix that sat-

isfies the constraints of (16) and (17). This also indicates that

the optimal solution of (P1) is not unique. For convenience,

we provide two optimal designs by introducing the following

two corollaries.

Corollary 1: Denote the L-dimensional DFT matrix as FL,

i.e., [FL]m,n = e−j
2π(m−1)(n−1)

L . Let A ∈ C
(M+1)×L host the

first and M other distinct rows of FL. Then A constitutes an

optimal solution to (P1).

Proof: The proof is completed by verifying that A ∈
F(P1) and AAH = LIM+1.

Before presenting the second corollary, we introduce the

Hadamard matrix. Without loss of generality, let L = 2B ,

where B > 0 is an integer. Then the 2B-dimensional

Hadamard matrix, G2B , can be constructed by

G2B =

[
G2B−1 G2B−1

G2B−1 −G2B−1

]
, G2 =

[
1 1
1 −1

]
. (22)

It can be verified that G2BG
H
2B = 2BI2B .

Corollary 2: Let us denote the L-dimensional Hadamard

matrix in (22) as GL, and let A ∈ C
(M+1)×L host the first and

M other distinct rows of GL. Then A constitutes an optimal

solution to (P1).

Proof: The proof is completed by verifying that A ∈
F(P1) and AAH = LIM+1.

In practical systems, the optimized phase adjustments pro-

vided by the RIS for subchannel estimation can be specified

in advance as codebooks at the transceiver. Note that different

choices of feasible codebooks do not change the training

overhead, but the optimal codebooks given by Corollaries 1
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and 2 can be used to minimize the MSE of the estimator,

and also to simplify the classic LS algorithm formulated in

(10), by letting (AAH)−1A = 1
L
A. The main procedures of

the proposed subchannel estimation method are summarized

in Algorithm 1.

It is worth noting that the Hadamard codebook given in

Corollary 2 requires only two discrete phase shifts, namely

{0, π}, which is appealing for practical applications. Further-

more, based on the channel decomposition model of (7), the

subchannel estimation methods are not limited to the typical

LS algorithm. Indeed, many practical algorithms, such as

the minimum mean square error (MMSE) [27], the linear

MMSE (LMMSE) [37], or any other new solutions, can also

be applied. Instead of estimating the subchannels using the

effective channels of (8) observed in each training round, one

can also consider to jointly process all the received pilots Yl,

1 ≤ l ≤ L, to acquire the CSI of the subchannels, where

Yl ∈ C
Nr×τ is the signal received in the lth round of training.

Since the same phase shifts are imposed on the incident signal

across the whole transmission bandwidth, the proposed method

can be readily extended to the case of frequency-selective

fading channels by processing the subchannels of different

subcarriers independently.

C. Performance Analysis

1) General performance of the subchannel estimator:

Given an optimal codebook A ∈ F(P1) that satisfies AAH =
LIM+1, the (M +1)Nr ×Nt subchannel estimator is formu-

lated as

Ĥopt
s =

1

L
(A⊗ INr)[Ĥ

T
e,1, . . . , Ĥ

T
e,L]

T

= Hs +
1

L
(A⊗ INr

)Ξ̃,
(23)

and the MSE is given by MSE(Ĥopt
s ) = M+1

L
E(‖Z̃1‖2F ),

where Z̃1 is the effective noise of (5).

Before summarizing the general performance of the sub-

channel estimator in Proposition 3, we first present a lemma

as follows.

Lemma 1: The (M + 1)NrNt-dimensional covariance ma-

trix that attains the Cramer-Rao lower bound (CRLB) of the

subchannel estimator derived from (9) is given by

ΘCRLB = σ2(X∗XT)−1 ⊗ (AAH)−1 ⊗ INr . (24)

Proof: See Appendix A for the proof.

Proposition 3: The subchannel estimator in (23) is unbi-

ased, consistent, and efficient.

Proof: The unbiased nature is validated by E(Ξ̃) =
[E(Z̃T

1 ), . . . , E(Z̃T
L )]

T = 0. Additionally, the power of the

effective noise is bounded by

E(‖Z̃1‖2F ) =
Nt∑

n=1

σ2Nr

σ2
n(X)

≤ σ2NrNt

λNt(X)
, (25)

where σn(X) and λn(X) are the nth largest singular value

and eigenvalue of the pilot matrix X , respectively. Therefore,

the consistency is proved by

lim
L→∞

MSE(Ĥopt
s ) ≤ lim

L→∞

(M+1)σ2NrNt

λNt (X)

L
= 0. (26)

Moreover, based on Lemma 1, we have

MSE(Ĥopt
s ) =

M + 1

L

Nt∑

n=1

σ2Nr

σ2
n(X)

= tr(ΘCRLB), (27)

which thus verifies the efficiency.

2) Complexity analysis: The computational complexity is

mainly contributed by the L rounds of pilot training in (5)

and the subchannel estimation in (10). It is easy to verify that

the complexity of a single round of pilot training is on the

order of O(τN2
t ). As for subchannel estimation, relying on

an optimal codebook A, the complexity is dominated by the

computation of 1
L
(A ⊗ INr

)[ĤT
e,1, . . . , Ĥ

T
e,L]

T. The matrix

multiplication can be considered as an augmented version of
1
L
Ah with h denoting an L× 1 vector. Thus, the complexity

of subchannel estimation is NrNt times that of computing
1
L
Ah, which is given by O(NrNtLM). Therefore, the total

complexity is O
(
NtL(NrM + τNt)

)
.

Naturally, numerous techniques may be applied to reduce

the computational complexity of subchannel estimation. With-

out loss of generality, let L = M + 1 = 2B . Then for

the DFT codebook, i.e., A = FM+1, the complexity of

computing 1
L
FM+1h is reduced to O(M logM) by the fast

Fourier transform (FFT) operations. As for the case of using

the Hadamard codebook in (22), let us denote the complexity

of computing 1
L
G2Bh by T (B). Then the update formula of

T (B) is given by

T (B) = 2T (B − 1) + 2B . (28)

Thus, we have T (B) = O(B2B) = O(M logM). The total

complexity is then reduced to O
(
NtM(Nr logM + τNt)

)
.

