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As a key technology in Long-Term Evolution-Advanced (LTE-A) mobile communication systems, heterogeneous cellular
networks (HCNs) add low-power nodes to offload the traffic from macro cell and therefore improve system throughput per-
formance. In this paper, we investigate a joint user association and resource allocation scheme for orthogonal frequency division
multiple access- (OFDMA-) based downlink HCNs for maximizing the energy efficiency and optimizing the system resource. )e
algorithm is formulated as a nonconvex optimization, with dynamic circuit consumption, limited transmit power, and quality-of-
service (QoS) constraints. As a nonlinear fractional problem, an iteration-based algorithm is proposed to decompose the problem
into two subproblems, that is, user association and power allocation. For each iteration, we alternatively solve the two subproblems
and obtain the optimal user association and power allocation strategies. Numerical results illustrate that the proposed iteration-
based algorithm outperforms existing algorithms.

1. Introduction

Shortage of power resource and scarcity of spectrum re-
source are two major factors in restricting communication
development, and thus, green-oriented communication
system design has gradually attracted attention of academics
particularly in wireless communication filed. Energy con-
sumption in information and communication technology
(ICT) industry accounts for about 2%–6% of global total
consumption, 60% of which are consumed on base stations
(BSs). In recent years, innovations in this area facilitate the
unprecedented growth of traffic data which accelerates the
problem more seriously [1–4]. In order to improve resource
efficiency, energy harvesting can be used [5], but more ef-
fectively wireless systems are prone to miniaturization and
heterogeneity, which may be composed of various types of
networks to support growth of traffic demand. For instance,
coordinating with macro cell, for example, pico BSs and
femto BSs are used to offload the traffic and energy con-
sumption from the large-scaled BSs. )e layout of hetero-
geneous cellular networks (HCNs) is more reasonable and

economical than that of macro-only networks. However,
extreme densification of BSs would bring a new challenge:
cochannel interference is introduced by spectrum sharing in
a local-area, which has significantly negative impact on
system capacity [6]. Considering its high spectrum efficiency
and flexibility in allocating radio resource, orthogonal fre-
quency division multiple access- (OFDMA-) based HCNs
system is a good candidate to achieve better performance
wireless communications [7].

Resource allocation for HCNs is investigated from dif-
ferent perspectives in one/multi-cell scenarios. In previous
researches, studying of user association is more attractive in
HCNs [8–11], as user allocation have an impact on the
interference as well as capacity. Power consumption is also
a factor that affects the communication performance es-
pecially for intra- and intercell interference suppression in
networks [12–15]. However, capacity and coverage en-
hancement are not always achieved by increasing transmit
power. Increased transmit power may generate more in-
terference to neighboring cells which has became a chal-
lenging issue. As a result, energy-efficient designs have
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recently attracted a lot of interest to exploit the potential
performance gains toward green wireless communication
systems [16–18]. Energy efficiency is defined as the ratio of
system throughput to total energy consumption. In [19], the
authors proposed a utility-based energy-efficient (UEE) re-
source allocation algorithm with mixed traffic in downlink
HCNs which only achieves a suboptimal solution. Zhou et al.
[20] proposed a fractional programming framework, by solving
the weighted energy efficiency problem iteratively consisting of
channel allocation and power allocation. A non-cooperative
resource competition game was introduced in [21] for energy
efficiency optimization in dense networks under traffic-related
minimum rate requirement. Cheng et al., Zhou et al., and
Wang et al. [19–21] focused on jointly channel allocation and
power control where the set of users associated with the BS
were predetermined in the optimal process. In most of the
previous works, they only consider either user association or
subchannel allocation but not both of them. However, the
system performance is affected by both of them. Additionally,
for the above works, system power consumption only involves
the transmit power and static circuit power. For energy efficient
resource allocation, circuit power is also accounted in addition
to the transmitted power with the increasing demand for high-
capacity networks, which is more practical and general [22, 23].
)e novelty of this work is to consider both user association
and subchannel allocation in the optimization of energy effi-
ciency with circuit power. )ese practical conditions have not
been studied together in the literature.

