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Abstract—Unmanned aerial vehicles (UAVs) have been widely
used in both military and civilian applications. Equipped with di-
verse communication payloads, UAVs cooperating with satellites
and base stations (BSs) constitute a space-air-ground three-tier
heterogeneous network, which are beneficial in terms of both
providing the seamless coverage as well as of improving the
capacity for increasingly prosperous Internet of Things (IoT)
networks. However, cross-tier interference may be inevitable
among these tightly embraced heterogeneous networks when
sharing the same spectrum. The power association problem
in satellite, UAV and macrocell three-tier networks becomes
a critical issue. In our paper, we propose a two-stage joint
hovering altitude and power control solution for the resource
allocation problem in UAV networks considering the inevitable
cross-tier interference from space-air-ground heterogeneous net-
works. Furthermore, Lagrange dual decomposition and concave-
convex procedure (CCP) method are used to solve this problem,
followed by a low-complexity greedy search algorithm. Finally,
simulation results show the effectiveness of our proposed two-
stage joint optimization algorithm in terms of UAV network’s
total throughput.

Index Terms—UAV communication networks, IoT network,
power control, cross-tier interference, heterogeneous networks,
satellite.
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G
IVEN the substantial success of unmanned aerial ve-

hicles (UAVs) in surveillance and monitoring tasks, it

has become vitally important to bring drones into wireless

communications considering their low cost, fast deployment,

fully controllable mobility as well as the line of sight (LOS)

communication links. These drones are usually equipped with

diverse payloads for receiving, processing and transiting sig-

nals, which can be viewed as the aerial mobile base station

(AMBS) constituting UAV communication networks [1] [2].

UAV communication networks along with traditional satel-

lite networks and ground cellulars construct a space-air-ground

three-tier heterogeneous network, which is capable of both

providing seamless coverage as well as of further improving

the channel capacity for increasingly prosperous Internet of

Things (IoT) networks [3]–[5]. More explicitly, the ground

marcocell base station (MBS) provides the basic broad-band

information services for the IoT nodes. Small drones act as

on-demand aerial access points for the sake of offloading the

ground MBS and of constructing emergency links in the con-

text of contingency. Moreover, UAV netowrk can be viewed

as a promising solution to support energy-efficient uplink and

location in energy-constrained IoT-centric networks [6]. By

contrast, the satellite is used for providing a global coverage

benefitting from its broadcast services and broad sight [7].

Hence, relying on such three-tier heterogeneous network, the

connectivity, capacity and energy efficiency of IoT networks

can be significantly improved.

In particular, as a beneficial communication enhancement

facilitator, UAV network is characterized by flexility, cost-

saving and energy-efficiency. Specifically, in remote regions

not seamlessly covered by macrocells on the ground, the UAV

network may economically provide information services for

IoT nodes compared with the high cost of satellite connections.

Furthermore, in crowded places the UAV network may relieve

the channel congestion of the macrocell and guarantee the

quality of service (QoS) of latency- and throughput-sensitive

IoT applications [8] [9]. More importantly, UAVs can help to

quickly construct an emergency information system or even

act as the IoT sensing nodes, which is beneficial of supporting

the disaster relief when a large part of cellular and Internet

infrastructures on the ground are destroyed by a calamity [10].

UAV aided hybrid communication techniques have been

widely investigated in the literature. Specifically, in [11],

Amorim et al. presented models for path loss exponents and

shadowing of the radio channel between UAVs and cellular

networks with the aid of a field measurement. Zeng et al.
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proposed an energy-efficient UAV communication model by

optimizing the trajectory of drones, which jointly considered

both the energy consumption and the communication through-

put in [12]. The energy efficiency of UAV communication was

defined as the ratio of total transmitted bits to UAV’s energy

consumption. Furthermore, an effective dynamic trajectory

control mechanism for multi-UAV network was proposed

by Fadlullah et al. in [13], which was beneficial in terms

of both improving the network throughput as well as of

reducing the communication delay. In [14], Mozaffari et al.

considered a coexistence between the UAVs and an underlaid

device-to-device (D2D) communication network and studied

the coverage performance as well as data rate. However,

the aforementioned articles mostly focused their attention

on how to improve the communication performance such as

throughput, delay and coverage, by designing the mobility of

drones, while few considered the intra- and inter-interference

and cross-tier resource allocation among different networks.

Due to spectrum scarcity, it is possible to sharing the spec-

trum among different kinds of communication subsystems.

More specifically, the C-band, Ku-band and Ka-band have

been well utilized for air-to-ground reliable wide-band com-

munications. Particularly, a range of compelling applications

of the fifth generation wireless systems (5G) attempt to use

higher frequency band for providing low-latency and high-

throughput services, such as C-band and Ka-band, which are

originally assigned to the airborne communications [15]–[18].

It is worth noting that mmWave communications [19] have

been already adopted in both UAV and satellite scenarios [20]–

[23]. Hence, a well-implemented network association mecha-

nism of space-air-ground heterogeneous systems is beneficial

in terms of both improving the resource utilization as well as

of reducing the cross-tier interference [24] [25] [26]. As for

the resource allocation problem in heterogeneous networks,

Fooladivanda et al. in [27] investigated the user association and

resource allocation in heterogeneous cellular networks in terms

of orthogonal channel deployment, co-channel deployment as

well as partially shared channel deployment. Moreover, they

obtained upper bounds of the heterogeneous network’s perfor-

mance. Furthermore, a distributed joint allocation algorithm is

proposed for band selection and power allocation in order to

maximize total capacity of a multi-mode and multi-band user

terminal (MMT) by Choi et al. in [28]. Moreover, considering

the aspect of energy efficiency, Xie et al. in [29] formulated an

energy-efficient resource allocation problem as a Stackelberg

game for heterogeneous cognitive femtocells, followed by a

gradient based iteration solution. In [30], Ye et al. focused their

attention on the relationship between the user association and

load balancing for heterogeneous networks with picocells and

femtocells solved by a low-complexity and fast-convergence

distributed algorithm. Furthermore, in [31], a mixed-integer

programming problem was formulated for allocating sub-

channel and power resources in orthogonal frequency-division

multiple access (OFDMA) hybrid networks with femtocells.

However, these resource allocation mechanisms may not

be suitable for the applications for the UAV aided space-

air-ground heterogeneous network, because few of them con-

sidered the characteristics of UAVs in designing resource

allocation algorithms, such as dynamic topology, flexible de-

ployment, etc. Given a general space-air-ground heterogeneous

communication scenario jointly served by the satellite, low-

altitude UAVs and the ground MBS, users served by UAV

networks may severely influence or be inevitably affected

by the operation of satellite communication systems and

macrocells. Therefore, the resource allocation of different

kinds of users should take into account the inevitable cross-

tier interference in space-air-ground hybrid networks [32].

Moreover, as the aerial base stations, UAVs play a critical role

in offloading the ground MBS and in enhancing ultra-reliable

communication links. Given the coverage of each drone net-

work, frequently changing UAVs’ horizontal hovering position

in the same altitude may result in server inter-interference

between adjacent UAV networks and increase the risk of

flight collision. Additionally, considering the power constraint

of small drones, it may be unrealistic to make the drone

adaptively move around for supporting the bursty traffic of

the ground users. Hence, a delicately designed UAVs’ hovering

altitude distribution is capable of improving the user’s QoS by

deploying more drones in different hovering altitudes as well

as of guaranteeing their flight safety.