The proposed subchannel estimation algorithm can be fur-

ther simplified by collecting several subchannels into groups

with a group-specific common phase shift. Let us denote the

index set of the gth subchannel group as Sg , 1 ≤ g ≤ Ng, and

assume that the subchannels are divided into Ng (Ng ≤ M+1)

groups by letting ∪Ng

g=1Sg = {0, · · · ,M} and Sg1 ∩ Sg2 = ∅

for ∀g1 6= g2. Then the phase shift vector µ̃g is shared

among all the subchannels in the gth group. Based on this,

the decomposed effective channel in (6) is reformulated as

He(µ) =

Ng∑

g=1

µ̃gH
sup
g , (29)

where H
sup
g =

∑
m∈Sg

Hm is the gth superposed channel.

In this manner, the size of the codebook A is reduced from

(M + 1) × L to Ng × L, which has a lower complexity

of O
(
NtNg(Nr logNg + τNt)

)
if we have L = Ng for

simplicity.9 Observe that for a smaller value of Ng, the

estimation algorithm becomes less complex. Given Ng = 1,

the computational complexity can even be reduced to O(τN2
t ).

9By grouping the subchannels, the minimum value of L is reduced to the
number of the groups Ng, instead of M + 1. Hence, the complexity of the
estimation process can be much reduced.
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However, the CSI resolution also becomes lower when only

relying on the knowledge of the superposed channels. Hence,

the value of Ng should be carefully chosen to strike an

appealing CSI precision versus complexity trade-off. Finally,

the estimation of subchannels can be further simplified using

low-complexity pilot training methods.

In this section, we have shown that the CSI of the subchan-

nels can be acquired. Since the existing RIS-aided precoding

designs tend to rely on the idealized assumption of perfect CSI,

we design a new precoder purely relying on the knowledge

of the subchannels in the next section. The feasibility of

the precoding design of Section IV is guaranteed by the

subchannel estimation method of Section III.

IV. PROPOSED PRECODING DESIGN RELYING ON THE CSI

OF SUBCHANNELS

In this section, we deal with the precoding problem purely

relying on the knowledge of the subchannels Hm, rather

than on the full CSI of Ht and Hr.
10 To circumvent the

challenge of finding the closed-form optimal design of the

phase shift vector and the digital precoder, we conceive a

near-optimal two-stage precoding scheme. Firstly, the phase

shift vector is determined using a fixed-point based method,

based on which the digital precoder may then be derived

by solving a convex optimization problem. Then, considering

that the performance gap between the proposed design and

the optimal precoding solution is analytically intractable, we

investigate a simple scenario and show that the proposed

design is capable of attaining the optimal performance for the

propagation conditions considered, where the RIS can act as

though both the transmission power and the number of TAs

were increased by exploiting the reflected link.

A. Precoding Framework with CSI of Subchannels

With the channel decomposition model of (7), the received

signal of (1) is reformulated as

y = [H0, . . . , HM ](µ̄⊗W )s+ z. (30)

The effective mutual information (MI) achieved by Gaussian

signaling can be adopted as the optimization objective of our

precoding design [38]–[41], which is expressed as

I(µ̄,W ) = log2

∣∣∣INr
+

ρ

σ2
Heq(µ̄⊗W )(µ̄⊗W )HHH

eq

∣∣∣,
(31)

where Heq = [H0, . . . , HM ]. Upon using the MI metric,

no common phase rotation applied to the entries of µ̄ changes

the objective, and the joint precoding design may then be for-

10Again, the existing precoders rely on the full CSI of Ht and Hr, and
hence cannot be directly applied when only the knowledge of the subchannels
is available.

mulated as the following constrained optimization problem11

(P2) : (µ̄opt,W opt) = argmax
µ̄,W

I(µ̄,W ) (32)

s.t.
∣∣[µ̄]m

∣∣ = 1, ∀m, (33)

‖W ‖2F ≤ 1. (34)

Note that Problem (P2) is difficult to solve both owing to

the non-convex constraint of (33) and due to the Kronecker

product structure of µ̄⊗W . Fortunately, it is seen that for a

fixed µ̄, the design of W that maximizes the MI becomes

a convex problem. Thus, it is efficient to solve (P2) by

conceiving a suboptimal two-stage scheme that successively

determines µ̄ and W .

In the first stage, in order to find a near-optimal design of

µ̄, we develop a lower bound of I(µ̄,W ), and obtain µ̄ by

maximizing this lower bound. The bound can be derived based

on the following proposition.

Proposition 4: Define FP , {P ∈ C
(M+1)Nt×Ns :

‖P ‖2F ≤ M+1}, and Ĩ(P ) = log2

∣∣∣INr +
ρ
σ2HeqPPHHH

eq

∣∣∣.
Let P opt = arg max

P∈FP

Ĩ(P ). Then for any feasible (µ̄,W ),

the gap between the objective of (P2) and Ĩ(P opt) is bounded

by
∣∣I(µ̄,W )− Ĩ(P opt)

∣∣ ≤ C‖µ̄⊗W − P opt‖F , (35)

where C ∈ R is a non-negative constant.

Proof: See Appendix B for the proof.

Observe that FP is a convex set, and thus P opt that

maximizes Ĩ(P ) is analytically attainable [41]. Specifical-

ly, let the singular value decomposition (SVD) of Heq be

Heq = USV H, where S is a rank(Heq) × rank(Heq)
diagonal matrix of singular values arranged in descending

order, while U ∈ C
Nr×rank(Heq), UHU = Irank(Heq), and

V ∈ C
(M+1)Nt×rank(Heq), V HV = Irank(Heq). Without loss

of generality, we assume Ns ≤ rank(Heq). Then P opt

is derived from the first Ns columns of V , i.e., P opt =√
(M + 1)/Ns[V ](:,1:Ns).