In this paper, we formulate an energy efficiency maxi-
mization problem via jointly optimizing user association,
subchannel association, and power control for OFDMA-
based downlink HCNs in terms of QoS requirement and
available power constraints. In particular, the circuit power
consumption is modeled as a function of system rate, not
just as a constant. We address the nonconvex mixed integer
optimization problems by applying proposed iteration-
based algorithm. By utilizing the Dinkelbach method, it
transforms the primary problem to a subtractive form
problem. )e EE maximization problem is decomposed
equivalently into two subproblems which can then be solved
by using the iterative method alternatively. Compared with
the previous algorithms, simulation results demonstrate that
the proposed scheduling strategy gains a tradeoff between
system capacity and overall consumption and then obtains
an optimal resource allocation.

)e remainder of the paper is formulated as follows:
Section 2 briefly introduces the system model and formu-
lates the energy efficiency maximization problem. Based on
this model, an iteration-based algorithm is proposed to solve
the three-layer problems alternatively; then the algorithm
complexity is also analyzed in Section 3. )e numerical
results are discussed in Section 4. Finally, the conclusion is
drawn in Section 5.

2. System Model

A range of area may be randomly deployed with numerous
small hotspots, providing flexibility and quick access, along
with a larger base station (BS) located at the center of cellular

covering the entire macro cell space, as shown in Figure 1. In
this section, we design a two-layer OFDMA-based downlink
HCNs system, which consists of macro base stations (MBSs)
and pico base stations (PBSs), as alternative wireless access
points for user equipments. In a time slot, channel resources are
allocated to users for information interaction according to the
user association rule.We assume that each subchannel only can
be allocated to a single user at the same time; thus, no in-
terchannel interference exists among user groups. In the fol-
lowing, the set of N �Nm ∪Np � 1, 2, 3, . . . , N{ } and
K � 1, 2, 3, . . . , K{ } represent the index of BSs and users in
the considered scenario, respectively. Based on the OFDMA
model, we equally divide the bandwidth into S orthogonal
spectrum bands and denote S � 1, 2, 3, . . . , S{ } as the
subchannel index set. In this paper, the received signal to
interference and noise ratio (SINR) of terminate k ∈K from
BS n ∈N on subchannel s ∈ S can be expressed as

SINRn,k,s �
Pn,sg

s
n,k

σ2k,s +∑m∈N/n Pm,sg
s
m,k( ), (1)

where Pn,s and gsn,k represent the transmit power and
channel gain from BS n on subchannel s to user k, re-
spectively. σ2k,s is the additive white Gaussian noise (AWGN)
power received at the terminal k of the link from subchannel
s. When transmitting to BS n on subchannel s, user k is
interfered by other cochannel signals from the neighboring
cellular. )us, we can denote the received data rate when
user k is associated with BS n on channel s as

rn,k,s � log2 1 +
1

ΓSINRn,k,s( ), (2)

where Γ is the SINR gap to capacity involving in the bit error
ratio (BER) expectation, coding gain, and noise margin [12].

Hence, the total amount of bits delivered by the users
and BSs is given by

Rtot � ∑
k∈K

An,k,srn,k,s, (3)

where An,k,s ∈ 0, 1{ } is the resource allocation indicator.
An,k,s � 1 indicates that the subchannel s of BS n is assigned
to user k and An,k,s � 0 indicates that, the subchannel s of BS
n is not assigned to the user k in this time slot. In this case,
the subchannel s of BS n is either assigned to another user or
not assigned to any user. Considering the energy efficient
resource allocation design, we model the energy con-
sumption as

Ptot � ∑
n∈N

∑
s∈S

ρnPn,s + Pc
 , (4)

where ρn is the amplifier factor of BS transmit power. Pc is
the total circuit consumed power. Considering the approach
presented in [24], it is reasonable to relate the circuit power
consumption to the sum-data rate which can be defined as

