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Abstract We prove that, for arbitrary Dirichlet L-functions L(s;χ1), . . . ,

L(s;χn) (including the case when χ j is equivalent to χk for j �= k), suitable shifts
of type L(s + iα j t

a j logb j t;χ j ) can simultaneously approximate any given set of
analytic functions on a simply connected compact subset of the right open half of the
critical strip, provided the pairs (a j , b j ) are distinct and satisfy certain conditions.
Moreover, we consider a discrete analogue of this problem where t runs over the set
of positive integers.
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1 Introduction

In 1975, Voronin [19] discovered a universality property for the Riemann zeta function
ζ(s), namely he proved that for every compact set K ⊂ {s ∈ C: 1/2 < Re(s) < 1}with
connected complement, any non-vanishing continuous function f (s) on K , analytic
in the interior of K , and every ε > 0, we have
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lim inf
T →∞

1

T
meas

{

τ ∈ [0, T ] : max
s∈K

|ζ(s + iτ) − f (s)| < ε

}

> 0, (1)

where meas{·} denotes the real Lebesgue measure. Moreover, in 1977, Voronin
[20] proved the so-called joint universality which, roughly speaking, states that any
collection of Dirichlet L-functions associated with non-equivalent characters can
simultaneously and uniformly approximate non-vanishing analytic functions in the
above sense. In other words, in order to approximate a collection of non-vanishing
continuous functions on some compact subset of {s ∈ C: 1/2 < Re(s) < 1} with con-
nected complement, which are analytic in the interior, it is sufficient to take twists of
the Riemann zeta function with non-equivalent Dirichlet characters. The requirement
that characters are pairwise non-equivalent is necessary, since it is well known that
Dirichlet L-functions associated with equivalent characters differ from each other by
a finite product and, in consequence, one cannot expect joint universality for them.
This idea was extended by Šleževičienė [17] to certain L-functions associated with
multiplicative functions, by Laurinčikas and Matsumoto [9] to L-functions associated
with newforms twisted by non-equivalent characters, and by Steuding in [18, Sect.
12.3] to a wide class of L-functions with Euler product, which can be compared to
the well-known Selberg class. Thus, one possible way to approximate a collection of
analytic functions by a given L-function is to consider its twists with sufficiently many
non-equivalent characters.

Another possibility to obtain a joint universality theorem by considering only one
L-function was observed by Kaczorowski et al. [5]. They introduced the Shifts Uni-
versality Principle, which says that for every universal L-function L(s), in the Voronin
sense, and any distinct real numbers λ1, . . . , λn , the functions L(s + iλ1), . . . , L(s +
iλn) are jointly universal for any compact set K ⊂ {s ∈ C: 1/2 < Re(s) < 1} satis-
fying Kk ∩ K j = ∅ for 1 ≤ k �= j ≤ n, where K j = {s + λ j : s ∈ K }.

Next, one can go further and ask if there exists any other transformation of the
Riemann zeta function, or a given L-function in general, to approximate arbitrary
given collection of analytic functions. For example, we might consider an L-function,
a compact set K ⊂ {s ∈ C: 1/2 < Re(s) < 1} with connected complement, and non-
vanishing continuous functions f1, . . . , fn on K , analytic in the interior of K , and ask
for functions γ1, . . . , γn : R → R satisfying

∀ε>0 lim inf
T →∞

1

T
meas

{

τ ∈ [0, T ] : max
s∈K

|L(s + iγ j (τ )) − f j (s)| < ε

}

> 0. (2)

Obviously, the Shifts Universality Principle gives a partial (under some restriction
on K ) answer for the simplest case when γ j (τ ) = τ +λ j . The consideration for other
linear functions γ j (τ ) = a jτ + b j might be restricted, without loss of generality, to
the case when γ j (τ ) = a jτ , which was firstly investigated by Nakamura [11,12]. He
proved that (2) holds, provided γ j (τ ) = a jτ with algebraic real numbers a1, . . . , an

linearly independent over Q. Although Nakamura’s result is the best known result
concerning all positive integers n, the case n = 2 is already much better understood,
and from the work of the author and Nakamura (see [11,13–15]), we know that (2)
holds if γ1(τ ) = a1τ , γ2(τ ) = a2τ with non-zero real a1, a2 satisfying a1 �= ±a2.
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Joint universality for dependent L-functions 183

