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Abstract—This paper elaborates on mechanisms for estab-
lishing visual joint attention for the design of robotic agents
that learn through natural interfaces, following a developmental
trajectory not unlike infants. We describe first the evolution of
cognitive skills in infants and then the adaptation of cognitive
development patterns in robotic design. A comprehensive outlook
for cognitively inspired robotic design schemes pertaining to
joint attention is presented for the last decade, with particular
emphasis on practical implementation issues. A novel cognitively
inspired joint attention fixation mechanism is defined for robotic
agents.

I. INTRODUCTION

The emerging field of Human-Robot Interaction is a rapidly

growing research area which represents an interdisciplinary

effort that addresses the need to integrate social informatics,

human factors, cognitive science, and usability concepts into

the design and development of a social robot. One of the main

challenges that a social robot faces is the need to perceive the

world as humans do and learn from the interactions with envi-

ronment and humans. In order to do that, a social robot must

be able to interpret human activity and behavior. The vision

system of the social robot is responsible for accomplishing

tasks like identifying faces, measuring head and hands poses,

and recognizing gestures to emulate human social perception.

In addition to that, the social robot should preferably have a

similar look to humans with its animate limbs, hands, head,

and face to communicate its mental state and intentions in a

psychologically plausible manner.

Developmental robotics aims to design continuously learn-

ing robotic agents, which are capable of establishing natural

interaction with humans in uncontrolled environments [1].

This type of agents are of special interest in real-life scenarios

of human-robot interaction, as their skill progression follows a

natural gradient of complexity, and promises to be robust and

flexible in the face of unrestrained characteristics of natural

settings.

A recent approach for building naturally interacting au-

tonomous agents is to adopt a mutual standpoint of devel-

opmental psychology and robotics [2]. The collaboration of

these fields was born out of the shift in the dominating

paradigm of artificial intelligence towards situated cognition

and the necessity of having embodiment to ground the physical

experience of the agent, closing the sensor-actuator loop in

a sense. A key insight is that the agent initially uses the

environment as its own model, and gradually builds more

complex representations that would enable new skills as the

agent develops.

Developmental psychology examines the learning process

of infants, as well as the evolution of auxiliary skills that

contribute to learning. Among these skills are those that relate

to the construction and restructuring of different types of

memory, but also skills to actively explore the sensors and

effectors of the agent, and consequently, the environment.

In this paper, we focus on one such skill that enables a

human infant to establish communication with a caregiver, thus

playing a crucial role in supervised learning. We discuss the

preconditions and mechanisms that would enable a robot to

do the same.

In Section II the nuts and bolts of the joint attention

mechanism in infants are discussed from an evolutionary

perspective. Existing cognitive models that decompose the

problem into different sets of biologically plausible functional

and conceptual modules, are explained and the computational

models of joint attention defined in literature are reviewed.

Section III describes our approach and the robotic testbed

for creating an autonomous agent capable of exhibiting joint

attention with a human party.

II. RELATED WORK

Cognitive development provides for a rich source of ideas

for developing communicative skills for a robot, especially by

suggesting ways for task decomposition and by identifying

simpler cognitive skills. Here we briefly review joint attention

models in this context.

A. Evolution of Joint Attention in Infants

Motives, which are described as the reasons behind initi-

ation of voluntary behavior, are considered to play a crucial

role in the learning process. A widely accepted classification

scheme identifies two global motive classes as drives and

intrinsic motives by distinguishing the role of end goals [3].



Drive theory claims that reward and punishment are the key

elements which lead motivation, whereas intrinsic motivation

theory focuses on ego motives. A multifaceted scheme of

intrinsic motivation is described by Reiss based on 16 basic

desires [4]. Although individuals prioritize these desires differ-

ently, several intrinsic motives such as social contact, status,

and curiosity are prominent in terms of learning in infants.