Pc � Ps + cRt, (5)

where Ps is the static circuit consumed power, and the
dynamic circuit consumed power is proportional to the unit
data rate where c is an constant of proportionality.
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�e overall energy efficiency (Bits-Hz-Joule) is defined as
the ratio of system throughout and total energy consump-
tion. As a result, the maximum energy efficiency optimi-
zation problem can be obtained by

E(A, P) �
Rtot(A, P)

Ptot(A, P)
�
∑n∈N∑k∈K∑s∈S An,k,srn,k,s
∑n∈N ∑s∈S ρnPn,s + Pc( ) , (6)

s.t. ∑
n∈N

∑
s∈S
An,k,srn,k,s ≥ rk,min, ∀k ∈K, (6a)

0≤ ∑
s∈S
P
s
n ≤Pn,max, ∀n ∈ N, (6b)

∑
n∈N

∑
s∈S
A
s
n,k � 1, ∀k ∈K, (6c)

∑
s∈K

A
s
n,k ≤ 1, ∀n ∈N, ∀s ∈ S, (6d)

An,k,s ∈ 0, 1{ }, ∀k ∈K, ∀n ∈ N, ∀s ∈ S,
(6e)

where rk,min in (6a) is the minimum received data rate that
the user k required. Pmax in (6b) is the maximum transmit
power allowance for each BS used to control the cochannel
interference. (6c) and (6d) are imposed to guarantee that
each user exclusively associates to one BS to avoid the
cross-user interference and one subchannel can serve at
most one UE.

3. Solution to the Problem

�e objective function (6) is a nonlinear one, coupled with
discrete and continuous variables which add the level

of computationally complexity. In the following, an
iteration-based algorithm is proposed to decouple it
into two subproblems, including user-BS association
and subchannel power control, which can be solved
alternatively.

Since the combinatorial problem is difficult to solve
directly, the first step is to simplify the fractional optimi-
zation to a linear objective function using Dinkelbach ap-
proach [25, 26].�us, it can be proved that the maximum EE
can be obtained only if

F η∗( ) � max
A∗ ,P∗

Rtot A
∗
, P
∗( )− η∗Ptot A

∗
, P
∗( ){ } � 0, (7)

where η∗ is the optimal energy efficiency and A∗, P∗ is the
optimal resource allocation scheme. �erefore, the original
problem is transformed into an objective function in sub-
tractive form and has a unique solution [27].�eDinkelbach
method is widely used to solve (7) with the character of
super-linear convergence speed [28]. �e proposed algo-
rithm is summarized in Table 1, and the proof of conver-
gence is illustrated in Appendix. In each iteration in main
loop, we solve the inner problem: user association and
subchannel power allocation alternatively for a specific η and
then update the value of η each iteration and repeat the
process until convergence.

3.1. User Association with a Given Subchannel Power
Allocation. For a given η, we focus on the solution for inner
problem in the rest of section. �e above problem involves
user association and subchannel power allocation; therefore,
it can be resolved by alternative iteration method. For
a given power control, the optimization problem is gener-
alized for maximizing system capacity under considered
constraints, which is given by

max
A

F(A) � ∑
n∈N

∑
s∈S
∑
k∈K

An,k,srn,k,s, (8)

s.t. ∑
n∈N

∑
s∈S
An,k,srn,k,s ≥ rk,min, ∀k ∈K, (8a)

∑
n∈N

∑
s∈S
An,k,s � 1, ∀k ∈K, (8b)

∑
s∈K

A
s
n,k ≤ 1, ∀n ∈N, ∀s ∈ S, (8c)

An,k,s ∈ 0, 1{ }, ∀k ∈K, ∀n ∈N, ∀s ∈ S. (8d)

Since link capacity is limited by interference especially
from the cochannels of different BSs, an heuristic user al-
location scheme is applied to the cellular system, shown in
Table 2. Initially, we assume that each subchannel of BSs is
allocated with equal transmit power and modeled as iden-
tically Rayleigh distributed channel. Each user is assigned to
the BSs with the highest SINR. �e subchannel allocation
follows the cognitive rules that users are associated with
good channel conditions and suffering small interference.
S0 is a set of available subchannel which is not occupied. It
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Figure 1: Illustration of BS deployment model of HCNs.
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will be updated after each iteration according to the de-
cisions, which can guarantee the subchannel cannot be
reused by other users.