Inspired by the above-mentioned open challenges, in this

paper, we propose a two-stage joint hovering altitude and

power control for UAV networks in the context of a space-

air-ground heterogeneous communication network considering

diverse user’s QoS requirements. Our main contributions can

be summarized as follows:

• To the best of our knowledge, this is the first work for

resource allocation for UAV networks in the context of

space-air-ground heterogeneous communication systems

considering the feasible deployment of drones aiming to

reduce the cross-tier interference.

• A two-stage joint hovering altitude and power control

solution is investigated for our proposed model. Both the

Lagrange dual decomposition and concave-convex pro-

cedure (CCP) method are used to approximatively solve

the relaxed convex problem. Moreover, a low-complexity

greedy proportionable power constrained algorithm is

proposed for resource allocation in UAV networks.

• Extensive simulations are conducted in order to evaluate

the performance of our proposed two-stage joint resource

allocation scheme. Simulation results show that our re-

source allocation mechanism is beneficial in terms of

improving UAV network’s total throughput considering

the inevitable cross-tier interference.

The remainder of this article is outlined as follows. The sys-

tem model and problem formulation are detailed in Section II.

A two-stage joint hovering altitude and power control solution

for UAV networks is elaborated in Section III. In Section IV,

the implementation of the aforementioned two-stage joint iter-

ative algorithm as well as a low-complexity greedy algorithm

is presented, including its complexity analysis. In Section V,

simulation results are provided for characterizing our proposed

uplink resource allocation model for UAV networks, followed

by our conclusions in Section VI.
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Fig. 1. The structure of satellite, UAV and macrocell three-tier hybrid
network.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In this paper, as show in Fig. 1, we consider a three-tier

hybrid network including a satellite network with a geosyn-

chronous earth orbit satellite (GEO), a macrocell with a MBS

and M UAV networks sharing the same channel. Each UAV

network is served by a hovering drone. Let hm represent the

hovering altitude of the m-th drone. The coverage of M UAV

networks are overlaid within the coverage of the GEO as well

as the macrocell. We focus our attention on the uplink power

control of the users in the UAV networks. We assume that the

uplink power of both satellite users and of macrocell users is

equal.

The bandwidth of the channel is B, which is divided into K
subchannels. The channel fading between the MBS and users

on the ground is the frequency-selective Reyleigh fading, while

the communication channel between the hovering drone and

users is dominated by the line of sight (LoS) path. The channel

fading between the GEO and users on the ground is the Rice

fading.

Let NS and NC denote the number of active users served

by the GEO and by the MBS in a macrocell, respectively.

Moreover, NU is the number of active users camping on each

UAV network. We assume that the satellite users and the

macrocell users are uniformly distributed in each coverage

area. In our model, two kinds of users with different QoS

requirements are served in each UAV network. Specifically, the

number of QoS-sensitive users requiring a high transmission

rate of Rh is Nuh, while the number of QoS-tolerant users

with a low transmission rate requirement of Rl is Nul, where

Nuh+Nul = NU . Let Nuh and Nul represent the set of QoS-

sensitive users and QoS-tolerant users, respectively. Then, we

have |Nuh| = Nuh and |Nul| = Nul, and Nuh

∩

Nul = ∅.

Let gU→S
n1,m,k

, gU→C
n1,m,k

and gU→U
n1,m,k

denote the channel gains

on k-th subchannel from user n1 in m-th UAV network to

the GEO, to the MBS and to the hovering drone, respec-

tively, where n1 ∈ {1, 2, . . . , NU}, m ∈ {1, 2, . . . ,M} and

k ∈ {1, 2, . . . ,K}. In our model, gU→S
n1,m,k

can be viewed as

a constant because the UAV users locate far away from the

GEO satellite, while gU→C
n1,m,k

depends the channel state and

the distance between each UAV user and the MBS. For the

sake of analysis, we assume that the service radius of each

drone can be neglected compared with its altitude, and hence

gU→U
n1,m,k

is only sensitive to the hovering altitude hm of the

m-th drone, which can be formulated as:

gU→U
n1,m,k

=
κ

h2m
, (1)

where κ denotes the unit power gain in terms of the reference

distance hr = 1m. Furthermore, let gC→U
n2,m,k

represent the

channel gain on k-th subchannel from user n2 in the macrocell

to the m-th hovering drone, while gS→U
n3,m,k

denotes the channel

gain on k-th subchannel from user n3 in the satellite network

to the m-th hovering drone, where n2 ∈ {1, 2, . . . , NC} and

n3 ∈ {1, 2, . . . , NS}. Moreover, let pCn2,k
and pSn3,k

represent

the uplink transmission power of user n2 in the macrocell

and of user n3 in the satellite network on k-th subchannel,

respectively, while pUn1,m,k
is the uplink transmission power

of user n1 in the m-th UAV network on k-th subchannel. In our

model, we define PNU×M×K as the power allocation matrix

for the users served by total M UAV networks, and we have

[P]n1,m,k = pUn1,m,k
.

Here, we define a channel indicator matrix as ANU×M×K ,

where [A]n1,m,k = an1,m,k. To elaborate, an1,m,k = 1
represents that the k-th subchannel is occupied by user n1 in

the m-UAV network, otherwise, an1,m,k = 0. We consider the

additive white Gaussian noise (AWGN) with the variance of

σ2. Hence, as for the m-th UAV network, the received signal-

to-interference-plus-noise ratio (SINR) of the hovering drone

from user n1 accessing the k-th subchannel can be calculated

by:

γn1,m,k =
pUn1,m,k

gU→U
n1,m,k

gC→U
n2,m,k

pCn2,k
+ gS→U

n3,m,k
pSn3,k

+ σ2
, (2)

where gC→U
n2,m,k

pCn2,k
is the interference from the user in the

macrocell sharing the same sub-channel, while gS→U
n3,m,k

pSn3,k

is the interference caused by the user in the satellite network

occupying the k-th sub-channel. Remarkably, at most one user

is capable of accessing the same subchannel at one moment

in the macrocell, in the satellite network as well as in a

UAV network. For the sake of simplification, in our model

we assume that the users served by the drones are equipped

with a directional antenna and the co-interference between

different UAV networks is negligible compared with the cross-

tier interference from the macrocell and the satellite network.

Relying on the Shannon formula [33], the uplink capacity

of m-th UAV network from its user n1 on k-th subchannel

can be calculated by:

Cn1,m,k =
B

K
log2 (1 + γn1,m,k) . (3)

B. Problem Formulation

In this section, we will formulate the uplink resource

allocation problem for the UAV network. Furthermore, we
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assume that the channel state information (CSI) as well as the

result of uplink resource allocation can be forwarded to the

users by the hovering drone based on the channel reciprocity.

1) Constraints: In our uplink resource allocation problem,

our objective is to maximize the total capacity in M UAV

networks under the following constraints:

• UAV user’s power constraint: the users in each UAV

network have a maximum transmission power limit of

PUmax. Hence, for ∀n1 ∈ {1, 2, . . . , NU} and ∀m ∈
{1, 2, . . . ,M}, we have:

K
∑

k=1

an1,m,kp
U
n1,m,k

≤ PUmax. (4)

Furthermore, the non-negativity of power yields

pUn1,m,k
≥ 0.