The main purpose of the paper is to find other example of functions γ1, . . . , γn

such that (2) holds. Our approach is rather general and based on Lemmas 1 and 3,
which are stated in the general form. However, we focus our attention only on the case
when γ j (t) = α j t

a j (log t)b j . The consideration when a j = ak and b j = bk for some
j �= k is very similar to the already quoted work of the author and Nakamura for linear
functions γ (t) and essentially relies on investigating a kind of independence of α j and
αk , so in the sequel we assume that a j �= ak or b j �= bk for j �= k. Moreover, for
the sake of simplicity we will restrict ourselves only to Dirichlet L-functions, but it
should be noted that our approach can be easily generalized to other L-functions (as in
[18]), at least in the strip where the mean square of a given L-function is bounded on
vertical lines, namely

∫ T

−T
|L(σ + i t)|2dt ≪ T . On the other hand, we consider any

collection of Dirichlet L-functions as an input instead of a single L-function. Hence,
the following theorem gives an easy way to approximate any collection of analytic
functions by taking some shifts of any L-functions, even equal or dependent.

Theorem 1 Assume that χ1, . . . , χn are Dirichlet characters, α1, . . . , αn ∈ R,

a1, . . . , an positive real numbers, and b1, . . . , bn such that

b j ∈
{

R if a j /∈ Z;
(−∞, 0] ∪ (1,+∞) if a j ∈ N,

and a j �= ak or b j �= bk if k �= j . Moreover, let K ⊂ {s ∈ C: 1/2 < Re(s) < 1} be

a compact set with connected complement, f1, . . . , fn be non-vanishing continuous

functions on K , analytic in the interior of K . Then, for every ε > 0,

lim inf
T →∞

1

T
meas

{

τ ∈ [2, T ] : max
1≤ j≤n

max
s∈K

|L(s + iα jτ
a j logb j τ ;χ j ) − f j (s)| < ε

}

(3)

is positive.

Next, let us consider the so-called discrete universality, which means that τ runs
over the set of positive integers. It is an interesting problem, since usually discrete
universality requires a special care for some α j . For example (see [1] and [16]), if
γ1(k) = α1k and n = 1, then the case when exp(2πk/α1) ∈ Q for some integer
k is more subtle, since the set {α1 log p

2π
: p ∈ P} ∪ {1} is not linearly independent

over Q, which plays a crucial role in the proof. The case n ≥ 2 for Dirichlet L-
functions associated with non-equivalent characters and γ j (k) = α j k was investigated
by Dubickas and Laurinčikas in [2], where they proved discrete joint universality under
the assumption that

{

α j

log p

2π
: p ∈ P, j = 1, 2, . . . , n

}

∪ {1} is linearly independent over Q. (4)

Moreover, very recently Laurinčikas, Macaitienė and Šiaučiūnas [8] showed that, for
γ j (k) = α j k

a with a ∈ (0, 1), Dirichlet L-functions associated with non-equivalent
characters are discretely jointly universal, provided that
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184 L. Pańkowski

{

α j

log p

2π
: p ∈ P, j = 1, 2, . . . , n

}

is linearly independent over Q. (5)

Inspired by their considerations, we shall prove the following discrete version of
Theorem 1.

Theorem 2 Assume that χ1, . . . , χn are Dirichlet characters, α1, . . . , αn ∈ R,

a1, . . . , an positive real numbers, and b1, . . . , bn such that

b j ∈
{

R if a j /∈ Z;
(−∞, 0] ∪ (1,+∞) if a j ∈ N,

and a j �= ak or b j �= bk if k �= j . Moreover, let K ⊂ {s ∈ C: 1/2 < Re(s) < 1} be

a compact set with connected complement, f1, . . . , fn be non-vanishing continuous

functions on K , analytic in the interior of K . Then, for every ε > 0,

lim inf
N→∞

1

N
♯

{

2 ≤ k ≤ N : max
1≤ j≤n

max
s∈K

|L(s + iα j k
a j logb j k;χ j ) − f j (s)| < ε

}

(6)

is positive.

It should be noted that Theorem 2 (as well as Theorem 1) might be formulated in a
slightly more general form where instead of the assumption on a j , b j we assume that
the sequence

(

γ j (k)
log p

2π
: j = 1, 2, . . . , n, p ∈ A

)

(7)

is uniformly distributed (resp. continuous uniformly distributed) modulo 1 for every
finite set A ⊂ P, and that the first derivative of γ (t) has suitable order of magnitude,
which plays a crucial role in estimating

∫ T

−T
|L(σ + iγ (t))|2dt (see Sect. 3).