3.2. Subchannel Power Resource Allocation with Given User
Association. )is subsection details the power allocation
procedure. For the case with fixed user allocation set, the
optimization problem can be reformulated into

max
P

F(P) � ∑
n∈N

∑
s∈S
∑
k∈K

An,k,srn,k,s − η ∑
n∈N

∑
s∈S

ρnPn,s + Pc
 ,

(9)

s.t ∑
n∈N

∑
s∈S
An,k,srn,k,s ≥ rk,min, ∀k ∈K, (9a)

0≤ ∑
s∈S
Pn,s ≤Pn,max, ∀n ∈N. (9b)

Notably, constraint (9a) is nonconvex to P because of the
presence of cochannel interference, which makes the ob-
jective function rather difficult [29]. Specifically, we first set
a concave lower bound to relax r by referring the following
inequality [30]:

log(1 + z)≥ log 1 + z∗( ) + z∗

1 + z∗
log(z)− log z∗( )( ).

(10)
)e equality is true only when z � z∗. With this re-

laxation, r is redefined as

r∗n,k,s � αn,k,slog2 SINRn,k,s(P)( ) + βn,k,s, (11)

where

αn,k,s �
SINR P0( )

1 + SINR P0( ), (12)

βn,k,s � log2 1 + SINR P0( )( )− αn,k,slog2 SINR P0( )( ), (13)

where P0 is a reference value. Since the transformed problem
is still nonconvex with respect to P, we follow the approach
in [31] and define q where eqn,s � Pn,s for convexification.
)us, the subchannel power allocation is given by

max
P

∑
n∈N

∑
s∈S
∑
k∈K

An,k,sr
∗
n,k,s − η ∑

n∈N
∑
s∈S

ρne
qn,s + Pc

 ,
(14)

∑
n∈N

∑
s∈S
An,k,sr

∗
n,k,s ≥ rk,min, ∀k ∈K, (14a)

0≤ ∑
s∈S
eqn,s ≤Pn,max, ∀n ∈N. (14b)

)en, we solve the subchannel power allocation opti-
mization problem using the Lagrangian dual-decomposition
approach for a given user association set with the value of η.
)e Lagrangian dual function which absorbs the boundary
constraints (14a) and (14b) is given as

min
λ,υ

max
P

L(P, υ)

� ∑
n∈N

∑
s∈S
∑
k∈K

(1− ηc)An,k,sr∗n,k,s e
qn,s( )

−η ∑
n∈N

∑
s∈S

ρne
qn,s + ∑

n∈N
λn Pn,max − ∑

s∈S
eqn,s 

+ ∑
k∈K

υk ∑
n∈N

∑
s∈S
Asn,kr
∗
n,k,s e

qn,s( )− rk,min
 ,

(15)

where λ and υ are the Lagrange multiplier vectors. With
respect to Karush–Kuhn–Tucker (KKT) conditions, we
take the derivative of the objective function (15), which
yields

zL(P, υ)

zqsn
� ∑
k∈K

ωkAn,k,sα
∗
n,k,s −Q

s
k − ηρne

qn,s − λneqn,s ,

(16)
where

Qsk � ∑
m∈N,m ≠ n

ωkAm,k,sα
∗
m,k,sg

s
n,ke

qn,s

∑j∈N,j≠me
qj,sgsj,k + σ2k,s

, (17)

where ω � (1− ηc + υk)/(ln 2). )us, the optimal sub-
channel power allocation on subchannel s of BS n for user k
is obtained from (16), as follows:

Table 1: An iteration-based algorithm.