In order to establish social contact, to obtain social standing,

and to fulfill the desire for knowledge, infants need to get

engaged in communication and hence obtain joint attention

with the caregivers. These social skills are observed to improve

gradually at primary stages of infancy. It is observed that

infants have a tendency to detect and track faces. Moreover, it

is observed that infants are more sensitive to faces with open

eyes [5]. After detecting face and establishing eye contact, the

infant learns to relate this information with attention [6]. By

12 months, the infant tracks the caregiver’s gaze and attends

to the object of interest of the caregiver, which stands in his

view of sight (geometric stage), whereas up to nine months, it

attends to any salient object in his view of sight regardless of

the caregiver’s attention (ecological stage). After 18 months,

the infant is able to turn around and track the gaze of the

caregiver if the object of interest stands outside his first field

of view (representational stage) [6].

B. Developmental Models for Joint Attention

“Theory of mind” expresses the collection of skills relating

the attribution of beliefs, goals, and desires to other people [7].

In order to implement human-like complex social skills, one

needs to develop a theory of mind from a robotic design

perspective. This requires the decomposition of the process

of communication into simpler cognitive skills, which can

be implemented on a robot. In this respect, there are three

decomposition approaches for joint attention we would like to

mention here.

Module based decomposition of Baron-Cohen is one of the

most prominent theories of shared attention [8]. He describes

four modules as intentionality detector, eye direction detector,

shared attention mechanism, and theory of mind mechanism.

Although this model presents a useful decomposition for the

key elements of shared attention, it provides little insight about

how these mechanisms work and thus it is not convenient for

robotic implementation. Kozima et al. describe the design of

a robot that learns to communicate with human caregivers [9]

based on three modules, namely intentionality, identification,

and social communication, similar to the ones defined by [8].

Unlike module-based decomposition, task based decompo-

sition proposed by Scassellati [3] presents practical advantages

in terms of functional modularity. According to his hypothesis,

the primary tasks are recognition, maintenance of eye contact,

and gaze following, which enable getting engaged in joint

attention. Subsequently, imperative and declarative pointing

are considered to permit feedback between the infant and the

caregiver.

Another developmental model for shared attention is given

in [10] by introducing a basic set of key ingredients as

motivational biases such as selective response to parents, a

learning mechanism that benefits from predictable contingent

interactions, and a structured environment, where the actions

of the caregiver are not random, but predictable up to some

extent. Based on these key ingredients, a suitable parameter

setting is obtained which leads to a healthy natural develop-

ment. Due to ease of adaptation, most cognitively inspired

methods for joint attention employ functional modules which

perform tasks similar to those defined in [3]. The next section

provides a comprehensive outlook for joint attention models

reported in the last decade.

C. Cognitively Inspired Joint Attention Models

One of the earlier studies in this field focuses on a biological

model of human visual system and proposes a developmental

learning model for joint attention from a biological point of

view [11]. A neural network module composed of four layers

is employed in modeling the visual system of the robot, where

the layers represent the input, retina, visual cortex, and output.

As learning proceeds, caregiver performs task evaluation by

determining a reward in accordance with the output error of

the robot and appropriate weights are obtained.

However, in order to implement a learning scheme, which

truly mimics the cognitive development pattern of infants, one

should rather go beyond the biological properties. Nagai et

al. propose a developmental learning scheme [12], which im-

proves learning by passing through the ecological, geometric,

and representational stages of joint attention [6]. They further

evaluate their system by imposing non-supervised learning

conditions in an uncontrolled environment. The visual atten-

tion module evaluates the salient features based on color, edge,

motion information, as well as the faces in the environment,

so that the most salient object is attended at primary stages

of learning, which corresponds to the pattern of six month

old infants. As this process is repeated, the internal self-

evaluation module provides feedback to the visual attention

module and joint attention is improved gradually together with

sensorimotor coordination corresponding to the pattern of 12

month old infants [6].

These initial methods treat the camera input as substantive

images and omit the temporal connection. Humans, on the

other hand, utilize motion information besides static informa-

tion such as posture and face direction to infer about their

desires and intentions. The information introduced by motion

has also been shown to facilitate infants’ learning [13]. For

this reason, the robotic agent described in [14] alternates its

gaze between a human caregiver and the object it attends by

triggering motion, using the cues obtained from the motion of

the caregiver’s face. In [15], the temporal relationship between

the frames is expressed in terms of optical flow vectors and

thereby a coarse estimate for gaze shift providing initial motor

output to follow the gaze is obtained. The proposed scheme

also includes tracking of deictic gestures like pointing. After

determining the edge information relating the hand of the

caregiver, the robot obtains alternate directions for pointing

gesture. The spatial dispersion of optical flow vectors deter-



mine the exact direction. In a similar approach, Haasch et al.

implement an object attention scenario between a robot and a

caregiver on the BIRON robotic platform [16]. The caregiver

points to an object, and the robot tracks the hand gesture to

look for an object in a small area constrained by the gesture.