• UAV safety flight and hovering altitude constraint: In

order to guarantee the safety of M cooperated drones,

we consider a hierarchical deployment of these drones

with different hovering altitudes. Moreover, the hovering

altitudes of them are distributed within a specified safe

range of [hmin, hmax] and subjects to:
∑

i,j∈M,i ̸=j

(hi − hj)
2 ≥ χ2, (5)

where χ2 is the minimal variance of the altitude of M
drones for safety flight and hovering, while M represents

the set of M hovering drones. Moreover, for ∀i, j ∈ M,

we have hmin ≤ hi, hj ≤ hmax.

• QoS guarantee: For the QoS-sensitive users, the require-

ment of a high transmission rate of Rh can be expressed

as:
K
∑

k=1

anuh,m,kCnuh,m,k ≥ Rh, (6)

where ∀nuh ∈ Nuh and ∀m ∈ {1, 2, . . . ,M}. By

contrast, for the QoS-tolerant users, we have:

K
∑

k=1

anul,m,kCnul,m,k ≥ Rl, (7)

where ∀nul ∈ Nul and ∀m ∈ {1, 2, . . . ,M}.

• Interference constraint of macrocell: UAV networks share

the same frequency with the macrocell. Hence, the macro-

cell may suffer a cross-tier interference from M UAV

networks. Let ICk denote the threshold of the interference

on the k-th subchannel and ∀k ∈ {1, 2, . . . ,K}, i.e.

M
∑

m=1

NU
∑

n1=1

an1,m,kp
U
n1,m,k

gU→C
n1,m,k

≤ ICk . (8)

• Interference constraint of satellite network: Similar to the

interference constraint of macrocell, let ISk represent the

threshold of the interference from UAV networks to the

satellite network on the k-th subchannel. Thus, we have:

M
∑

m=1

NU
∑

n1=1

an1,m,kp
U
n1,m,k

gU→S
n1,m,k

≤ ISk , (9)

where ∀k ∈ {1, 2, . . . ,K}.

• Subchannel allocation constraint: In each UAV network,

one subchannel can be allocated to at most one user,

which can be formulated by:

NU
∑

n1=1

an1,m,k ≤ 1, (10)

where ∀k ∈ {1, 2, . . . ,K} and ∀m ∈ {1, 2, . . . ,M}.

Moreover, the channel indicator variable an1,m,k ∈
{0, 1}.

2) Uplink Resource Allocation Formulation: The total ca-

pacity of M UAV networks can be given by:

Ctotal =

M
∑

m=1

NU
∑

n1=1

K
∑

k=1

an1,m,kCn1,m,k. (11)

Hence, the uplink resource allocation problem can be formu-

lated as:

max
{an1,m,k,p

U
n1,m,k

,hm}

M
∑

m=1

NU
∑

n1=1

K
∑

k=1

an1,m,kCn1,m,k

s.t. (12a) :
K
∑

k=1

an1,m,kp
U
n1,m,k

≤ PUmax, ∀n1,m,

(12b) : pUn1,m,k
≥ 0, ∀n1,m, k,

(12c) :
∑

i,j∈M,i ̸=j

(hi − hj)
2 ≥ χ2,

(12d) : hmin ≤ hm ≤ hmax, ∀m,

(12e) :
K
∑

k=1

anuh,m,kCnuh,m,k ≥ Rh, ∀nuh,m,

(12f) :
K
∑

k=1

anul,m,kCnul,m,k ≥ Rl, ∀nul,m,

(12g) :
M
∑

m=1

NU
∑

n1=1

an1,m,kp
U
n1,m,k

gU→C
n1,m,k

≤ ICk , ∀k,

(12h) :
M
∑

m=1

NU
∑

n1=1

an1,m,kp
U
n1,m,k

gU→S
n1,m,k

≤ ISk , ∀k,

(12i) :

NU
∑

n1=1

an1,m,k ≤ 1, ∀m, k,

(12j) : an1,m,k ∈ {0, 1}, ∀n1,m, k.
(12)

To elaborate further, (12a) and (12b) in problem (12) are

users’ power constraints, while (12c) and (12d) are hovering

altitude constraints. As for the QoS constraints (12e) and

(12f), considering the QoS-tolerant users with a low transmis-

sion rate requirement of Rl, where 0 < Rl ≪ Rh, hence we

can neglect the constraint (12f) in problem (12) without loss

of generality. Furthermore, (12g) and (12h) are interference

constraint from macrocell and satellite network, respectively.

Finally, the subchannel allocation constraints are given by

(12i) and (12j). Unfortunately, however, our optimization ob-

jective is a function of (an1,m,k, p
U
n1,m,k

, hm), and the form

of an1,m,kCn1,m,k is not concave in (an1,m,k, p
U
n1,m,k

, hm).
Moreover, the hovering altitude constraint of (12c) and the
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integer programming constraint of (12j) are not convex as

well. In the following, we will reformulate the optimization

problem (12) as a convex optimization problem with the aid of

relaxing the integer constraints and provide its solution relying

on a two-stage joint optimization.

III. TWO-STAGE JOINT HOVERING ALTITUDE AND POWER

CONTROL SOLUTION

In this section, we propose a two-stage joint optimization

algorithm for our uplink resource allocation problem. Since

there are a total of three kinds of optimization variables in

problem (12), i.e an1,m,k, pUn1,m,k
and hm, it is prohibitive

to find the globally optimal solution and thus a near optimal

algorithm with low computational complexity is desirable. In

the following, we first fix the hovering altitude hm = h0m,m ∈
M and search the optimal joint subchannel and power control

scheme in Stage 1. Then, relying on the result of Stage 1,

we try to find the optimal hovering altitude of each drone in

Stage 2.

A. Stage 1: Joint Subchannel and Power Control

1) Constraint Relaxation: Here, we first study the joint

subchannel and power control problem with given hover-

ing altitude, where the initial h0m constitutes a arithmetic

progression ranging from hmin to hmax. In the following,

we convert the non-convex problem (12) into a tractable

convex problem [31] [34] [35]. First of all, we relax the

inter programming constraint an1,m,k ∈ {0, 1} in (12j) to a

continuous convex constraint an1,m,k ∈ [0, 1].
Furthermore, let us introduce the auxiliary variable

ρn1,m,k = an1,m,kp
U
n1,m,k

, and hence the uplink capacity of
Eq. (3) can be converted to:

Ĉn1,m,k =

B

K
log2



1 +
ρn1,m,kg

U→U
n1,m,k

an1,m,k

(

gC→U
n2,m,kp

C
n2,k

+ gS→U
n3,m,kp

S
n3,k

+ σ2
)



 ,

(13)

where gU→U
n1,m,k

= κ
h2
m

and hm , h0m,m ∈ M. Now we

introduce Lemma 1 to show the concavity of our objective

function.

Lemma 1. Assume f(x) is a concave function of x when

x ∈ [0, X]. Let us introduce a variable a as a = tx, t ∈ [0, 1].
Then, g(t, a) = tf(a/t) is concave in (t, a) when t ∈ [0, 1]
and ∀a ∈ [0, tX].