Algorithm 1: An alternative iteration algorithm.

(1) Initialization: Set t � 0, η0 � 1, flag� 0, T1;
(2) Repeat:
(3) find the optimal solution of user association A∗ and
subchannel allocation P∗ alternatively for a given ηt,
(4) update η by ηt+1 � Rtot(A

∗, P∗)/Ptot(A
∗, P∗);

(5) if (|ηt+1 − ηt|≤ ε) then
(6) return ηt+1, flag� 1;
(7) else
(8) set t � t + 1, flag� 0;
(9) end if
(10) Until:
(11) flag� 1 or t � T1.

Table 2: User association for HCNs.

Algorithm 2: An heuristic user allocation scheme.

(1) Initialization: Set Pn,s � (1/S)Pn,max, S0 � S;
(2) For i � 1 to K
(3) Find n∗ � argmax rn,k{ } for all of k ∈K;
(4) Find k(n∗, s∗) � argmax rn,k,s, ∀s ∈ St;
(5) Update St � St/s

∗;
(6) Set An∗ ,k∗ ,s∗ � 1
(7) Endfor
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Pt+1n,s �
∑k∈KωkAn,k,sα

∗
n,k,s

∑m∈N,m≠n∑k∈K ωkA
s
m,kα
∗
m,k,sg

s
n,k( )/ ∑j∈N,j≠mP

t
j,sg

s
j,k + σ2j( )( ) + ηρn + λn

.

(18)
We update υ and λ using the gradient descent method as

υt+1k � υtk − ξ1 ∑
n∈N

∑
s∈S

An,k,sr
∗
n,k,s − rk,min

  +, ∀k ∈K,

(19)

λt+1n � λtn − ξ2 Pn,max − ∑
s∈S

eqn,s  +, ∀n ∈N, (20)

where index t is the number of iterations and
[x]+ � max 0, x{ }. )e positive descent gradient ξ1 and ξ2
are small enough to guarantee the convergence of the al-
gorithm. )e subchannel power allocation problem can be
solved via the Lagrangian dual-decomposition approach
which is summarized in Table 3. Specifically, within each
iteration, we update the P and dual Lagrange multipliers
according to the duality-based algorithm, and the process
repeats until problem converges.

4. Numerical Results

In the following, we consider two-layer heterogeneous
networks where the fixed node MBS is located at the center
of a radius of 500 meters, and PBSs are randomly scattered in
the cellular. K users are uniformly distributed in the range of
service area. It is assumed that the system bandwidth is
6MHz and the number of subchannels is 32. Users are
subjected to −128 dBm/Hz AWGE power spectral density,
giving the SINR gap Γ � 0 dBm. )e maximum transmit
power of MBS is 46 dBm. )e coefficient of power amplifier
of MBS and PBS are 4 and 2, and the constant power
consumption values are 10W and 0.1W, separately. )e
path loss model of MBS and PBS is set to lnk � 128.1 +
37.6 log 10(d) and lnk � 140.7 + 37.6 log 10(d), where d (in
km) represents the distance between BS n and user k. Be-
sides, the shadowing fading of all links is set to 0 dB. In
addition, assumed system parameters can easily be modified
to any other values to demonstrate the energy efficiency in
different scenarios.

4.1. Convergence of the Proposed Algorithm. Figure 2 illus-
trates the convergence properties of the proposed iteration-
based algorithm. )e maximum transmit power of PBSs is
32 dBm and the sum-rate factor is 0.38. )e number of PBS
and amount users is set as 10 and 30. It can be observed from
Figure 2(a) that the objective as a function of q converges
within 15 iterations in considered scenarios. Figure 2(b)
shows that the value of η is converging to the optimal EE
within 5 times, demonstrating that the convergence rate of
proposed algorithm is high. In summary, the validity of the
proposed algorithm is confirmed, and it is efficient for
multivariable dynamic programming.