Verbal cues (such as “blue cup”) are identified and used in

conjunction with visual cues.

These approaches formulate the visual attention focus of

the caregiver based on camera input, employing the 2D

information available. However, morphological priors can be

employed in the derivation of 3D information from the 2D

visual input. Since the perception of gaze direction depends

to a large extent on head pose [17], one can model the head

of the caregiver as a 3D object and resolve for the pose [18].

Hoffman et al. employ an ellipsoidal model for human head

and the inferred head angles are used in the estimation of

the gaze vector [19]. The assumption is that the robot can

establish the relation between the pose of the caregiver and

his focus of attention. The causal structure between the action

variables, i.e. in most cases the gaze alteration, caregiver’s

face pose or object locations, are supposed to be given to the

robot in advance. However, a low-level design must handle

the problem in such a way that this relation is inferred by the

robot itself, since these contingencies are reproduced during

learning in a natural setting. In [20] a pair of contingent

variables are derived using an information theoretic measure

to obtain sensory-motor mapping. As human-robot interaction

gets richer with the contribution of action modalities such as

vocalization and pointing, the importance of the derivation of

causal links between perception and action variables increase.

These methods mimic early stages of cognitive develop-

ment of infants, i.e. mainly six to 12 months. As mentioned

in [3], after 12 months, infants start providing feedback to

the caregiver by utilizing imperative and declarative pointing,

establishing reciprocal communication. Person identification,

speech recognition and synthesis along with natural aligned

gestures [21], mutually entrained body movements and com-

plex eye movements are used as auxiliary modules in the

realization of action-reaction pairs for interaction-oriented

robots [22]. According to Kaplan & Hafner, joint attention

requires skills for attention detection, attentional manipulation,

social coordination and intentional understanding [23]. They

are critical of the body of work which deals with elementary

skills required for the task, arguing that deeper cognitive

aspects are insufficiently addressed. While agreeing with their

point, we duly note that the complete specification and im-

plementation of a general joint attention system on a robotic

platform is no less than a grand challenge of the field.

III. PROPOSED APPROACH

Our proposed approach aims at developing the basic gaze

following and object segmentation skills for the robot, and

mimics the ecological strategy of resolution of focus of

attention observed in infants. The proposed method is task-

independent as long as the adequate training patterns are

presented. Initially head pose of the caregiver is computed and

gaze direction is estimated from the head pose. In addition to

that, the depth of the object along the gaze direction is induced

from the head orientation. Intersection of the gaze and depth

gives us a coarse estimate for the object center [24]. Then

by pooling a number of estimates and using the surrounding

salient features such as color and intensity, we make a final es-

timate for the object center and perform segmentation around

it. This section elaborates on the details of robot platform,

head pose estimation, gaze direction resolution and saliency

computation.

A. The Robot Platform

We have built a social interaction robot to be used for ser-

vice and guiding purposes (Figure 1). The system is composed

of three main components:

• The Aldebaran Nao humanoid robot [25] as the main

interaction and animation unit

• The FESTO Robotino robot [26] as the navigation unit

• A laptop computer as the additional processing and

monitoring unit

Aldebaran Nao is a 23′′ tall humanoid robot with 25-DOF

in total, two vertically aligned color cameras with 640 × 480
resolution, and a 500Mhz Geode processor. A Linux based

operating system is running on the robot and pre-installed

text-to-speech packages allow the robot generate speech. In

our design, we are utilizing the upper torso of the Nao robot

as the primary visual input and human interaction unit and

using the Robotino robot to make the whole body wander

around. Robotino is a wheeled robot capable of moving

omnidirectionally. It is surrounded by 9 IR sensors and a bump

sensor, and it has a 300Mhz processor. Also a 5-meter range

laser range finder is installed on the body of the Robotino robot

to have more accurate range data from the robot’s environment.