It is worth noting that Ĩ(P opt) serves as an upper bound for

the optimal value of (P2), i.e., Ĩ(P opt) ≥ I(µ̄opt,W opt).12

However, in most cases, this bound is not approachable,

because P opt cannot be decomposed into a Kronecker product

of a vector with unit-magnitude entries and an F -norm-

constrained complex matrix. Therefore, we derive a lower

bound of the MI to assist with the suboptimal design of µ̄.

Based on Proposition 4, a lower bound of I(µ̄,W ) can be

formulated as follows

I(µ̄,W ) ≥ Ĩ(P opt)− C‖µ̄⊗W − P opt‖F
≥ I(µ̄opt,W opt)− C‖µ̄⊗W − P opt‖F︸ ︷︷ ︸

ILB, the lower bound of I(µ̄,W )

. (36)

11For fast changing channels associated with limited coherence intervals,
pilot-based channel estimation will become impractical. More explicitly, every
time the Doppler frequency is doubled, the pilot overhead used for sampling
and estimating the channel has to be doubled as well. In this scenario, it
is worth considering to maximize the ergodic MI, E{I(µ̄,W )}, instead of
the instantaneous MI, I(µ̄,W ), so that only the statistical properties of the
channels are required..

12This is due to the fact that
(

µ̄opt ⊗W opt
)

∈ C(M+1)Nt×Ns and

‖µ̄opt ⊗W opt‖2F ≤ M + 1.
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This implies that I(µ̄,W ) can be approximately maximized

by maximizing its lower bound ILB, or equivalently minimiz-

ing ‖µ̄ ⊗ W − P opt‖F , and thus the phase shift vector of

the two-stage scheme µ̄(ts) can be derived by solving the

following problem13

(P3) : (µ̄(ts),∼) = arg min
µ̄,W

‖µ̄⊗W − P opt‖2F
s.t. (33)-(34).

(37)

Based on µ̄(ts) that solves (P3), the digital precoder W (ts)

is determined by maximizing I(µ̄(ts),W ), which yields the

following optimization problem

(P4) : W (ts) =argmax
W

I(µ̄(ts),W )

s.t. ‖W ‖2F ≤ 1.
(38)

The joint precoding solution derived from the two-stage

scheme is then given by (µ̄(ts),W (ts)).

B. Two-stage Precoding Designs

1) Fixed-point based method for solving (P3): Due to the

non-convex constraints of (P3), it is unrealistic to search for

the closed-form optimal solution. Hence, in order to solve

(P3) efficiently, a fixed-point based method is developed to

determine the phase shift vector µ̄(ts).

For convenience, let us introduce P opt = [PT
0 , . . . , PT

M ]T,

where Pm ∈ C
Nt×Ns , 1 ≤ m ≤ M + 1, is the corresponding

submatrix of P opt. Then we have

‖µ̄⊗W − P opt‖2F =

M+1∑

m=1

‖W − µ̄∗
mPm‖2F

= (M + 1)
∥∥∥W −

M+1∑

m=1

µ̄∗
mPm

M + 1

∥∥∥
2

F

+
M+1∑

m=1

∥∥Pm

∥∥2
F
− 1

M + 1

∥∥∥
M+1∑

m=1

µ̄∗
mPm

∥∥∥
2

F

≥
M+1∑

m=1

∥∥Pm

∥∥2
F
− 1

M + 1

∥∥∥
M+1∑

m=1

µ̄∗
mPm

∥∥∥
2

F
,

(39)

where µ̄m = [µ̄]m is the mth entry of the phase shift vector,

and the equality holds if W =
∑M+1

m=1
µ̄∗

mPm

M+1 . It is noted that∥∥∥
∑M+1

m=1
µ̄∗

mPm

M+1

∥∥∥
2

F
≤ (M + 1)

∑M+1
m=1

∥∥ µ̄∗

mPm

M+1

∥∥2
F

= 1, and

thus this design of the digital precoder is feasible. Hence, min-

imizing the objective of (P3) is then equivalent to maximizing∥∥∑M+1
m=1 µ̄∗

mPm

∥∥2
F

. Furthermore, we have

∥∥∥
M+1∑

m=1

µ̄∗
mPm

∥∥∥
2

F
= tr

[(M+1∑

n=1

µ̄∗
nPn

)H(M+1∑

m=1

µ̄∗
mPm

)]

=
M+1∑

n=1

M+1∑

m=1

µ̄∗
mµ̄ntr

(
PH

n Pm

)
= µ̄HQµ̄,

(40)

13It is noted that a design of the precoding matrix, W (P3), can also be
obtained by solving (P3). However, given µ̄(ts), this W (P3) only maximizes
the lower bound ILB rather than the MI I(µ̄,W ) itself. Hence, another
optimization will be formulated in the second stage to redesign W for further
increasing I(µ̄,W ).

where Q is an (M + 1) × (M + 1) Hermitian matrix with

entries of [Q](m,n) = qmn = tr
(
PH

n Pm

)
. Thus, (P3) can be

reformulated as

(P5) : µ̄(ts) =argmax
µ̄

µ̄HQµ̄

s.t.
∣∣[µ̄]m

∣∣ = 1, ∀m.
(41)

Following from some general algebraic manipulations, the

Karush-Kuhn-Tucker (KKT) condition of (P5) can be derived

as (
Q− diag(ν̄)

)
µ̄ = 0, (42)

where ν̄ ∈ R
(M+1)×1 is the Lagrangian multiplier. Given

the great challenge of providing a closed-form solution, we

develop a fixed-point based method to solve (P5) iteratively.

By rearranging (42), given µ̄(p) with p denoting the iteration

number, ν̄(p+1) and µ̄(p+1) can be updated as follows

µ̄(p+1) = ej∠(Qµ̄(p)), ν̄(p+1) =
∣∣Qµ̄(p)

∣∣. (43)

The residual in the pth round of iterations is computed by

δ(p) =
∣∣‖Qµ̄(p+1)‖1−‖Qµ̄(p)‖1

∣∣. By appropriately choosing

the residual threshold ǫ, and the maximum number of iteration

pmax, the stopping criterion can be developed based on δ(p) < ǫ
or p > pmax. The solution to (P5) is then obtained by our fixed-

point iterative algorithm.