Proof. Since f(x) is a concave function, f
′′

(x) ≤ 0. The

Hessian matrix of g(t, a) can be calculated as:

∇2g(t, a) =
f

′′

(a/t)

t3

[

a2 −at
−at t2

]

.

Furthermore, for ∀x, y ∈ R and t ∈ [0, 1], we have:

[

x y
]

∇2g(t, a)

[

x
y

]

=
f

′′

(a/t)

t3
(ax− yt)2 ≤ 0.

Hence, the Hessian matrix ∇2g(t, a) is a negative semidef-

inite matrix. Thus, g(t, a) = tf(a/t) is a concave func-

tion [36] [37].

Relying on Lemma 1, our optimization objective

an1,m,kĈn1,m,k is concave in (an1,m,k, ρn1,m,k), based on

which our joint subchannel and power control problem can be

reformulated as:

max
{an1,m,k,ρ

U
n1,m,k

}

M
∑

m=1

NU
∑

n1=1

K
∑

k=1

an1,m,kĈn1,m,k

s.t. (14a) :
K
∑

k=1

ρn1,m,k ≤ PUmax, ∀n1,m,

(14b) : ρn1,m,k ≥ 0, ∀n1,m, k,

(14c) :
K
∑

k=1

anuh,m,kĈnuh,m,k ≥ Rh, ∀nuh,m,

(14d) :
M
∑

m=1

NU
∑

n1=1

ρn1,m,kg
U→C
n1,m,k

≤ ICk , ∀k,

(14e) :

M
∑

m=1

NU
∑

n1=1

ρn1,m,kg
U→S
n1,m,k

≤ ISk , ∀k,

(14f) :

NU
∑

n1=1

an1,m,k ≤ 1, ∀m, k,

(14g) : an1,m,k ∈ [0, 1], ∀n1,m, k.

(14)

Obviously, our joint subchannel and power control problem

in (14) is a convex optimization problem.

2) Lagrangian Dual Decomposition Method: In this sub-

section, we use the Lagrangian dual decomposition method

to solve our joint subchannel and power control problem

in (14) [38]. Let L(A,ρ,λ,µ,ν,ω, ξ) be the Lagrangian

function, which can be written as:

L(A,ρ,λ,µ,ν,ω, ξ)

=

M
∑

m=1

NU
∑

n1=1

K
∑

k=1

an1,m,kĈn1,m,k

+
M
∑

m=1

NU
∑

n1=1

λn1,m

(

PUmax −
K
∑

k=1

ρn1,m,k

)

+
M
∑

m=1

Nuh
∑

nuh=1

µnuh,m

(

K
∑

k=1

anuh,m,kĈnuh,m,k −Rh

)

+
K
∑

k=1

νk

(

ICk −
M
∑

m=1

NU
∑

n1=1

ρn1,m,kg
U→C
n1,m,k

)

+
K
∑

k=1

ωk

(

ISk −
M
∑

m=1

NU
∑

n1=1

ρn1,m,kg
U→S
n1,m,k

)

+

M
∑

m=1

K
∑

k=1

ξm,k

(

1−
NU
∑

n1=1

an1,m,k

)

,

(15)

where λ, µ, ν, ω and ξ are the Lagrange multipliers associated

with the corresponding constraints, while A = {an1,m,k} and

ρ = {ρn1,m,k}. The constraints of (14b) and (14g) will be

considered after obtaining the optimal solution of an1,m,k

ρn1,m,k.
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Hence, the Lagrangian dual function can be expressed as:

g(λ,µ,ν,ω, ξ) = sup
A,ρ

L(A,ρ,λ,µ,ν,ω, ξ). (16)

The Lagrangian dual problem can be formulated as:

min
λ,µ,ν,ω,ξ

g(λ,µ,ν,ω, ξ)

s.t. λ,µ,ν,ω, ξ ≽ 0.
(17)

Eq. (15) can be reorganized as:

L(A,ρ,λ,µ,ν,ω, ξ) =

M
∑

m=1

K
∑

k=1

Φ+Ψ, (18)

where

Φ =

NU
∑

n1=1

an1,m,kĈn1,m,k −
NU
∑

n1=1

λn1,mρn1,m,k

+

Nuh
∑

nuh=1

µnuh,manuh,m,kĈnuh
−

NU
∑

n1=1

νkρn1,m,kg
U→C
n1,m,k

−
NU
∑

n1=1

ωkρn1,m,kg
U→S
n1,m,k

−
NU
∑

n1=1

ξm,kan1,m,k,

(19)

and

Ψ =
M
∑

m=1

NU
∑

n1=1

λn1,mP
U
max −

M
∑

m=1

Nuh
∑

nuh=1

µnuh,mRh

+
K
∑

k=1

νkI
C
k +

K
∑

k=1

ωkI
S
k +

M
∑

m=1

K
∑

k=1

ξm,k.

(20)

Relying on Eq. (18), the dual problem can be divided into
(M × K) parallel subproblems. Let a∗n1,m,k

and ρ∗n1,m,k

represent the optimal solutions of maximizing the Eq. (19).
Take the partial derivative of Eq. (19) with respect to an1,m,k

and ρn1,m,k, and for the QoS-sensitive user i ∈ Nuh, we have:

∂Φ

∂ρi,m,k

=
B

K ln 2

(

ai,m,kg
U→U
i,m,k + µi,mai,m,kg

U→U
i,m,k

ai,m,k∆+ ρ∗i,m,kg
U→U
n1,m,k

)

−Θi,

(21)
while for the QoS-tolerant user j ∈ Nul, i.e.

∂Φ

∂ρj,m,k

=
B

K ln 2

(

aj,m,kg
U→U
j,m,k

aj,m,k∆+ ρ∗j,m,kg
U→U
j,m,k

)

−Θj , (22)

where ∆ = gC→U
n2,m,k

pCn2,k
+ gS→U

n3,m,k
pSn3,k

+ σ2 and Θn1
=

λn1,m+νkg
U→C
n1,m,k

+ωkg
U→S
n1,m,k

, n1 ∈ {1, 2, . . . , NU}. Consid-

ering the constraint of (14b), as Φ is also a concave function,

the optimal solution ρ∗n1,m,k
, ∀n1,m, k obeys:















ρ∗n1,m,k
= 0 and

∂Φ

∂ρn1,m,k

|ρn1,m,k=0< 0,

ρ∗n1,m,k
> 0 and

∂Φ

∂ρn1,m,k

|ρn1,m,k=ρ∗n1,m,k
= 0.

(23)

Then, the optimal solution of the power allocation pU∗
n1,m,k

=
ρ∗n1,m,k

/an1,m,k in m-th UAV network on the k-th subchannel

for user n1 can be given by:

pU∗
n1,m,k

=























max

{

0,
B(1 + µi,m)

K ln 2×Θn1

−
∆

gU→U
j,m,k

}

, n1 ∈ Nuh,

max

{

0,
B

K ln 2×Θn1

−
∆

gU→U
j,m,k

}

, n1 ∈ Nul.