Figure 2 illustrates an example for a video frame recorded by

the robot, where the caregiver focuses his attention on one of

the seven objects.

B. Joint Attention Modeling

Since head pose is an indicative of gaze direction, determi-

nation of head orientation provides a coarse estimate for center

of attention fixation. Thus we employ a head tracking and pose

estimation algorithm, which transforms the 2D information

concerning the head into 3D pose vectors [24], [27]. This

expands our understanding of orientation based on the general

anthropomorphic measures. After resolving the gaze direction,

a neural network regression is carried out to solve for the

initial fixation point. By pooling three consecutive frames of

the video recorded at 15fps, a bin of video images is formed.

Taking the fact that humans make three to five saccades per

second into account, this bin is convenient to perform a single

saccade. A prospective region for this bin is obtained by

defining a distribution around estimated initial fixation points.

Saliency computation is carried out on this prospective region

and the eventual estimated object center is resolved.



Fig. 1. The robot platform used in the experiments.

Fig. 2. An exemplary video frame grabbed by the robot showing a caregiver,
the setup and object indices.

1) Head Pose Estimation: A session of joint attention is

initialized once eye-contact is established between the robotic

agent and the caregiver. An elliptic cylindrical head model with

reasonable dimensions in agreement with anthropomorphic

measures is fit to the corresponding head region [28]. Since

this defines a frontal view, the pan, tilt and roll angles

concerning this initial head pose are all set to zero. The

translation parameters are initialized considering the location

of face region on the video frame.

Lucas-Kanade optical flow algorithm is employed [29] in

tracking the head. To decrease the computational load, a

number of points are regularly sampled on the face region

(see Figure 3). The relation of the 3D locations of these points

on the cylinder to the 2D pixel coordinates is established by

considering a simple pin hole camera model and performing

perspective projection. Ray tracing is carried out to find the

(a) (b) (c)

Fig. 3. Cylindrical head model and pose vectors.

intersection of the rays arriving to the image plane and the

cylinder.

In the resolution of pose update, initially the head is

assumed to keep still for two video frames. By carrying

out an iterative procedure, we gradually update the pose and

minimize the error corresponding to the face region [30]. The

pose vectors, which are computed in the above described

manner, have a distribution as illustrated in Figure 4. Each

pose value is demonstrated in corresponding colors same

as Figure 2 depending on manual annotations obtained by

users. As these distributions are modeled with Gaussians,

the indicated regions in 3D come into view. The topological

relationship between the localization of the objects on the

table and corresponding head pose angles are preserved, which

ascertains that head pose and gaze direction are closely related.

2) Gaze Direction Estimation: From Figure 4, we infer that

there is a nonlinear relationship between the head pose and the

gaze direction. We employ two different neural network mod-

ules to interpolate the gaze direction and depth of the object

of interest from given 3D head pose vector estimates [30].

The video frames are manually annotated by a user, indicat-

ing the object of interest of the caregiver. We then define the

gaze direction as the slope of the vector which connects the

head center and the center of the object of interest. However,

the gaze vector alone is not enough to determine the object

of interest. Hence, we train another neural network module to

estimate the depth of the object. Figure 5 presents examples for

estimated gaze vectors. The vector starts from the head center,

which is computed by the head tracking and pose estimation

Fig. 4. The pose distributions.



(a) (b)

(c) (d)

Fig. 5. Examples for estimation of gaze direction and object depth.

Fig. 6. Initial estimates for object centers.

module, goes along the gaze direction and ends as it reaches

the estimated depth of the object of interest.

The point on the gaze direction vector with the estimated

depth value is considered as an initial estimate for center of

object of interest. Figure 6 shows these initial estimates for

one video sequence.