2) SVD based method for solving (P4): Given µ̄(ts) as

the solution to (P5), the objective of (P4) is reformulated

as I(µ̄(ts),W ) = log2

∣∣∣INr
+ ρ

σ2 ĤeqWWHĤH
eq

∣∣∣, where

Ĥeq = Heq(µ̄
(ts) ⊗ INt

). Thus, (P4) becomes a convex

optimization problem, and can be solved using the same

method adopted for P opt. Specifically, let the eigenvalue

decomposition of ĤH
eqĤeq be ĤH

eqĤeq = V̂ ΛV̂ H, where

Λ ∈ C
Nt×Nt is a diagonal matrix of eigenvalues arranged in

descending order, and V̂ ∈ C
Nt×Nt is a unitary matrix of the

corresponding eigenvectors. Then W is derived from the first

Ns columns of V̂ as follows

W (ts) =
√
1/Ns[V̂ ](:,1:Ns). (44)

In summary, the joint precoding problem is solved by

determining the phase shift vector µ̄ using the fixed-point

based iterations, and then formulating the digital precoder

W according to (44). The details of the proposed precoding

method are presented in Algorithm 2.
C. Performance of the Fixed-Point Based Method

The convergence and optimality are confirmed by in the

following proposition.

Proposition 5: Given {µ̄(p)} as the output sequence of

the phase shift vectors derived from Algorithm 2, then the

sequence {µ̄(p)} is convergent, and has a limit that satisfies

the KKT condition of (42).

Proof: Note that the sequence {‖Qµ̄(p)‖1} is conver-

gent. Specifically, the sequence is bounded by ‖Qµ̄(p)‖1 ≤∑
m

∑
n |qmn|. In addition, we have

‖Qµ̄(p)‖1 = (ej∠(Qµ̄(p)))HQµ̄(p)

= (Qµ̄(p+1))Hµ̄(p) ≤ ‖Qµ̄(p+1)‖1,
(45)

where the inequality follows from
∣∣[µ̄(p)]m

∣∣ = 1, and Q =
QH. Thus, the convergence of {µ̄(p)} is guaranteed by the
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Algorithm 2 Two-stage joint precoding with CSI of subchan-

nels.

1: Input coefficient matrix Q, residual threshold ǫ, and

maximum number of iteration pmax.

2: Initialize the phase shift vector µ̄(0) = 1, the residual

δ(0) = 2ǫ, and the iteration number p = 0.

3: repeat

4: Update the phase shift vector by µ̄(p+1) =
exp(∠Qµ̄(p)).

5: Compute the residual by δ(p) =
∣∣‖Qµ̄(p+1)‖1 −

‖Qµ̄(p)‖1
∣∣.

6: Update p = p+ 1.

7: until δ(p) < ǫ or p > pmax.

8: Compute the digital precoder W based on (44).

9: return (µ̄,W )

monotone convergence theorem [42]. By defining the residual

as δ(p) = ‖Qµ̄(p+1)‖1 − ‖Qµ̄(p)‖1, the stopping criterion

given by δ(p) < ǫ is valid.

Let v be the limit of {µ̄(p)}, i.e., lim
p→∞

µ̄(p) = µ∞. Based

on (43), we have µ∞ = ej∠(Qµ∞), which can be rewritten as

Qµ∞ = diag(|Qµ∞|)ej∠(Qµ∞) = diag(|Qµ∞|)µ∞. (46)

Thus, the KKT condition (42) is satisfied by the fixed-point

based method.

The computational complexity is dominated by computing

the coefficient matrix Q and iteratively solving the KKT con-

dition (42). The former part has a complexity of O(M2NtN
2
s )

on determining tr
(
PH

n Pm

)
for ∀m ≥ n, while the latter part in

the worst case yields a complexity of O(M2pmax). Therefore,

the total complexity of the fixed-point based method is given

by O
(
M2(NtN

2
s + pmax)

)
.

D. Optimality of the Proposed Design in a Simple Scenario

In this subsection, we show that the proposed two-stage

design is capable of attaining the optimal precoding perfor-

mance in a simple scenario, where the direct link between

the transmitter and the receiver is blocked, and both the

incident and the reflected channels are LOS-dominated. This

implies that we have H0 ≈ 0, Kt → ∞, and Kr → ∞,

with Kt and Kr being the Rician factors of Ht and Hr,

respectively. Moreover, it is also illustrated that, under the

channel conditions considered, the optimal precoding scheme

purely relies on the AOAs and AODs of Hr and Ht, which has

the potential of eliminating the channel estimation overhead

with the aid of angular information.

It is noted that the design of (µ̄,W ) given by Algorithm 2,

in general, is only a near-optimal solution to (P2), which has

a performance loss bounded by (36). However, we show that

in this specific case, the proposed precoding design is actually

capable of reaching the upper bound given by Ĩ(P opt),
therefore achieving the optimal performance. Moreover, we

reveal that under this scenario, the reflected link provides a

reflection gain that is proportional to the square of the number

of REs.

For convenience, we denote Hr =
√
βrab

H, and Ht =√
βtcd

H, where βr and βt are the path loss coefficients, and

a, b, c, and d are the corresponding array response vectors

given by (3), with the AOAs and AODs omitted for simplicity.

The mth subchannel is expressed as Hm =
√
βrβttmadH,

with tm = [b]∗m[c]m, for 1 ≤ m ≤ M , and Heq is rewritten

as

Heq =
√
βrβt t

T ⊗ adH, (47)

where t = [t1 . . . , tM ]T is an M × 1 vector.