Let us recall that the sequence (ω1(k), . . . , ωn(k))k∈N is uniformly distributed mod

1 in Rn if for every α j , β j , j = 1, 2, . . . , n, with 0 ≤ α j < β j ≤ 1, we have

lim
T →∞

1

N
♯
{

1 ≤ k ≤ N : {ω j (k)} ∈ [α j , β j ]
}

=
n

∏

j=1

(β j − α j ),

where {x} = x − [x]. Similarly, we say that the curve ω(τ) : [0,∞] → Rn is
continuously uniformly distributed mod 1 in Rn if for every α j , β j , j = 1, 2, . . . , n,
with 0 ≤ α j < β j ≤ 1, we have
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Joint universality for dependent L-functions 185

lim
T →∞

1

T
meas {τ ∈ (0, T ] : {ω(τ)} ∈ [α1, β1] × · · · × [αn, βn]} =

n
∏

j=1

(β j − α j ),

where {(x1, . . . , xn)} := ({x1}, . . . , {xn}).
One can easily notice that Weyl’s criterion (see [7, Theorems 6.2 and 9.2]) shows

that (4) and (5) imply that (7) is (continuous) uniformly distributed mod 1. Thus, our
approach allows to improve the result of Dubickas and Laurinčikas, and the result
due to Laurinčikas, Macaitienė and Šiaučiūnas in the following two aspects. First,
we see that the assumption that Dirichlet characters are pairwise non-equivalent is
superfluous. Secondly, it shows that one can consider more general functions than
γ j (t) = α j t

a , a ∈ (0, 1].

2 Approximation by finite product

Essentially, we shall follow the original proof of Voronin’s result, which, roughly
speaking, might be divided into two parts. The first one relies mainly on uniform
distribution mod 1 of the sequence of numbers γ j (t)

log p
2π

(or a kind of independence
of piγ j (t)) and deals with the approximation of any analytic function by shifts of
a truncated Euler product. The second one deals with an application of the second
moment of L-functions to approximate a truncated Euler product by a corresponding
L-function in the mean-square sense.

In this section, we shall focus on the first part. In order to do this, for a Dirichlet
character χ , a finite set of primes M , and real numbers θp indexed by primes, we put

L M (s, (θp);χ) =
∏

p∈M

(

1 −
χ(p)e(−θp)

ps

)−1

,

where, as usual, e(t) = exp(2π i t). Note that for σ > 1 we have LP(s, 0;χ) =
L(s, χ), where 0 denotes the constant sequence of zeros and P the set of all prime
numbers.

Lemma 1 Assume that the functions γ j : R → R, 1 ≤ j ≤ n, are such that the curve

γ (τ) =
(

(

γ1(τ )
log p

2π

)

p∈M1

, . . . ,

(

γn(τ )
log p

2π

)

p∈Mn

)

is continuously uniformly distributed mod 1 in R
∑

1≤ j≤n ♯M j for any finite sets of primes

M j , 1 ≤ j ≤ n. Moreover, let χ1, . . . , χn be arbitrary Dirichlet characters, K ⊂ {s ∈
C : 1/2 < σ < 1} be a compact set with connected complement, and f1, . . . , fn

continuous non-vanishing functions on K , which are analytic in the interior of K .

Then, for every ε > 0, there is v > 0 such that for every y > v we have
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186 L. Pańkowski

meas

{

τ ∈ [2, T ] : max
1≤ j≤n

max
s∈K

∣

∣L{p:p≤y}(s + iγ j (τ ), 0;χ j ) − f j (s)
∣

∣ < ε

}

> cT

with suitable constant c > 0, which does not depend on y.

Before we give a proof of the above result, let us recall the following crucial result
on approximation of any analytic function by a truncated Euler product twisted by a
suitable sequence of complex numbers from the unit circle.

We call an open and bounded subset G of C admissible, when for every ε > 0 the
set Gε = {s ∈ C : |s − w| < ε for certain w ∈ G} has connected complement.

Lemma 2 For every Dirichlet character χ , an admissible domain G such that G ⊂
{s ∈ C : 1

2 < Re(s) < 1}, every analytic and non-vanishing function f on the

closure G, and every finite set of primes P , there exist θp ∈ R indexed by primes and

a sequence of finite sets M1 ⊂ M2 ⊂ . . . of primes such that
⋃∞

k=1 Mk = P \ P and,

as k → ∞,

L Mk
(s, (θp)p∈Mk

;χ) −→ f (s) uniformly in G.