4.2. Energy Efficiency and Power Consumption. We compare
the performance of proposed iteration-based algorithm for
maximizing energy efficiency (MEE) with MTP proposed in
[14] for different number of users versus increasing QoS
requirement in Figures 3 and 4. For MTP, its objective is to
minimize the power consumption for subchannel assign-
ment and power distribution. We assume that the maximum
transmit power of PBS is 32 dBm and the sum-rate co-
efficient is 0.38. Figure 3 shows that MEE is much better than
MTP in energy efficiency. For MEE and MTP, as the in-
creasing dense subscribers, the EE increases at first and then
remains stable for all schemes. )is is because the cochannel
interference would have less impact when the user density
was low. However, since more subchannels being allocated,
performance is restricted by the limited system resources as
the number of users in the system increases. We also observe
that the EE declines with the growing minimum data rate
requirement in MEE and MTP since the BSs require to
enhance the transmit power of subchannel to maintain the
throughput requirements which impairs the system energy
efficiency.

As seen in Figure 4, the corresponding power con-
sumption of MEE versus different number of users is less
than that of MTP, due to our proposed power allocation
policy strongly control the unassigned subchannel transmit
power resulting in lower transmit power levels. As the user
density increases, the spectrum is shared by different tiers,
and thus, the cochannel interference will become significant.
Hence, extra power consumption is required to narrow the
gap of QoS requirements. It simultaneously shows that the
EE increases with the descending minimum rate targets for
MEE andMTP, while the rate of rise declines.)is is because
when the threshold is high, more users are unable to meet
the requirements, which consumes the excessive trans-
mission to improve the performance of the system. For MEE
and MTP, it concluded that the performance improvement
of our proposed algorithm outperforms previous research.

Figure 5 investigates the impact of circuit power on the
energy efficiency versus the number of users. )e maximum
transmit power of PBSs is set as 36 dBm. For a fixed factor c,
when the number of users is smaller and EE increases sig-
nificantly for both algorithms, but then progressively slows
with the user density increases adequately.)is is because that
the increasing sum-rate will also make the system consume

Table 3: Subchannel transmit power allocation for HCNs.

Algorithm 3: Lagrangian dual-decomposition approach.

(1) Initialization: Set eq � (1/S)Pn,max, i � 0, t � 0, α0, β0, T2, T3;
(2) Repeat
(3) Repeat

(4) Update P according to (18);
(5) Update υ and λ according to (19) and (20), respectively;
(6) Set t � t + 1;
(7) Until ||]t+1 − ]t||≤ ε or t � T2

(8) Set P0 � P;
(9) Update α and β according to (12) and (13), respectively;
(10) Until ‖qi+1 − qi‖≤ ε or i � T3

Mobile Information Systems 5



more extra power for circuit power per unit data rate, which
restricts the EE growth. It can be seen from Figure 5 that the
EE decreases with the increase of c resulting in higher power
consumption. In conclusion, the energy efficiency is influ-
enced by the sum-data rate of the links and decreases with the
increase of circuit power consumption.

Figure 6 illustrates the change of EE of the system under
the number of small cells in the network, and we consider
the number of users in each cell is 4. It can be seen from the
figure that the energy efficiency of MEE is higher than that of
MTP in considered scene, due to the proposed maximum
EE-based power strategy policy. As the number of cell in-
creases, more users are associated to the network to increase
system throughout as well as increase the power con-
sumption on dynamic circuit power.

5. Conclusion

In this paper, we have studied the jointly the user asso-
ciation and subchannel power allocation problem in the
downlink OFDMA-based HCNs under minimum QoS
requirement and available power constraints. To tradeoff
between throughout and energy consumption, the con-
ception of maximum energy efficiency is introduced. We
solved the fractional programming by transferring it into
two subproblems, that is, user association subproblem and
power allocation subproblem, and further proposed an
iteration-based algorithm to handle the subproblems al-
ternatively. Simulation results demonstrated that a higher

0 2 4 6 8 10 12 14
175

180

185

190

195

200

205

210

215

Number of iterations (t)

F
 (
p

)

(a)

0 2 4 6 8 10 12
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of iterations (t)

F
 (
η

)

(b)

Figure 2: Convergence of proposed iteration-based algorithm: (a) iteration of power allocation algorithm; (b) iteration of Dinkelbach’s
algorithm.