Before showing the optimality of the proposed precoding

design in Proposition 6, we present a lemma as follows

Lemma 2: The optimal solution to the joint precoding prob-

lem (P2) is given by

(µopt,wopt) = (t∗,
1√
Nt

d), (48)

and the optimal value of (P2) matches its upper bound pro-

vided by popt, i.e.,

I(µopt,wopt) = Ĩ(popt). (49)

Proof: Firstly, we derive popt from the eigenvectors

of HH
eqHeq. Denoting the eigenvalue and the corresponding

eigenvector of HH
eqHeq by γ and f , respectively, we have

HH
eqHeqf = γf , which can be rearranged as

(t∗tT)⊗ (ddH)f =
γ

βrβtaHa
f . (50)

For convenience, let f = [f̃T
1 . . . , f̃T

M ]T, where f̃m, 1 ≤
m ≤ M , is an Nt × 1 vector. Due to the Kronecker product

structure of (t∗tT)⊗ (ddH), Equation (50) holds only if f̃m

is linearly dependent on d, i.e., f̃m = lmd. Thus, (50) can be

further transformed to

t∗tTl =
γ

βrβt(aHa)(dHd)
l, (51)

where l = [l1, . . . , lM ]T. Without loss of generality, this

equation is solved by l = t∗. Observe that Equation (51) has

a rank-one solution space, and thus P opt is reduced to an

MNt × 1 vector:

popt =
1√
Nt

f = t∗ ⊗ d√
Nt

, (52)

where 1√
Nt

is a normalization factor such that ‖popt‖22 = M .

It is observed from (52) that popt is decomposed into the

Kronecker product of the vectors t∗ and d√
Nt

. Moreover,

|tm| =
∣∣[b]∗m[c]m

∣∣ = 1, 1
Nt

‖d‖22 = 1, and hence the

optimal solution to the joint precoding problem is obtained

by (µopt,wopt) = (t∗, 1√
Nt

d). In this case, the upper bound

of (P2) is matched, i.e., I(µopt,wopt) = Ĩ(popt).
Proposition 6: Let (µAL2,wAL2) be the output of Al-

gorithm 2. Then the proposed precoding method given in

Algorithm 2 is capable of finding the optimal solution to (P2),

i.e.,

(µAL2,wAL2) = (µopt,wopt). (53)

Proof: The entries of the coefficient matrix Q in (P5)

are given by qmn = 1
Nt

tnt
∗
mdHd = t∗mtn. Then the KKT

condition (42) can be rewritten as

t∗tTµ = diag(ν)µ. (54)
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Since u = t∗ is the unique solution to (54), it follows

from invoking Proposition 5 that µAL2 = t∗. Then we have

Heq(µ
AL2 ⊗ INt) =

√
βrβt tTt∗adH, based on which the

digital precoder is given by wAL2 = 1√
Nt

d. Thus, we have

(µAL2,wAL2) = (µopt,wopt).
Based on the results of Lemma 2 and Proposition 6, the

maximized MI of the RIS-aided system is achieved by the

optimal design (µopt,wopt), which is formulated as

I(µopt,wopt) = log2

∣∣∣INr
+

ρβrβtM
2Nt

σ2
aaH

∣∣∣

= log2

(
1 +

ρβrβt

σ2
NrNtM

2
)
.

(55)

It is observed from (55) that the reflected link of RIS-aided

systems exploits an extra reflection gain M2 in addition to

the conventional antenna array gains of NrNt. The reflection

gain is proportional to the square of the number of REs,

because each of the RIS RE serves as a mirror that produces a

reflection of the transmitted signal. Given the optimal design of

(µopt,wopt), the signals represented by all of these reflections

are aligned and superposed at the receiver. Consequently, it

appears as if there were M replica of the transmitter acting

in union by increasing both the number of the TAs and the

transmission power by a factor of M .

Additionally, observe that the optimal design is determined

only by the array response vectors, i.e., (µopt,wopt) =
(t∗, 1√

Nt
d), with tm = [b]∗m[c]m, for 1 ≤ m ≤ M . Thus,

the joint precoding problem can be solved by only relying on

the knowledge of the AOA and AOD between the transmitter

and the RIS, as well as those between the RIS and the receiver,

which considerably reduces the complexity.

It should be noted that the channel conditions characterized

in (47) are not perfectly satisfied in general cases. On this

occasion, the upper bound Ĩ(popt) is not attainable with any

joint precoding design due to the degree-of-freedom reduction

imposed by the Kronecker product structure of the phase shift

vector and the digital precoder. Hence, the reflection gain of

M2 may not be fully exploited. Moreover, even if the reflection

gain is fully exploited, the actual signal power of the reflected

link at the receiver may still be lower than that of the direct

link. This is because the reflected link generally experiences

a much more substantial path loss, i.e., βrβt ≪ β0 [43]. The

actual performance of the RIS-aided MIMO system will be

evaluated for various channel realizations in the next section.

V. NUMERICAL RESULTS

In this section, the performance of the proposed subchan-

nel estimation method and the joint precoding scheme is

investigated. We consider a RIS-aided MIMO system, where

the transmitter is equipped with an
√
Nt × √

Nt antenna

array located at (xt, yt), and the RIS having M REs is

placed at (xRIS, yRIS). The signals transmitted from both the

direct and the reflected links are received by the receiver at

(xr, yr), using an
√
Nr ×

√
Nr antenna array. The antenna

spacing of D = λ/2 is adopted for all the UPAs. The noise

power spectral density is −174 dBm/Hz, and the bandwidth

is 200 kHz, which yields σ2 = −121 dBm. The path loss

for all channels is modeled as β = βref(d/dref)
−α, where

βref = −30 dB is the path loss at the reference distance of

dref = 1 m, and α is the path loss exponent. The path loss

for the direct channel, the incident channel and the reflected

channel is denoted by β0, βt and βr, respectively, with the

corresponding exponents being α0 = 3.5, αt = 2.2 and

αr = 2.8 [17]. The path loss is calculated for (xt, yt) = (0, 0),
(xr, yr) = (200 m, 0) and (xRIS, yRIS) = (10 m, 10 m). The

Rician fading model in (2) is used to generate the involved

channels. Let K0, Kt, and Kr be the Rician factors of the

direct, incident and reflected channels, respectively. The rich

scattering propagation condition is characterized by K = 0,

while K → ∞ indicates that the channel is LOS-dominated.

All the results are averaged over 1000 channel realizations.