(24)

Similarly, considering a∗n1,m,k
∈ [0, 1] in (14g), the optimal

solution a∗n1,m,k
, ∀n1,m, k are given by:































a∗n1,m,k
= 0 and

∂Φ

∂an1,m,k

|an1,m,k=0< 0,

a∗n1,m,k
∈ (0, 1) and

∂Φ

∂an1,m,k

|an1,m,k=a∗n1,m,k
= 0,

a∗n1,m,k
= 1 and

∂Φ

∂an1,m,k

|an1,m,k=1> 0,

(25)
where for the QoS-sensitive user i ∈ Nuh,

∂Φ

∂ai,m,k

= (1 + µi,m)
B

K
log2

(

1 +
pU∗

i,m,kg
U→U
i,m,k

∆

)

− (1 + µi,m)
BpU∗

i,m,kg
U→U
i,m,k

K ln 2× (∆ + pU∗

i,m,kg
U→U
i,m,k )

− λi,mp
U∗

i,m,k

− νkp
U∗

i,m,kg
U→C
i,m,k − ωkp

U∗

i,m,kg
U→S
i,m,k − ξm,k,

(26)

and for the QoS-tolerant user j ∈ Nul, we have:

∂Φ

∂aj,m,k

=
B

K
log2

(

1 +
pU∗

j,m,kg
U→U
j,m,k

∆

)

−
BpU∗

j,m,kg
U→U
j,m,k

K ln 2× (∆ + pU∗

j,m,kg
U→U
j,m,k )

− λj,mp
U∗

j,m,k

− νkp
U∗

j,m,kg
U→C
j,m,k − ωkp

U∗

j,m,kg
U→S
j,m,k − ξm,k.

(27)

In our model, at most one user is allowed to access the same

subchannel at one moment in a UAV network. In order to

maximize the Lagrangian function, we have:

n∗1 = argmax
n1

∂Φ

∂an1,m,k

, ∀m, k, (28)

where a∗n∗

1
,m,k = 1 represents the suboptimal channel indicator

variable.
3) The Update of Lagrangian Multipliers: Since the La-

grangian dual function in Eq. (16) is not differentiable, we use
the subgradient method to update the Lagrangian multipliers
λ, µ, ν, ω and ξ [39] [40] [41]. The Lagrangian multipliers
can be updated as follows:

λ
(i+1)
n1,m

=

[

λ
(i)
n1,m

− α
(i)
1

(

P
U
max −

K
∑

k=1

ρn1,m,k

)]+

, ∀m,n1,

(29)

µ
(i+1)
nuh,m =

[

µ
(i)
nuh,m − α

(i)
2

(

K
∑

k=1

anuh,m,kĈnuh,m,k −Rh

)]+

, ∀m,nuh,

(30)

ν
(i+1)
k =

[

ν
(i)
k − α

(i)
3

(

I
C
k −

M
∑

m=1

NU
∑

n1=1

ρn1,m,kg
U→C
n1,m,k

)]+

, ∀k,

(31)
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ω
(i+1)
k =

[

ω
(i)
k − α

(i)
4

(

I
S
k −

M
∑

m=1

NU
∑

n1=1

ρn1,m,kg
U→S
n1,m,k

)]+

, ∀k,

(32)

where i is the indicator of the iteration, and α represents the

step size, while [·]+ = max{0, ·}. Moreover, to guarantee the

convergence of the subgradient method, the step sizes should

satisfy:
∞
∑

i=1

α(i) = ∞, and lim
i→∞

α(i) = 0. (33)

In order to speed up the convergence, an adaptive step size

is set as α = 1/I , where I represents the iteration index.

Relying on Eq. (24)-Eq. (33), we can obtain the optimal

solution
{

a∗n∗

1
,m,k, p

U∗
n1,m,k

}

of joint subchannel and power

control for each users in UAV networks considering a fixed

deployment altitude of hovering drones. Denote the obtained

total capacity of UAV networks as Ctotal(a
∗
n∗

1
,m,k, p

U∗
n1,m,k

,h),

where h , [h1, h2, . . . , hM ]T .

B. Stage 2: Hovering Altitude Optimization

1) Difference of Convex Programming Based Hovering Al-

titude Formulation: As mentioned before, in Stage 1, we fix

the deployment altitude of each hovering drone and search for

the optimal joint subchannel and power control mechanism for

each user in UAV network, denoted as
{

a∗n∗

1
,m,k, p

U∗
n1,m,k

}

,

where n1 ∈ {1, 2, . . . , NU}, m ∈ {1, 2, . . . ,M} and k ∈
{1, 2, . . . ,K}. In the following, we try to determine the

optimal hovering altitude of each drone based on the results

obtained from Stage 1. Considering the safety hovering alti-

tude constraints of (12c) and (12d) in our original problem

formulation in (12), we have:

max
{hm}

M
∑

m=1

NU
∑

n1=1

K
∑

k=1

a∗n∗

1
,m,k

B

K
log2

(

1 +
κpU∗

n1,m,k

h2m∆

)

s.t. (34a) :
∑

i,j∈M,i ̸=j

(hi − hj)
2 ≥ χ2,

(34b) : hm ≤ hmax, ∀m,

(34c) : hm ≥ hmin, ∀m.

(34)

The hovering altitude optimization problem in (34) can

be reformulated as a difference of convex (DC) program-

ming [42] [43], which can be given by:

min
h

0− g0(h)

s.t. (35a) : χ2 − g1(h) ≤ 0,

(35b) : hm ≤ hmax, ∀m,

(35c) : hm ≥ hmin, ∀m.

(35)

where the objective function can be expressed as:

g0(h) =

M
∑

m=1

NU
∑

n1=1

K
∑

k=1

a∗n∗

1
,m,k

B

K
log2

(

1 +
κpU∗

n1,m,k

h2m∆

)

,

(36)

and g1(h) can be given by:

g1(h) =
∑

i,j∈M,i ̸=j

(hi − hj)
2. (37)

Algorithm 1: CCP aided Iterative Algorithm for Optimal

Hovering Altitude

1: Initialize an initial feasible h∗(0), and a stopping

threshold δ.

2: Set iteration indicator n := 0.

3: repeat

4: Calculate g0(h
∗(n)).

5: ĝ0(h;h
∗(n)) , g0(h

∗(n)) +∇g0(h
∗(n))T (h− h

∗(n)).

6: ĝ1(h;h
∗(n)) , g1(h

∗(n)) +∇g1(h
∗(n))T (h− h

∗(n)).

7: Solve the convex subproblem in (41).

8: Obtain h∗(n+1) and calculate g0(h
∗(n+1)).

9: Update iteration indicator n := n+ 1.

10: until g0(h
∗(n))− g0(h

∗(n−1)) ≤ δ is satisfied.

11: Set h∗ , h∗(n).

Specifically, g1(h) is a quadratic form, which can be rewritten

as g1(h) = hTQh, where Q = diag(M) − 1. Moreover,

diag(M) denotes a diagonal matrix with all diagonal elements

equaling M and 1 is an M×M matrix with all elements being

1. Hence, both g0(h) and g1(h) in (35) are convex functions.

Hence, we can use the CCP method to solve the problem

in (35), where we are capable of achieving the locally optimal

result of the non-convex problem through solving a series of

iterative convex subproblems as shown in Algorithm. 1.