0.42

0.44

0.46

0.48

0.5

0.52

0.54

0.56

Number of users

E
n

er
g

y 
ef

fi
ci

en
cy

 o
f 

th
e 

w
h

o
le

sy
st

em
 (

b
it

/H
z/

Jo
u

le
)

5 10 15 20 25 30

MEE, rmin=10

MEE, rmin=11

MEE, rmin=12

MTP, rmin=10

MTP, rmin=11

MTP, rmin=12

Figure 3: Performance comparison versus different user density
for different QoS requirements.

0

10

20

30

40

50

60

70
T

ra
n

si
m

it
 p

o
w

er
 o

f 
th

e 
w

h
o

le
 s

ys
te

m

Number of users

5 10 15 20 25 30

MEE, rmin=10

MEE, rmin=11

MEE, rmin=12

MTP, rmin=10

MTP, rmin=11

MTP, rmin=12

Figure 4: Transmit power consumption versus different user
density for different QoS requirements.

6 Mobile Information Systems



energy efficiency compared with previously proposed al-
gorithms is obtained.

Appendix

Proof of the Rate of Convergence

�e alternative iteration algorithm super-linearly converges
to the optimal energy efficiency.

Firstly, it has been proved that if the number of iterations
is large enough, the sequence of ηt{ } converges to the op-
timal η∗ [24, 28]. �en, the further proof of convergence
speed is detailed as follows.

Let A′, P′{ } and A″, P″{ } be the optimal solution of

F(η′) and F(η″), respectively, where F(η′) �
max Rtot(A′, P′)− η′Ptot(A′, P′){ }. �erefore, we could
have

Rtot A′, P′( )− η′Ptot A′, P′( )≥Rtot A″, P″( )
− η′Ptot A″, P″( ). (A.1)

Dividing both sides by Ptot(A′, P′)> 0,
Rtot A′, P′( )
Ptot A′, P′( )− η′ ≥

Rtot A″, P″( )
Ptot A′, P′( ) − η′

Ptot A″, P″( )
Ptot A′, P′( ) .

(A.2)

DenotingQ � Rtot/Ptot, and taking (A.2) to the next step,

Q A″, P″( )−Q A′, P′( )
�
Rtot A″, P″( )
Ptot A″, P″( )−

Rtot A′, P′( )
Ptot A′, P′( )

≤ Rtot A″, P″( )
Rtot A″, P″( )−

Rtot A″, P″( )
Ptot A′, P′( )

− η′ 1−Ptot A″, P″( )
Ptot A′, P′( )[ ]

� −Rtot A″, P′( ) + η′Ptot A″, P′( )( )
·

1

Ptot A′, P′( )−
1

Ptot A″, P″( )( )
� −F η″( ) + η′ − η″( )Ptot A″, P″( )[ ]
·

1

Ptot A′, P′( )−
1

Ptot A″, P″( )( ).

(A.3)

We assume that η″ � η∗, where η∗ satisfies F(η∗) � 0
and Q(A∗, P∗) � η∗. From (A.3), we have

η∗ −Q A′, P′( )≤ η∗ − η′( ) 1−Ptot A
∗, P∗( )

Ptot A′, P′( )( ). (A.4)

η is updated by the previous value of Q(A, P) in
each iteration, for example, ηt+1 � Q(At, Pt). From (A.4),
the algorithm converges at the rate of
(1− (Ptot(A

∗, P∗)/Ptot(At, Pt))). �erefore, the updated
values rapidly get close to the optimal solution with respect
to t.
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