A. Subchannel Estimation

The performance of Algorithm 1 is evaluated by calculating

the MSE for each different number L of pilot training rounds

and for each value ρ of the transmission power. By setting

τ = Nt, X =
√

ρ/NtFNt
, M = 7 × 9, Nt = Nr = 4,

K0 = Kt = Kr = 10 dB, we compare the MSE obtained

using the proposed subchannel estimation method under var-

ious implementations of the codebook A, to its counterpart

achieved by different benchmark schemes as follows:

• The DFT codebook specified in Corollary 1, labeled as

“DFT codebook”.

• The Hadamard codebook of Corollary 2, labeled as

“Proposed Hadamard codebook”.

• The trivial design using A = Σ0 according to (19),

labeled as “Trivial codebook”.

• The random design using [A]m,n = ej∠(ξm,n) for ∀m,n,

where ξm,n ∼ CN (0, 1), labeled as “Random code-

book”.14

• The CRLB is calculated based on ΘCRLB in Lemma 1,

labeled as “CRLB”.

• The least squared Khatri-Rao factorization (LSKRF)

scheme proposed in [36] that estimates the full CSI of

Hr and Ht, labeled as “LSKRF scheme [36]”.

• The cascaded channel estimation scheme proposed in

[32] that adopts a DFT based LS training, labeled as

“Cascaded CSI acquisition [32]”.

By setting ρ = 0 dBm, the MSE performance of various

codebooks is compared in Fig. 3(a), for different values of L.

The initial value of L in Fig. 3(a) is set to L = M + 1 = 64,

for satisfying the constraint of (18) that ensures the feasibility

of the subchannel estimation method.15 It is observed that

all the codebooks considered achieve a low MSE that is

below −80 dB, which validates the accuracy of the proposed

multi-round training scheme used for subchannel estimation.

Additionally, the DFT/Hadamard codebooks outperform the

other codebooks, and attain the CRLB curve. This observation

14By adopting a random codebook, the RIS configures its phase adjustment
randomly in each round of pilot training. This does not affect the feasibility
of the subchannel estimation method, but will result in a different MSE
performance.

15As discussed in [36], the minimum overhead of the tensor-based LSKRF
scheme is MNt to estimate Ht and Hr, and thus it is also required L ≥
M+1 for estimating Ht, Hr and H0. The corresponding MSE is defined as

MSE(Ĥt, Ĥr, Ĥ0) = E{‖Ĥt −Ht‖2 + ‖Ĥr −Hr‖2 + ‖Ĥ0 −H0‖2},

where Ĥt, Ĥr, and Ĥ0 are the estimates of Ht, Hr, and H0, respectively.
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(b) MSE versus ρ, with L = 64.

Fig. 3. MSE comparisons for different numbers of training rounds L, and
various transmission power constraints ρ, where Nt = Nr = 4, M = 7× 9,
and K0 = Kt = Kr = 10 dB.

verifies the results given by Corollaries 1 and 2, where the

DFT/Hadamard codebooks are proved to be optimal.

Given L = 64, the MSE performance of different codebooks

is illustrated in Fig. 3(b), versus the transmission power ρ.

It is noted that both the DFT and the Hadamard codebooks

improve the MSE performance of the subchannel estimator by

about 15 dB, compared to the trivial codebook. Furthermore,

the random codebook shows the worst MSE performance,

when using the minimum codebook length of L = 64, which

confirms the necessity of specifically designing the codebook

for the RIS phase shifts configured during the multi-round

training stage.

It is worth noting in Fig. 3(a) that the MSE of the LSKRF

benchmark decreases slowly upon increasing L. This is be-

cause the MSE of the LSKRF scheme is contributed by not

one, but two procedures: (i) an LS estimation for the Khatri-

Rao product of Ht and Hr; (ii) a rank-1 approximation for

obtaining each row\column of Ht\Hr. Although the MSE

imposed by (i) can be further reduced given a larger L, the

dominant part (ii) cannot be eliminated by simply increasing

L, and thus limits the overall performance. This also explains

the observation from Fig. 3(b) that the proposed subchannel

estimation method using DFT\Hadamard codebooks achieves

better MSE performance than the LSKRF based benchmark,

since the MSE of the proposed scheme is purely decided by the

LS estimates of the subchannels. Additionally, the benchmark

of cascaded CSI acquisition [32] shows a similar performance

to the proposed scheme using DFT\Hadamard codebooks,

because it also adopts a DFT based LS training.

B. Joint Precoding Performance

The performance of the proposed two-stage joint precoding

method is evaluated for different numbers of RIS elements M ,

various transmission powers ρ, and diverse channel conditions

specified by the Rician factors. The proposed scheme detailed

in Algorithm 2 is compared to the following three benchmark

precoding schemes:

• AO scheme [17]: the AO scheme derived in [17] is

adopted, and the full CSI of the incident channel Ht

and the reflected channel Hr is required.

• Random phase design: the phase shifts are randomly

generated, and the digital precoder is determined by

solving (P5) based on the random phase shifts.

• W/O RISs: the conventional MIMO system without RISs

is considered, where the digital precoder is given by the

solution to (P5) with [µ̄](2:M+1) = 0.

Accounting for the overhead of channel estimation, the MI

loss factor is given as (1 − κsNp

κc
), where κc is the length

of the channel coherence interval, κs is the duration of a

single pilot symbol, and Np is the overall number of pilot

symbols required. We use the parameter values (κc, κs) =
(0.025 s, 10 µs). For the proposed precoding method and the

AO benchmark, Np = (M + 1)Nt is adopted, while for the

random phase design and the W/O RISs benchmark, Np = Nt

is assumed.16 If without explicit explanation, the loss factor

is applied to all the numerical results in this section, namely

that (1− κsNp

κc
)I(µ̄,W ) is used as our performance metric.

1) MI versus the number of REs: The MI achieved by the

proposed two-stage joint precoding scheme is compared to

that of various benchmarks for different numbers of REs and

diverse channel conditions, as shown in Fig. 4, where Nt =
Nr = 4, the transmission power is ρ = 20 dBm, and the

number of REs is set to M = 10m× 10 for m = 0, . . . , 10.