3) Saliency Computation: Once we estimate the coarse

object location, we rely on saliency to determine the exact

location of the object of interest. To determine a prospec-

tive region to run the saliency computation, we pool three

consecutive estimates and define a fixed-size search area

around the three estimates. Then we employ the popular

bottom-up saliency scheme proposed by [31]. The presence

of illumination intensity, colors, oriented features and motion

are indicative of salient locations in the scene. Each feature

channel is separately used to determine a feature-specific

saliency map, which are then combined to a saliency master

map. In the original model, the saccadic eye movements are

simulated by directing a foveal window to the most salient

location, determined by a dynamic and competitive Winner-

Take-All (WTA) network [31].

As a result of saliency computation and object segmentation,

the regions shown in Figure 7 are obtained. Here the yellow

curve indicates the estimated object boundaries and the center

of this region is considered as the estimated object center.

C. Experimental Results

In the experiments we used 1200 frames of recorded video,

where two different caregivers look at each of the seven objects

on the table shown in Figure 2. We apply our algorithms to

(a) (b) (c) (d)

Fig. 7. Saliency computation and segmentation in the prospective region.

TABLE I
CORRECT DETECTION RATE FOR THE OBJECTS

Object Indices
1 2 3 4 5 6 7

M1 0.47 0.32 0.93 0.67 0.44 0.40 0

M2 0.67 0.58 1.00 0.67 0.67 0.90 0

determine the object of interest and quantify the performance

with two different measures, M1 and M2.

M1 indicates at which rate an estimated object center falls

into the bounding box of the true object of interest, whereas

M2 shows the rate at which the estimated point is at shortest

distance to the true center. Let p denote the pixel locations

of the estimated object center for a set of frames which are

labeled with object number i. Let Bi be the bounding box of

this object. It follows:

M1(i) = |p ∈ Bi| / |p| ,

where |.| denotes the cardinality of a set. The explicit expres-

sion for M2 is:

M2(i) = |{p|d(p, ci) < d(p, cj), ∀j = 1, · · · , 7, j 6= i}| / |p| ,

as d(a, b) denotes the Euclidean distance between points a and

b, and ci stands for the object center concerning object i.
In the first case an estimated point may not fall into

any of the bounding boxes and thus it is not assigned to

any of the objects, whereas in the second case the point is

always assigned to the nearest object in the vicinity. For both

measures, values vary between 1 and 0, where being closer to

1 indicates a higher success rate.

Table I summarizes the correct detection rates for each

object. Objects lying in the central part of the table are detected

correctly with a higher rate. One reason for this is that head

pose is closer to the one of template image which is the from

a frontal view and thus introduces a minor change in the face

view. The objects lying on the sides, however, require more

extreme head poses, which are hard to detect. Even though

these poses are intuitively observed to be detected with a

fairly good precision, the regression module is more likely

to introduce some degradation on the extremes. The effect of

this factor is prominent in the case of Object 7. The resolution

of Object 7 is challenging, not only because it lies on the

periphery, but also because it is quite close to Object 6. On

the other hand, it is obvious that some objects are very close to

each other (Figure 2), even partially occluding one another in

some cases (Objects 6 and 7). Hence, in addition to calculating

M1 and M2 for each object, we form clusters of objects such

as left peripheral (L), right peripheral (R) and central (C),



TABLE II
CORRECT DETECTION RATE FOR THE CLUSTERS

L C R

M1 0.65 0.91 0.21

M2 0.94 0.94 1.00

according to localization on the table, where L includes objects

1 and 2, R includes 6 and 7, and C covers 3, 4 and 5. The

correct detection rates for these clusters are given in Table II.

IV. CONCLUSIONS

This paper provides a detailed insight into the design

and training of naturally interacting robotic agents by first

giving an overview of evolution of joint attention in infants

from a developmental psychology point of view and then

by describing the decomposition of progression of cognitive

skills from a robotic implementation perspective. Several

cognitively-inspired intelligent agent designs are elaborated

and an algorithm is described to track the gaze of a caregiver

in a joint-attention scenario. The proposed algorithm employs

a 3D elliptic cylindrical head model to estimate the head pose,

and uses regression analysis to interpolate the gaze direction.

Bottom-up feature saliency is proposed to alleviate ambiguities

and to segment objects of interest. Good initial results are

obtained from a series of experiments performed on a robotic

platform. Future work includes measuring the generalization

performance of the proposed system accross subjects and

experimental settings.
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