Proof This is Lemma 7 in [4].

Proof of Lemma 1 By Mergelyan’s theorem, we can assume, without loss of gener-
ality, that the f j ’s are polynomials. Then we can find an admissible set G such that
K ⊂ G ⊂ G ⊂ {s ∈ C : 1/2 < σ < 1} and each f j is analytic non-vanishing on G.
Therefore, by Lemma 2 with P = ∅, there exist real numbers θ j p for p ∈ P, 1 ≤ j ≤ n

such that, for any z > 0 and ε > 0, there are finite sets of primes M1, . . . , Mn such
that {p : p ≤ z} ⊂ M j for every j = 1, 2, . . . , r and

max
1≤ j≤n

max
s∈G

∣

∣L M j
(s, (θ j p)p∈M j

;χ j ) − f j (s)
∣

∣ <
ε

2
. (8)

Now, let

D := {ω = (ω j p)
1≤ j≤n

p∈Q : max
1≤ j≤n

max
p∈M j

‖ω j p − θ j p‖ < δ},

where Q = {p : p ≤ y} ⊃
⋃

1≤ j≤n M j and δ > 0 is sufficiently small such that

max
1≤ j≤n

max
s∈G

∣

∣L M j
(s, (ω j p);χ j ) − L M j

(s, (θ j p);χ j )
∣

∣ <
ε

2
,

provided (ω j p) ∈ D.
Our assumption on γ (τ) implies that the set A of real τ ≥ 2 satisfying

max
1≤ j≤n

max
p∈M j

∥

∥

∥

∥

γ j (τ )
log p

2π
− θ j p

∥

∥

∥

∥

< δ
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Joint universality for dependent L-functions 187

has a positive density equal to the Jordan measure m(D) of D. Moreover, we have

max
1≤ j≤n

max
s∈G

∣

∣L M j
(s + iγ j (τ ), 0;χ j ) − f j (s)

∣

∣ < ε, for τ ∈ A. (9)

Now, let us define AT = A ∩ [2, T ] and

I j =
1

T

∫

AT

(∫∫

G

∣

∣L Q(s + iγ j (τ ), 0;χ j ) − L M j
(s + iγ j (τ ), 0;χ j )

∣

∣

2
dσdt

)

dτ.

Since

I j =
1

T

∫

AT

(

∫∫

G

∣

∣

∣

∣

L Q(s, (γ j (τ )
log p

2π
);χ j ) − L M j

(s, (γ j (τ )
log p

2π
);χ j )

∣

∣

∣

∣

2

dσdt

)

dτ

and γ (τ) is continuously uniformly distributed mod 1, we obtain (see Lemma A.8.3
in [6])

lim
T →∞

1

T

∫

AT

∣

∣

∣

∣

L Q(s, (γ j (τ )
log p

2π
);χ j ) − L M j

(s, (γ j (τ )
log p

2π
);χ j )

∣

∣

∣

∣

2

dτ

=
∫

· · ·
∫

D

|L M j
(s, ω;χ j )|2|L Q\M j

(s, ω;χ j ) − 1|2dω

=
(

max
s∈G

| f (s)|2 + ε

)

m(D)

∫ 1

0
· · ·

∫ 1

0
|L Q\M j

(s, ω;χ j ) − 1|2
∏

p∈Q\M j

dω j p.

Therefore, since Q \ M j contains only primes greater that z, we have

I j <

√
πdist(∂G, K )m(D)ε2

12r
for sufficiently large z,

where ∂G denotes the boundary of G and dist(A, B) = inf{|a − b| : a ∈ A, b ∈ B}.
Then, recalling that 1

T

∫

AT
dτ tends to m(D) as T → ∞ gives that the measure of

the set of τ ∈ AT satisfying

n
∑

j=1

(∫∫

G

∣

∣L Q(s + iγ j (τ ), 0;χ j ) − L M j
(s + iγ j (τ ), 0;χ j )

∣

∣

2
dσdt

)

<

√
πdist(∂G, K )ε2

4

is greater than m(D)T
2 . Then, using the fact that | f (s)| ≤ || f ||√

πdist({s},∂G)
for any analytic

function f and s lying in the interior of G (see [3, Chap. III, Lemma 1.1]), we observe
that the measure of the set of τ ∈ AT satisfying
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188 L. Pańkowski

max
1≤ j≤n

max
s∈K

∣

∣L Q(s + iγ j (τ ), 0;χ j ) − L M j
(s + iγ j (τ ), 0;χ j )