Observe that the MI of all the schemes increases upon

decreasing the Rician factors of the channels involved, thanks

to the rich scattering propagation that is appropriate for in-

creasing the benefits of MIMO systems [45]. By comparing the

performance of the random phase design and the conventional

MIMO system without RISs, it is seen from Fig. 4(c) that,

under the LOS-dominant propagation conditions, even the

randomly generated phase design is capable of gleaning some

reflection gain (the MI increased by about 20%). However,

in the case of rich scattering channels with K = 0, as

demonstrated in Fig. 4(a), the RIS has almost no benefits

if the phase shifts are randomly adjusted. This is because

the effective channel of the reflected link becomes negligible

compared to the direct channel, as a result of the law of large

numbers

1

M

M∑

m=1

µm[Hr](:,m)[Ht](m,:) ≈ E
{
µm[Hr](:,m)[Ht](m,:)

}
.

(56)

16The AO benchmark of [17] requires the full CSI of H0, Hr, and Ht,
which can be acquired using the tensor based technique discussed in [36],
with a minimum overhead of (M + 1)Nt pilots. As for the benchmark of
random phase design, the number of required pilots is only Nt, because the
CSI of Hr, Ht is not needed to determine the RIS phase adjustments.
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Fig. 4. MI versus number of REs M , for various precoding designs, where
Nt = Nr = 4, and ρ = 20 dBm.

The expectation term of (56) is zero since µm, Hr, and Ht

are independent, and the entries of Hr and Ht follow a zero-

mean complex symmetric Gaussian distribution.

It is also noted that the MI of both the proposed scheme

and of the AO-based benchmark firstly increases and then

decreases with M , under most channel conditions (except that

the MI of the AO scheme keeps on decreasing in Fig. 4(a)).

This is because when M begins increasing, the resulted

reflection gain provided by the RIS is exploited. However, the

overhead of channel estimation becomes significant and thus

limits the performance, when M exceeds a certain value. As

discussed in the context of (56), the performance gain achieved

by the proposed scheme and by the AO scheme remains quite

limited and decreases very quickly as M increases under rich

scattering conditions, which is due to the fact that the channel

gain of the reflected link is negligible, given a large value of

M , and yet the training overhead keeps on growing. Moreover,

observe from Figs. 4(a) and 4(b) that the proposed two-stage

precoding scheme outperforms the AO scheme in terms of

increasing the MI.

2) MI versus the transmission power constraint: We set

Nt = Nr = 4, M = 3 × 10, and compare the MI of the

proposed precoding scheme to those of the aforementioned

benchmarks under different transmission power constraints

and channel conditions, as illustrated in Fig. 5.

Observe in Fig. 5 that the MI obtained by all the schemes

decreases upon increasing the Rician factors K. By contrast,

increased reflection gain has been achieved in the presence of

less scattering. Specifically, the proposed scheme outperforms

the conventional MIMO system by about 0.5 dB in rich

scattering environments, but its gain can be increased to more

than 10 dB under the LOS-dominated channel conditions

having K → ∞.17 Additionally, the MI of all the compared

schemes almost linearly increases with transmission power ρ
measured in dBm. This observation verifies the conclusion of

I ∝ log ρ for point-to-point MIMO systems in the case of

a high signal-to-noise ratio (SNR) at the receiver, due to the

relatively modest path loss between the transmitter and the

receiver in our simulation setting.

As illustrated in Figs. 5(a) and 5(b), the performance gain

of the RIS-aided systems is very limited under rich scattering

channels, especially after taking into account the realistic pilot

overhead of channel estimation. Furthermore, the proposed

two-stage scheme shows a slight advantage over the AO-based

benchmark in maximizing the MI. These observations coincide

with the results shown in Figs. 4(a) and 4(b), as seen from the

zoomed-in windows of Fig. 5.

3) MI evaluation with subchannel grouping: By grouping

the subchannels and using group-specific phase shifts, the

complexity of both subchannel estimation and of the joint

precoding is substantially reduced. For convenience, we set

Nt = Nr = 4, and M = 16 × 16. The index sets

for the subchannel groups are determined by S0 = 0 and

Sg = {(g − 1)M/2R + 1, . . . , gM/2R}, for 1 ≤ g ≤ Ng − 1,

where R is a positive integer, and R ≤ log2 M . Explicitly, the

direct channel H0 is assigned to Group 0, and the other M
subchannels are uniformly divided into 2R groups. The total

number of the groups is then given by Ng = 2R + 1.

We set R ∈ {0, 1, 2, . . . , log2 M}, and compare the MI

obtained by the proposed two-stage precoding scheme under

various Rician factors in Fig. 6. It is observed that the MI

of the proposed scheme firstly increases with R within a

certain range, and this indicates that the group-specific phase

shift design imposes considerable performance loss due to

the phase ambiguity experienced. Quantitatively, for LOS-

dominated channels associated with K → ∞, the grouping

pattern of 2R = 1, where all REs use an identical phase

shift for the incident signal, results in about 30% performance

degradation compared to the optimal grouping pattern of

17It is observed in Fig. 5(c) that the performance gain shown by the RIS-
aided systems over the conventional MIMO systems increases upon increasing
the power constraint. This is due to the fact that with K → ∞, the direct
channel spanning from the transmitter to the receiver becomes rank deficient
[46]. Hence, the RIS-aided systems leveraging both the direct and reflected
links achieves a higher multiplexing gain than the conventional systems using
only the direct link.
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Fig. 5. MI versus transmission power constraint ρ, for various precoding
designs, where Nt = Nr = 4, and M = 3× 10.

2R = 64. This performance loss is a direct result of wave

interference. When dispensing with grouping, the incident

waves transmitted in every subchannel can be all phase-aligned

by controlling the dedicated REs, which leads to constructive

interference. As for the scenario of subchannel grouping, the

incident waves corresponding to the same group have the same

common phase shift, and hence they experience destructive

interference.