2) CCP Aided Iterative Solation: To elaborate a litter

further, let ĝ0(h) and ĝ1(h) approximatively be the first-order

Taylor expansion of g0(h) and g1(h), respectively, i.e.

ĝ0(h;h
(n)) , g0(h

(n)) +∇g0(h
(n))T (h− h(n))

= g0(h
(n)) + Γ(h(n))T (h− h(n)),

(38)

and

ĝ1(h;h
(n)) , g1(h

(n)) +∇g1(h
(n))T (h− h(n))

= h(n)TQh(n) + (2Qh(n))T (h− h(n)),
(39)

where h(n) is the value of h in the n-th iteration. Moreover,

the M × 1 vector Γ = dg0(h)
dh , and the m-th element of Γ can

be calculated as:

Γm = −
NU
∑

n1=1

K
∑

k=1

2κBa∗n∗

1
,m,kp

U∗
n1,m,k

K ln 2×
(

h3m∆+ hmκpU∗
n1,m,k

) . (40)

Thus, the value of h(n+1) can be achieved from solving the

following series of convex linear-constraint subproblems:

min
h

0− ĝ0(h)

s.t. (41a) : χ2 − ĝ1(h;h
(n)) ≤ 0.

(41)

Note that, the constrains of (35b) and (35c) in problem (35)

will be considered in solving above-mentioned convex sub-

problem. The stopping criterion of the iteration can be given

by:

g0(h
(n+1))− g0(h

(n)) ≤ δ, (42)

where δ is the stopping threshold.
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Here, we also use the Lagrangian dual decomposition

method to solve the convex problem (41). The Lagrangian

function can be given by:

L(h, ψ) = −ĝ0(h) + ψ(χ2 − ĝ1(h)), (43)

where ψ is the Lagrangian multiplier. Hence, the Lagrangian

duality function is denoted as:

z(ψ) = inf
h

−ĝ0(h) + ψ(χ2 − ĝ1(h)). (44)

Then, the Lagrangian duality problem can be formulated as:

max
ψ

z(ψ)

s.t. ψ ≥ 0.
(45)

Take the derivative of Eq. (51) against hovering altitude

vector h, and we have:

dL(h, ψ)

dh
= −Γ(h(n))− 2ψQh(n). (46)

For ∀m = {1, 2, . . . ,M}, we have:

dL(hm)

dhm
= 2ψ





M
∑

i=1,i ̸=m

h
(n)
i − (M − 1)h(n)m





+

NU
∑

n1=1

K
∑

k=1

2κBa∗n∗

1
,m,kp

U∗
n1,m,k

K ln 2×
(

h
3(n)
m ∆+ h

(n)
m κpU∗

n1,m,k

) ,

(47)

where h
(n)
m is the value of hm in the n-th iteration. Hence,

considering the fact that L(hm) is a convex function, we have:

h(n+1)
m =















hmin, if
dL(hm)

dhm
> 0,

hmax, if
dL(hm)

dhm
< 0.

(48)

Given that the dual function z(ψ) is not differentiable, the

Lagrangian multiplier ψ can be updated by:

ψ(n+1) = [ψ(n) + β(n)(χ2 − ĝ1(h
n)]+, (49)

where β(n) is the step size of Lagrangian multiplier.

Then, we can achieve the optimal h(n+1) for the con-

vex subproblem in (41). Hence, relying on the CCP aided

iterative algorithm, given fixed {a∗n∗

1
,m,k, p

U∗
n1,m,k

}, we ob-

tain the optimal hovering altitude vector represented by h∗.

Moreover, for the sake of reducing computational complex-

ity, numerous Boolean optimization algorithms can also be

invoked in order to solve the near optimum of h. Thus,

the total capacity of UAV networks can be recalculated as

Ctotal(a
∗
n∗

1
,m,k, p

U∗
n1,m,k

,h∗). However, the pseudo-optimal ca-

pacity Ctotal(a
∗
n∗

1
,m,k, p

U∗
n1,m,k

,h∗) is not the final optimal

capacity of our proposed uplink resource allocation problem

in (12), namely C∗
total. In the following, we will combine the

aforementioned two stages in order to search for the optimal

network capacity jointly considering the hovering altitude and

the subchannel and power control1.

1Hereafter, we use C
(i)
total

(a∗
n∗

1
,m,k

, pU∗

n1,m,k
,h∗) to represent the pseudo-

optimal capacity of the i-th two-stage iterative joint resource association for
a more clear expression.

Algorithm 2: Joint Hovering Altitude and Power Control

1: Initialize an initial feasible h(0), and a stopping

threshold Λ.

2: Set iteration indicator i := 0.

3: repeat

4: Update iteration indicator i := i+ 1.

5: Obtain {a∗n∗

1
,m,k, p

U∗
n1,m,k

}(i) by solving (14) in

Stage 1.

6: Calculate C
(i)
total(a

∗
n∗

1
,m,k, p

U∗
n1,m,k

,h).

7: Obtain h∗(i) by solving (35) in Stage 2.

8: Calculate C
(i)
total(a

∗
n∗

1
,m,k, p

U∗
n1,m,k

,h∗).

9: until C
(i)
total(a

∗
n∗

1
,m,k, p

U∗
n1,m,k

,h∗)−

C
(i−1)
total (a

∗
n∗

1
,m,k, p

U∗
n1,m,k

,h∗) ≤ Λ is satisfied.

10: Set C∗
total , C

(i)
total(a

∗
n∗

1
,m,k, p

U∗
n1,m,k

,h∗).

11: Set {a∗n∗

1
,m,k, p

U∗
n1,m,k

} , {a∗n∗

1
,m,k, p

U∗
n1,m,k

}(i).

12: Set h∗ , h∗(i).

C. Joint Hovering Altitude and Power Control

1) Two-Stage Joint Resource Allocation: In Section III-A

and Section III-B, we have studied the optimization prob-

lem of both the power control (Stage 1) and the hovering

altitude (Stage 2). In this subsection, we combine these two

stages and jointly optimize the hovering altitude and power

control scheme. Specifically, in the i-th iteration, the optimal

subchannel and power control of {a∗n∗

1
,m,k, p

U∗
n1,m,k

}(i) can

be achieved in Stage 1 based on fixed h(i−1), yielding the

total capacity of UAV networks of C
(i)
total(a

∗
n∗

1
,m,k, p

U∗
n1,m,k

,h).
Then, relying on given subchannel and power control of

{a∗n∗

1
,m,k, p

U∗
n1,m,k

}(i), in Stage 2, we can obtain the opti-

mal hovering altitude vector h∗(i) and the pseudo-optimal

capacity C
(i)
total(a

∗
n∗

1
,m,k, p

U∗
n1,m,k

,h∗) in the i-th iteration of

the two-stage joint resource allocation algorithm. In return,

we conduct the optimization in Stage 1 based on the lat-

est h∗(i) and update the {a∗n∗

1
,m,k, p

U∗
n1,m,k

}(i+1) as well

as C
(i+1)
total (a

∗
n∗

1
,m,k, p

U∗
n1,m,k

,h). Then, relying on Stage 2,

we can obtain the h∗(i+1) and the pseudo-optimal capacity

C
(i+1)
total (a

∗
n∗

1
,m,k, p

U∗
n1,m,k

,h∗).