∣

∣ <
ε

2

is greater than m(D)T
2 , which together with (8) completes the proof with v := max{p :

p ∈
⋃

j M j }. ⊓⊔

3 Application of the second moment

As we described in Sect. 2, in order to complete the proof of universality, we need
to show how to approximate shifts of a truncated Euler product by shifts of a corre-
sponding L-function. In general, a given L-function is not well approximated by a
corresponding truncated Euler product in the critical strip with respect to the supre-
mum norm. Nevertheless, it is well known that the situation is much easier if we
consider the L2-norm, which we use to prove the following result.

Lemma 3 Assume that χ is a Dirichlet character, a > 0, α �= 0 and b are real

numbers, and γ (t) = αta(log t)b. Then, for every ε > 0 and sufficiently large integer

y, we have

meas

{

τ ∈ [0, T ] : max
s∈K

∣

∣L(s + iγ (τ);χ) − L{p:p≤y}(s + iγ (τ), 0;χ)
∣

∣ < ε

}

> (1 − ε)T

for any compact set K ⊂ {s ∈ C : 1/2 < σ < 1}.

Proof One can easily observe that it suffices to prove that for sufficiently large T and
y we have

∫ T

1

∣

∣L(s + iγ (τ);χ) − L{p:p≤y}(s + iγ (τ), 0;χ)
∣

∣

2
dτ < ε3T . (10)

In order to do this, we shall prove that for every sufficiently large X we have

∫ 2X

X

∣

∣L(s + iγ (τ);χ) − L{p:p≤y}(s + iγ (τ), 0;χ)
∣

∣

2
dτ < ε3 X. (11)

First, note that

∫ 2X

X

∣

∣L(s + iγ (τ);χ) − L{p:p≤y}(s + iγ (τ), 0;χ)
∣

∣

2
dτ (12)

≪ X1−a(log X)−b

×
∫ 2X

X

∣

∣L(s + iγ (τ);χ) − L{p:p≤y}(s + iγ (τ), 0;χ)
∣

∣

2
dγ (t).
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Joint universality for dependent L-functions 189

Next, one can easily show that for every s ∈ K we have

∫ T

1

∣

∣L(s + iτ ;χ) − L{p:p≤y}(s + iτ, 0;χ)
∣

∣

2
dτ ≪ T

for sufficiently large T , so, by Carlson’s theorem (see, for example, Theorem A.2.10
in [6]), we obtain

lim
T →∞

1

T

∫ T

1

∣

∣L(s + iτ ;χ) − L{p:p≤y}(s + iτ, 0;χ)
∣

∣

2
dτ =

∑

n≥y

cn

n2σ

with cn = 0 if all primes dividing n are less than y, and cn = 1 otherwise. Hence, the
second factor on the right-hand side of (12) is

≪ γ (2X)
∑

n≥y

cn

n2σ
< ε3 Xa logb X

for sufficiently large X and y, which gives (11), and the proof is complete. ⊓⊔

Now we are in the position to prove Theorem 1.

Proof of Theorem 1 In view of Lemma 1 and the last lemma, it is sufficient to prove
that for every finite set M1, . . . , Mn of primes the curve

γ (τ) =
(

(

γ1(t)
log p

2π

)

p∈M1

, . . . ,

(

γn(t)
log p

2π

)

p∈Mn

)

is continuously uniformly distributed mod 1, where γ j (t) = α j t
a j logb j t . By Weyl’s

criterion, we need to prove that

lim
T →∞

1

T

∫ T

0
exp

⎛

⎝2π i

n
∑

j=1

γ j (t)

⎛

⎝

∑

p∈M j

h j p

log p

2π

⎞

⎠

⎞

⎠ dt = 0

for any non-zero sequence of integers (h j p).
Without loss of generality, we can assume that for every j there is at least one

p ∈ M j such that h j p �= 0. Therefore, c j :=
∑

p∈M j
h j p

log p
2π

�= 0 for every 1 ≤
j ≤ n, and again, by Weyl’s criterion, it suffices to show that g(t) =

∑n
j=1 c jγ j (t)

is continuously uniformly distributed mod 1 in R. In order to prove it, we shall use
[7, Theorem 9.6] and show that for almost all t ∈ [0, 1] the sequence (g(nt))n∈N is
uniformly distributed mod 1 in R for any real c j �= 0.