It is also noted in Fig. 6 that when R exceeds a certain

value, the MI achieved by the proposed scheme decreases upon

increasing R. This is due to the fact that the overhead of

channel training, given by (2R +1)Nt, also increases with R.

Therefore, the number of RE groups should be appropriately

chosen in practical systems for striking an appealing reflection

gain versus training overhead trade-off.
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Fig. 6. MI versus number of RE groups 2R, for various subchannel grouping
patterns, where Algorithm 2 is adopted for precoding design, ρ = 20 dBm,
Nt = Nr = 4, and M = 16× 16.

4) Effects of channel estimation errors: The MI achieved

by the proposed two-stage precoding method is shown in

Fig. 7, relying on the estimated subchannel CSI (obtained

from Algorithm 1) instead of the perfect CSI, under different

transmission power constraints ρ.18 The performance loss is

calculated by (I0 − Î0)/I0 with I0 and Î0 denoting the MI

obtained using perfect CSI and estimated CSI, respectively.

It is seen that the performance loss decreases with the trans-

mission power ρ, and it declines more rapidly given a larger

L, i.e., more training rounds. This is because the estimated

CSI becomes more accurate given more transmission power

and pilot symbols. More specifically, the performance loss

finally decreases to zero, as shown in Figs. 7(a) and 7(b).

By contrast, the loss still remains in Fig. 7(c), where all the

involved channels are LOS-dominant. This is due to the fact

that even negligible noise changes the rank-deficient nature of

the LOS-dominant channels, and thus affects the design of the

precoding matrix W obtained with the aid of SVD in (44).

In this case, as discussed in [13], robust precoding designs

can be considered by investigating the expectation over the

distribution of the channel estimation error.

VI. CONCLUSIONS

A channel decomposition model has been proposed for CSI

acquisition and joint precoding problems in RIS-aided MIMO

systems. By decomposing the effective channel of the reflected

link into multiple subchannels, we have developed a multi-

round pilot training mechanism to obtain the CSI required for

precoding. The joint precoding problem has been reformulated

with respect to the subchannels, based on which a two-stage

precoding scheme has been developed to successively design

the reflecting phase shifts and the baseband digital precoder,

only relying on the CSI knowledge of the subchannels. Our

numerical results have demonstrated that the proposed channel

decomposition based model provides an attractive solution for

RIS-aided MIMO communications. For future works, joint

transmit precoding and RIS phase adjustment under frequency-

selective fading channels, as well as low-overhead methods for

subchannel estimation are worth further investigation.

APPENDIX A

PROOF OF LEMMA 1

Proof: For convenience, let C = AH ⊗ INr
, D =

XH(XXH)−1, E = [ĤT
e,1, . . . , ĤT

e,L]
T, and J =

18In order to present the effects of estimation errors under different numbers
L of the training rounds, the pilot overhead is not included in Fig. 7.
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(b) K0, Kt, Kr = 10 dB.
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Fig. 7. MI versus transmission power constraint ρ, relying on estimated
CSI of the subchannels, where the performance loss is shown by percentage,
Nt = Nr = 4, and M = 7× 7.

[ZT
1 , . . . , ZT

L ]
T. Then (9) can be rewritten as

vec(E) = (INt
⊗C)vec(Hs) + (DT ⊗ ILNr

)vec(J), (57)

where J ∼ CN
(
0, σ2IτLNr

)
. Based on the Gauss–Markov

theorem [47], the CRLB covariance matrix derived from (57)

is given by

ΘCRLB = σ2
[
(INt

⊗C)H(DTD∗ ⊗ ILNr
)−1(INt

⊗C)
]−1

.

(58)

By exploiting the properties of Kronecker product operations,

(58) can be further rearranged as

ΘCRLB = σ2(DHD)∗ ⊗ (CHC)−1

= σ2(X∗XT)−1 ⊗ (AAH)−1 ⊗ INr
,

(59)

which completes the proof.

APPENDIX B

PROOF OF PROPOSITION 4

Proof: For convenience, denote E = ρ/σ2Heq(µ̄ ⊗
W )(µ̄ ⊗ W )HHH

eq, C = µ̄ ⊗ W , D = P opt, B =

ρ/σ2HeqP
opt(HeqP

opt)H, and R = Ns. Then for any

feasible (µ̄,W ), the difference between the objective of (P2)

and its upper bound Ĩ(P opt) is given by
∣∣I(µ̄,W )− Ĩ(P opt)

∣∣

=
∣∣∣

R∑

r=1

log(1 + λr(E))−
R∑

r=1

log(1 + λr(B))
∣∣∣

≤
R∑

r=1

∣∣ log(1 + λr(E))− log(1 + λr(B))
∣∣

(a)

≤
R∑

r=1

∣∣λr(E)− λr(B)
∣∣ (b)≤

√√√√R

R∑

r=1

∣∣λr(E)− λr(B)
∣∣2

(c)

≤
√
R‖E −B‖F

(d)

≤ ρ
√
R

σ2
‖Heq‖2F ‖CCH −DDH‖F ,

(60)

where (a) is a result of the property of logarithmic function,

(b) follows from invoking the Cauchy-Schwarz inequality, and

(c) is obtained by applying Theorem III.4.4 in [48]. Note that

the result given by (d) in (60) can be further bounded by

‖CCH −DDH‖F
= ‖(C +D)(C −D)H +CDH −DCH‖F
≤ ‖(C +D)(C −D)H‖F + ‖CDH −DCH‖F ,

(61)

where the first term is bounded by ‖(C+D)(C−D)H‖F ≤
2(M + 1)‖C − DH‖F due to ‖C‖F = ‖D‖F = (M + 1),
while the second term is bounded by

‖CDH −DCH‖F
= ‖C(D −C)H − (D −C)CH‖F
≤ 2‖C(D −C)H‖F ≤ 2(M + 1)‖C −D‖F .

(62)

Based on (60)-(62), letting C = 4ρ
σ2

√
R(M + 1)‖Heq‖2F , we

have
∣∣I(µ̄,W )− Ĩ(P opt)

∣∣ ≤ C‖µ̄⊗W − P opt‖F . (63)
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