Let Λ be the stopping threshold of our two-stage resource

allocation scheme. If the following condition is satisfied:

C
(i+1)
total (a

∗
n∗

1
,m,k, p

U∗
n1,m,k

,h∗)−C
(i)
total(a

∗
n∗

1
,m,k, p

U∗
n1,m,k

,h∗) ≤ Λ,
(50)

the final optimal uplink total capacity of M UAV networks

can be given by:

C∗
total , C

(i+1)
total (a

∗
n∗

1
,m,k, p

U∗
n1,m,k

,h∗), (51)

where the optimal subchannel and power control result is given

by {a∗n∗

1
,m,k, p

U∗
n1,m,k

} , {a∗n∗

1
,m,k, p

U∗
n1,m,k

}(i+1) as well as

the optimal hovering altitude h∗ , h∗(i+1). The procedure

of the two-stage joint hovering altitude and power control

optimization scheme for UAV networks is summarized in

Algorithm. 2.
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Algorithm 3: Two-Stage Joint Resource Allocation (TSJ-

RA)

1: Initialize K, M , NU , NS , NC , Nul and Nuh.

2: Initialize ICk , ISk , Rh, Rl and Pmax.

3: Initialize gU→U
n1,m,k

, gU→C
n1,m,k

, gU→S
n1,m,k

, gC→U
n2,m,k

, gS→U
n3,m,k

and

pCn2,k
, pSn3,k

.

4: Initialize Lagrangian variables λ(0), µ(0), ν(0), ω(0) and

ψ(0).

5: Set the maximum number of iteration indicators imax

and jmax. Let i := 0 and j := 0, respectively.

6: Initialize hovering altitude h(0) and subchannel-power

control {an1,m,k, p
U
n1,m,k

}(0).

7: Calculate C
(0)
total({an1,m,k, p

U
n1,m,k

}(0),h(0))
8: repeat

9: j := j + 1.

10: repeat

11: i := i+ 1.

12: for k = 1 to K do

13: for m = 1 to M do

14: for n1 = 1 to NU do

15: i. Update the power allocation pUn1,m,k
of

QoS-sensitive and QoS-tolerant UAV users

relying on Eq. (24).

16: ii. Calculate the partial derivative of Eq. (26)

and Eq. (27), respectively.

17: end for

18: Update the subchannel allocation an1,m,k of

the UAV network relying on Eq. (28).

19: end for

20: end for

21: Update Lagrangian variables λ,µ,ν and ω relying

on Eq. (29), Eq. (30), Eq. (31) and Eq. (32),

respectively.

22: until i = imax or arrive the convergence.

23: Get {an1,m,k, p
U
n1,m,k

}(j).

24: Calculate C
(j)
total({an1,m,k, p

U
n1,m,k

}(j),h(j−1)).
25: Update the hovering altitude of M UAVs relying on

Algorithm 1.

26: Get h(j).

27: Calculate C
(j)
total({an1,m,k, p

U
n1,m,k

}(j),h(j)).
28: until j = jmax or satisfying Eq. (50).

29: Denote C∗
total , C

(j)
total({a

∗
n∗

1
,m,k, p

U∗
n1,m,k

}(j),h∗(j)).

IV. ALGORITHM AND ANALYSIS

A. Algorithm Implementation

In this section, we will elaborate more on the algorithm

implementation of our proposed UAV hovering altitude aid-

ed resource allocation mechanism described in Section III,

namely TSJ-RA as shown in Algorithm 3 for space-air-ground

three-tier heterogenous networks. Furthermore, to reduce the

computational complexity we propose a heuristic resource

allocation algorithm in Algorithm 4, i.e PPC-RA, which has

lower computational complexity compared with the exhaustive

search algorithm as well as with TSJ-RA.

Algorithm 4: Proportionable Power Constrained Resource

Allocation (PPC-RA)

1: Initialize K, M , NU , NS , NC , Nul and Nuh.

2: Initialize ICk , ISk , Rh, Rl and Pmax.

3: Initialize gU→U
n1,m,k

, gU→C
n1,m,k

, gU→S
n1,m,k

, gC→U
n2,m,k

, gS→U
n3,m,k

and

pCn2,k
, pSn3,k

.

4: Set the power allocation scale parameter θ.

5: for m = 1 to M do

6: Let the subchannel set be K = {1, 2, . . . ,K}.

7: Let UAV user set be NU and the QoS-sensitive user

set be Nuh.

8: while Nuh ̸= Ø, i ∈ Nuh do

9: i. Choose i ∈ Nuh.

10: ii. Find k∗ = argmax
k∈K

(gU→U
i,m,k /∆).

11: iii. Set ai,m,k∗ = 1, and K := K− {k∗}.

12: iv. Set pUi,m,k∗ = θ(gU→U
i,m,k∗/∆).

13: if Eq. (14c) is satisfied then

14: Nuh := Nuh − {i}.

15: NU := NU − {i}.

16: end if

17: end while

18: while K ̸= Ø, n1 ∈ NU do

19: i. Find {n1, k}
∗ = arg max

k∈K,n1∈NU

(gU→U
n1,m,k

/∆).

20: ii. Set an1,m,k |{n1,k}={n1,k}∗= 1.

21: iii. Set an1,m,k∗ = 1, and K := K− {k∗}.

22: iv. Set pUn1,m,k∗
= θ(gU→U

n1,m,k∗
/∆).

23: end while

24: end for
25: Update the power allocation scale parameter θ relying on

(14a), (14d) and (14e), i.e.

θ =min















PU
max∆

K
∑

k=1

an1,m,kgU→U
n1,m,k

,

ICk ∆
M
∑

m=1

NU
∑

n1=1

an1,m,kgU→C
n1,m,kg

U→U
n1,m,k

,

ISk ∆
M
∑

m=1

NU
∑

n1=1

an1,m,kgU→S
n1,m,kg

U→U
n1,m,k



















.

26: Update the hovering altitude h of M UAVs relying on

Algorithm 1.

27: Denote C∗
total , Ctotal(an1,m,k, p

U
n1,m,k

,h).

B. Supplementary Analysis

In this subsection, we provide a further explanation for our

proposed two-stage resource allocation scheme in the face of

both the optimization algorithm as well as the practical system

design. As for solving the optimal power control problem

in Eq. (24), the transmission power of both QoS-sensitive

users and QoS-tolerant users is related to ∆/gU→U
n1,m,k

and

Θn1
, where ∆/gU→U

n1,m,k
represents the interference level from

outside UAV networks, while Θn1
measures the interference
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level that the UAV users impose to other networks. We can

conclude that the large ∆/gU→U
n1,m,k

may result in less power

assigned to subchannel k. Furthermore, Θn1
also limits the

power allocation for the sake of reducing influence to other

communication systems. In contrast to the power allocation

for QoS-tolerant users, µn1,m tends to allocate more power

for QoS-sensitive users, which yields a high data transmission

rate. As for the subchannel allocation based on Eq. (28),

due to the Lagrangian multiplier µn1,m of Eq. (26), more

subchannel resources may be assigned to the QoS-sensitive

users. Hence, in practical system design, we should to a

large degree use the subchannels having less interference from

outside UAV networks and also imposing less interference to

other networks, and allocate more such ‘clean’ subchannels

and more power to QoS-sensitive users.