Let a = max1≤ j≤n a j , b = max{b j : 1 ≤ j ≤ n, a j = a} and j0 be an index
satisfying (a j0 , b j0) = (a, b). First, let us assume that a j0 /∈ Z, b j0 ∈ R or a j0 ∈ Z,
b j0 < 0. Then it is clear that for every t ∈ (0, 1) the function gt (x) =

∑n
j=1 c jγ j (x)

is ⌈a⌉ times differentiable and g
(⌈a⌉)
t (x) ≍ xa−⌈a⌉ logb x . Hence, g

(⌈a⌉)
t (x) tends
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190 L. Pańkowski

monotonically to 0 as x → ∞ and x

∣

∣

∣

∣

g
(⌈a⌉)
t (x)

∣

∣

∣

∣

→ ∞ as x → ∞, so, by [7, Theorem

3.5], the sequence (gt (n)) = (g(nt)), n = 1, 2, . . ., is uniformly distributed mod 1.

The case a j0 ∈ N and b j0 > 1 is very similar, since g
(⌈a⌉+1)
t (x) ≍ logb−1 x

x
.

Finally, if a j0 ∈ N and b j0 = 0, we see that limx→∞ g
(a)
t (x) → taa!c j0α j0 , which

is irrational for almost all t ∈ [0, 1]. Therefore, [7, Chap. 1, Sect. 3] (in particular, see
[7, Exercise 3.7, p. 31]) shows that the sequence (gt (n)) = (g(nt)), n = 1, 2, . . ., is
uniformly distributed mod 1 for almost all t ∈ [0, 1], and the proof is complete. ⊓⊔

4 Discrete version

In this section, we deal with a discrete version of Theorem 1. Let us start with the
following discrete analogue of Lemma 1.

Lemma 4 Assume that the functions γ j : R → R, 1 ≤ j ≤ n, and P j ⊂ P are

minimal sets such that the curve

γ (k) =
(

(

γ1(k)
log p

2π

)

p∈M1

, . . . ,

(

γn(k)
log p

2π

)

p∈Mn

)

is uniformly distributed mod 1 for any finite sets of primes M j ⊂ P \ P j , 1 ≤ j ≤ n.

Moreover, let χ1, . . . , χn be arbitrary Dirichlet characters, K ⊂ {s ∈ C : 1/2 <

σ < 1} be a compact set with connected complement, and f1, . . . , fn continuous

non-vanishing functions on K , which are analytic in the interior of K . Then, for every

ε > 0 and every finite set A j with P j ⊂ A j ⊂ P, there is v > 0 such that for every

y > v we have

♯

⎧

⎪

⎨

⎪

⎩

2 ≤ k ≤ N :
max

1≤ j≤n
max
s∈K

∣

∣

∣
L{A j �∋p:p≤y}(s + iγ j (k), 0;χ j ) − f j (s)

∣

∣

∣
< ε

max
1≤ j≤n

max
p∈A j \P j

∥

∥

∥

∥

γ j (k)
log p

2π

∥

∥

∥

∥

< ε

⎫

⎪

⎬

⎪

⎭

> cN

with suitable constant c > 0, which does not depend on y.

Proof The proof closely follows the proof of Lemma 1, and therefore we will be rather
sketchy.

As in the proof of Lemma 1, we use Mergelyan’s theorem and Lemma 2 to find
the set G, real numbers θ j p for p ∈ P \ A j , 1 ≤ j ≤ n, and finite sets of primes M j ,
1 ≤ j ≤ n, containing {p ∈ P \ A j : p ≤ z} and satisfying

max
1≤ j≤n

max
s∈G

∣

∣L M j
(s, (θ j p)p∈M j

;χ j ) − f j (s)
∣

∣ <
ε

2
.

Moreover, we put θ j p = 0 for p ∈ A j \ P j and Q j := {p ∈ P \ P j : p < y} ⊃
⋃

1≤ j≤n M j and then define the set D and δ > 0 as in the proof of Lemma 1.
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Let us notice that, in view of the choice of the sets P j , A j , and M j , the set A of
positive integers k satisfying

max
1≤ j≤n

max
p∈M j

∥

∥

∥

∥

γ j (k)
log p

2π
− θ j p

∥

∥

∥

∥

< δ max
1≤ j≤n

max
p∈A j \P j

∥

∥

∥

∥

γ j (k)
log p

2π

∥

∥

∥

∥

< ε

has a positive density equal to m(D) and

max
1≤ j≤n

max
s∈G

∣

∣L M j
(s + iγ j (k), 0;χ j ) − f j (s)

∣

∣ < ε, for k ∈ A. (13)

Now, let us define AN = A ∩ [2, N ] and consider

S j =
1

N

∑

k∈AN

∫∫

G

∣

∣

∣
L Q j \A j

(s + iγ j (k), 0;χ j ) − L M j
(s + iγ j (k), 0;χ j )

∣

∣

∣

2
dσdt.