Moreover, the optimal hovering altitude of M drones can

be obtained by solving a series of reduced convex problems

with the aid of CCP algorithm. According to Eq. (47) and

Eq. (48), the optimal hovering altitude must be the boundary

value of feasible region. To elaborate,
M
∑

i=1,i ̸=m

hi−(M−1)hm

in Eq. (47) measures the difference between the hovering

altitude of the m-th UAV and the average altitude of others.

Our algorithm aims to enlarge the gap between the hovering

altitude of the m-th UAV and the average altitude of others.

In terms of the computational complexity, Algorithm 3

combines jmax iterations of the update of power control

as well as the update of hovering altitude. Specifically, the

computational complexity of the update of power control is

O(imaxKMNU ), while the computational complexity of the

update of hovering altitude O(nmaxM), where imax and nmax

are the maximum number of iteration for each step, respective-

ly. Therefore, Algorithm 3 has a computational complexity of

O(jmax(imaxKMNU + nmaxM)). By contrast, Algorithm 4

is a low-complexity greedy scheme aiming to preferentially

satisfy the QoS-sensitive users, which gets rid of the update of

a range of Lagrange dual. It has a much lower computational

complexity of O(M(N2
U +(K−NU )

2)+nmaxM) compared

with Algorithm 3.

V. SIMULATION RESULTS

In our simulation, three kinds of users are located in a

500m × 500m square region. NC = 10 macrocell users and

NS = 10 satellite users are randomly distributed in the area.

Moreover, the coverage radius of each drone is 50m and UAV

users are randomly distributed in each coverage area. The

altitude of GEO is 36000km and only one MBS is considered

in the simulation. The carrier frequency is 2.4GHz and the

total number of the subchannel is K = 128, each of which has

a bandwidth of 15kHz. The AWGN power spectrum density

is −174dBm/Hz. Furthermore, the channel between users and

the MBS follows Rayleigh fading. By contrast, the channels

between users and UAVs and the GEO follow Rician fading

with 5dB Rician factor. Let the reference-distance unit power

gain be κ = 1.4× 10−4 [44]. The hovering altitude of drones

spans from 200m to 400m.

In the following, we consider two scenarios with 4 UAVs

and 9 UAVs, respectively. Each drone serves NU = 4 UAV
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Fig. 5. Spectrum efficiency versus minimum hovering altitude parameterized
by different number of UAV networks.

users. In the 4-UAV scenario, there are total 8 QoS-sensitive

users and 8 QoS-tolerant users, while there are total 24
QoS-sensitive users and 12 QoS-tolerant users in the 9-UAV

scenario. Moreover, the minimum data rate requirement of

QoS-sensitive users is Rh = 30kbps. We define the spectrum

efficiency (SE) of UAV networks to evaluate the effectiveness

of our proposed algorithm as: SE = Ctotal/B (bps/Hz).
Fig. 2 shows the impact of the maximum transmission

power pUmax on the UAV network’s SE, where the maximum

interference limit of both the MBS and the GEO is 0dBm,

i.e. IC = 0dBm and IS = 0dBm for all subchannels

k ∈ {1, 2, . . . ,K}. It can be observed that our proposed

TSJ-RA algorithm outperforms the average resource allocation

scheme2 in terms of the SE. It is because the proposed TSJ-

RA algorithm jointly optimizes the altitudes of the drones

and transmission power of all users, achieving a decent SE

performance and satisfying all the constraints all the time.

As a comparison, the comparison algorithm is not aware

of system configuration and introduces significant SE loss.

Besides, higher SE is obtained with a loose transmission power

constraint. Meanwhile, a dense UAV deployment is capable of

substantially increasing the network’s SE.

Fig. 3 demonstrates the performance of UAV network’s SE

characterized by the maximum interference limit of the MBS,

i.e. IC , with respect to PUmax = 1000mW and IS = 0dBm.

Since the average resource allocation scheme does not rely on

the interference limit, the spectrum efficiency is not improved

with the increase of MBS’s interference limit. As for the TSJ-

RA algorithm, a loose interference limit on the MBS yields a

high SE of UAV networks to some extent. It is because that

with a loose interference limit, UAV users are capable of using

higher transmission power, while with a strict interference lim-

it, UAV users have to properly decrease the transmission power

to satisfy the preset constraint. Besides, it can seen that when

2In this paper, the average resource allocation scheme means that sub-
channels as well as power are uniformly allocated to two kinks of users
without considering the interference limit of the MBS and the GEO under the
constraint of a secure hovering altitude of each drone.
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Fig. 6. Probabilities of satisfying capacity requirement of QoS-sensitive users
in terms of different minimum hovering altitude of drones.

the interference limit is loose enough, such as IC = 0dBm for

9-UAV scenario and IC = −20dBm for 4-UAV scenario, the

SE remains unchanged. It is because with a loose threshold,

the pre-set interference constraint can be always satisfied

with the given maximum available transmission power. To

elaborate a little further, Fig. 4 portrays the probabilities of

violating the maximum interference limit on the MBS, which

is defined as the ratio of the number of subchannels with

interference higher than pre-set maximum limit to the total

number of subchannels. We can conclude that our proposed

algorithm satisfy the interference limit for all subchannels

k ∈ {1, 2, . . . ,K} at all given IC values. However, the average

algorithm has a high probability of violating the interference

limit when the interference requirement is stringent.

In Fig. 5, we evaluate the performance of SE versus

different minimum hovering altitudes in different scenarios.

It can be seen that a lower minimum hovering altitude is

beneficial in terms of improving the SE of the total UAV

networks relying on both our proposed TSJ-RA algorithm

as well as on the average algorithm. Furthermore, Fig. 6

demonstrates the probabilities of satisfying the pre-set capacity

requirement for QoS-sensitive users versus different values

of Rh, which is defined as the ratio of the number of QoS-

sensitive users with satisfied capacity to the total number of

QoS-sensitive users. It can be seen that our proposed algorithm

always outperforms the comparison algorithm at all given

Rh values. It is because that our the proposed algorithm

considers the capacity requirement of QoS-sensitive users,

making the QoS-sensitive users have high priorities to obtain

the channels. As a result, the probability of satisfying capacity

requirement for QoS-sensitive users equals to 1 all the time.

By contrast, the average allocation is not aware of the pre-set

capacity constraint. Especially when the capacity requirement

is stringent, i.e. 40kbps, only around 10% of QoS-sensitive

users can achieve decent capacity higher than the pre-set

constraint.



12

VI. CONCLUSIONS

In this paper, we formulated a two-stage joint hovering

altitude and power control for UAV networks considering the

feasible deployment of drones in the context of a space-air-

ground three-tier heterogeneous network for supporting IoT

applications. After appropriate convex relaxation, we used

Lagrange dual decomposition and CCP method to provide a

near optimal solution for our proposed problem, followed by

a low-complexity proportionable power constrained resource

allocation algorithm. Finally, extensive simulations were con-

ducted in order to show the performance of our resource allo-

cation mechanism, which yielded an improved UAV network’s

throughput.
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