Since γ (k) is uniformly distributed mod 1 and Q j \ (M j ∪ A j ) contains only primes
greater than z, we obtain from [7, Theorem 6.1]) that

lim
N→∞

1

N

∑

k∈AN

∣

∣

∣

∣

L Q j \A j
(s, (γ j (k)

log p

2π
);χ j ) − L M j

(s, (γ j (k)
log p

2π
);χ j )

∣

∣

∣

∣

2

=
∫

· · ·
∫

D

|L M j
(s, ω;χ j )|2|L Q j \(M j ∪A j )(s, ω;χ j ) − 1|2dω

<

√
πdist(∂G, K )m(D)ε2

12r
.

Then, again uniform distribution mod 1 of γ (k) gives that 1
N

♯Ak tends to m(D) as
N → ∞. Hence, the number of k ∈ AN satisfying

n
∑

j=1

(∫∫

G

∣

∣

∣
L Q j \A j

(s + iγ j (k), 0;χ j ) − L M j
(s + iγ j (k), 0;χ j )

∣

∣

∣

2
dσdt

)

<

√
πdist(∂G, K )ε2

4

is greater than m(D)N
2 . Then, the proof is complete as in the proof of Lemma 1. ⊓⊔

The next proposition is a discrete version of Lemma 3 and its proof relies on
Carlson’s theorem and the following Gallagher’s lemma.

Lemma 5 (Gallagher) Let T0 and T ≥ δ > 0 be real numbers and A be a finite

subset of [T0 + δ/2, T + T0 − δ/2]. Define Nδ(x) =
∑

t∈A, |t−x |<δ 1 and assume that

f (x) is a complex continuous function on [T0, T + T0] continuously differentiable on
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(T0, T + T0). Then

∑

t∈A

N−1
δ (t)| f (t)|2 ≤

1

δ

∫ T +T0

T0

| f (x)|2dx

+
(∫ T +T0

T0

| f (x)|2dx

∫ T +T0

T0

| f ′(x)|2dx

)1/2

.

Proof This is Lemma 1.4 in [10]. ⊓⊔

Proposition 1 Assume that χ is a Dirichlet character, a > 0, α �= 0 and b are real

numbers, and γ (t) = αta(log t)b. Then, for every ε > 0 and sufficiently large integer

y, we have

♯

{

2 ≤ k ≤ N : max
s∈K

∣

∣L(s + iγ (k);χ) − L{p:p≤y}(s + iγ (k), 0;χ)
∣

∣ < ε

}

> (1 − ε)N

for any compact set K ⊂ {s ∈ C : 1/2 < σ < 1}.

Proof Let us apply Gallagher’s lemma for f (x) = L(s + iγ (x);χ) − L{p:p≤y}(s +
iγ (x), 0;χ) with δ = 1/2, T0 = 1, T = N , and A = {2, 3, . . . , N }. Then Nδ(t) = 1
for every t ∈ A, so

1

N

N
∑

k=2

|L(s + iγ (k);χ) − L{p:p≤y}(s + iγ (k), 0;χ)|2

≪
1

N

∫ N+1

1
|L(s + iγ (t);χ) − L{p:p≤y}(s + iγ (t), 0;χ)|2dt

+
(

1

N

∫ N+1

1
|L(s + iγ (t);χ) − L{p:p≤y}(s + iγ (t), 0;χ)|2dt

×
1

N

∫ N+1

1
|L ′(s + iγ (t);χ) − L ′

{p:p≤y}(s + iγ (t), 0;χ)|2dt

)1/2

.

Then, as we observed in the proof of Lemma 3, Carlson’s theorem gives (10). Moreover,
Cauchy’s integration formula implies the truth of (10) for L ′ as well. Therefore, we
see that the right-hand side of the above inequality is < ε3 for sufficiently large N and
y, and the proof is complete. ⊓⊔

Proof of Theorem 2 First, we shall use Lemma 4, so let us define the sets A j and P j

for j = 1, 2, . . . , n. If γ j (t) = α j t
a j logb j t with a j /∈ Z or b j �= 0, then the proof is

essentially the same as in the continuous case, so we just take P j = A j = ∅.
The more delicate situation is when a j ∈ N and b j = 0 for some 1 ≤ j ≤

n, since the sequence (α j k
a j

∑

p∈M j
h j p

log p
2π

)k∈N is uniformly distributed mod 1

only if α j

∑

p∈M j
h j p

log p
2π

is irrational. In order to overcome this obstacle, we define
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the sets P j and A j as follows. Let m∗
j be the smallest positive integer such that

exp(2πm∗
j/α j ) ∈ Q. Note that for every m ∈ Z satisfying exp(2πm/α j ) ∈ Q we

have m∗
j |m. Assume that

exp(2πm∗
j/α j ) =

∏

p∈A j

pk j p (14)

for some integers k j p �= 0 and some finite set of primes A j . Moreover, let p∗
j be the

least prime number in the set A j and put P j = {p∗
j }. Let us notice that the choice of P j

implies that it is a minimal set such that α j

∑

p∈M j
h j p

log p
2π

/∈ Q for every non-zero
sequence of integers h j p and a finite set of primes M j disjoint to P j , since otherwise
there exist integers m, l such that exp(2πm/α j ) =

∏

p∈M j
plh j p ∈ Q, which, by the

definition of m∗
j , is a power of

∏

p∈A j
pk j p , and we get a contradiction.

Hence, arguing similarly to the proof of Theorem 1 (see [7, Theorem 3.5 and
Exercise 3.7, p. 31]), the curve

γ ∗(t) =

⎛

⎝

(

γ j (q
∗t)

log p

2πk j p∗
j

)

p∈A j \P j

,

(

γ j (q
∗t)

log p

2π

)

p∈M j

⎞

⎠

1≤ j≤n

is uniformly distributed mod 1 for every finite set of primes M j disjoint to P j , where
q∗ is the least common multiple of all k j p∗

j
for j satisfying a j ∈ Z and b j = 0. If

a j /∈ Z or b j �= 0 for all j = 1, 2, . . . , n, then q∗ = 1.
Therefore, applying Lemma 4 for

f ∗
j (s) =

∏

p∈A j

(

1 −
χ j (s)

ps

)

f j (s)

instead of f j (s) gives that the number of integers k ∈ [2, N ] satisfying

max
1≤ j≤n

max
s∈K

∣

∣

∣
L{A j �∋p:p≤y}(s + iγ j (q

∗k), 0;χ j ) − f ∗
j (s)

∣

∣

∣
< ε

max
1≤ j≤n

max
p∈A j \P j

∥

∥

∥

∥

∥

γ j (q
∗k)

log p

2πk j p∗
j

∥

∥

∥

∥

∥

< ε

is at least cN . The second inequality together with (14) gives that

max
1≤ j≤n

max
p∈A j \P j

∥

∥

∥

∥

γ j (q
∗k)

log p

2π

∥

∥

∥

∥

≪ ε
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and, for every j satisfying a j ∈ Z, b j = 0,

∥

∥

∥

∥

∥

γ j (q
∗k)

log p∗
j

2π

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

m∗
j

α j k j p∗
j

γ j (q
∗k) +

∑

p∈A j \P j

γ j (q
∗k)

log p

2πk j p∗
j

∥

∥

∥

∥

∥

∥

≪ ε,

since γ j (q
∗k)/α j = (q∗)a j ka j is a multiple of k j p∗

j
by the definition of q∗.

Thus,

∏

p∈A j

(

1 −
χ j (p)

ps+iγ j (q
∗k)

)−1

f j (s)

approximates f ∗
j (s) uniformly on K , and hence

max
1≤ j≤n

max
s∈K

∣

∣L{p:p≤y}(s + iγ j (q
∗k), 0;χ j ) − f j (s)

∣

∣ ≪ ε.

Moreover, by replacing q∗k by k, one can easily observe that the number of integers
k ∈ [2, N ] satisfying

max
1≤ j≤n

max
s∈K

∣

∣L{p:p≤y}(s + iγ j (k), 0;χ j ) − f j (s)
∣

∣ ≪ ε

is at least cN/q∗, which, together with Proposition 1 and Lemma 3, complete the
proof. ⊓⊔
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