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Joint VNF Placement and CPU Allocation in 5G
S. Agarwal, F. Malandrino, C. F. Chiasserini, S. De

Abstract—Thanks to network slicing, 5G networks will support
a variety of services in a flexible and swift manner. In this context,
we seek to make high-quality, joint optimal decisions concerning
the placement of VNFs across the physical hosts for realizing the
services, and the allocation of CPU resources in VNFs sharing
a host. To this end, we present a queuing-based system model,
accounting for all the entities involved in 5G networks. Then,
we propose a fast and efficient solution strategy yielding near-
optimal decisions. We evaluate our approach in multiple scenarios
that well represent real-world services, and find it to consistently
outperform state-of-the-art alternatives and closely match the
optimum.

I. INTRODUCTION

Enabled by network function virtualization (NFV) and soft-
ware defined networking (SDN), network slicing [1] is one
of the most exciting features of 5G networks. Third parties
(“verticals”) will specify the services they want to provide
and the associated requirements, e.g., maximum latency or
minimum throughput, to the network operator. Thanks to NFV,
such services will be expressed as graphs of virtual network
functions (VNFs), running on virtual machines or containers.
Through SDN, the VNF graph will then be mapped onto the
physical and virtual resources available in the network, which
can be seen as a pool of resources the operator can draw from.

In this scenario, there are three main entities to account
for. First, VNFs (e.g., firewall or transcoding) performing
the processing required by different types of services and
running into virtual machines or containers; second, physical
hosts, capable of running VNFs; third, the links connecting
the physical hosts together. Additionally, there are two main
decisions we need to make in order to effectively manage the
network: (i) VNF placement, i.e., which VNFs run at each
physical host, and (ii) allocation, i.e., how the computational
capabilities available at physical hosts are allocated to the
VNFs they run. VNF placement and CPU allocation1 decisions
will eventually be mapped into routing decisions from a
network node to another.

It is our purpose in this paper to make these decisions
jointly, accounting for the complex and often counterintuitive
way they depend upon one another. To this end, we propose
a queuing-based model, synthetically accounting for all the
main aspects of the entities composing 5G networks. For
physical hosts, we properly model their limited computational
capabilities, and the fact that such capabilities must be split
among the VNFs deployed at the same host. For VNFs, we
account for the fact that they have minimum requirements in
terms of computational capabilities, which have to match the

1In this paper, we only refer to CPU allocation for simplicity; notice
however that our model and methodology can take into account any kind
of resource, e.g., disk or RAM space.

vertical requirements, and that, if additional capabilities are
available, they will be exploited by VNFs to run faster. This
leads to a flexible CPU allocation – an aspect that has not
been addressed by previous work. Also, we tackle the case
where, due to high traffic load, multiple instances of the same
VNF are needed. As far as links between hosts are concerned,
we take into account their finite capacity and non-zero delay.
Finally, we model the fact that different classes of service
requests, with different quality of service (QoS) requirements,
coexist in the network and may share a portion of their VNF
graphs.

We adopt a queuing model owing to the nature of 5G traffic.
Indeed, a substantial fraction of this traffic, most notably
coming from Internet-of-things (IoT) and machine-to-machine
(M2M) applications, will consist of requests (customers) that
originate from clients and then go through one or more compu-
tational stages (queues), triggering additional requests in the
process. Queue networks are also the natural way to model
the interaction pattern supported by present-day technologies
such as Amazon Lambda and Amazon Greengrass [2], and
endorsed by ETSI specifications (see the TASK request in [3,
Sec. 6.11]).

Given our system model, we take latency as the main key
performance indicator (KPI) and formulate an optimization
problem that minimizes the ratio between the actual and the
maximum allowed latency, across all service classes. Such a
problem is impractical to solve directly, owing to its over-
whelming complexity; thus, we present an efficient solution
strategy, leveraging on sequential decision making. It is worth
stressing that sequentially does not mean separately: decisions
are made one after the other, but the interaction between them
is still accounted for.

We evaluate the performance of our strategy against state-
of-the-art alternatives, as well as against the global optimum.
Owing to the diverse types of services (many still to be envi-
sioned) that 5G networks will serve, we perform our evaluation
for several different VNF graphs, ranging from simple chains
to meshed graphs and akin to those corresponding to real-
world services, most notably virtual EPC (vEPC).

In summary, our main contributions are as follows:

• we model all the main components of 5G services and
network slices, from VNFs to physical hosts and links;

• we allow VNFs to be connected in arbitrarily graphs,
as opposed to simpler chains or direct acyclic graphs
(DAGs), and account for the need to deploy multiple
instances of the same VNF;

• as a unique feature of our model, we allow flexible
CPU allocation decisions, accounting for the fact that the



same VNF placement can correspond to multiple CPU
allocation strategies;

• we study how such allocation decisions influence the
system performance when subsets of VNFs are shared
by multiple services, with different QoS limits;

• we devise an efficient and effective heuristic to make joint
VNF placement and CPU allocation decisions, and find
that it consistently performs very close to the optimum
throughout different VNF graphs;

• we state and prove several properties that optimal CPU
allocation decisions have under full-load conditions, and
use such properties to further simplify the solution pro-
cess.

The remainder of the paper is organized as follows. Sec. II
reviews related work, highlighting the novelty of our contri-
bution. Sec. III and Sec. IV introduce the system model and
problem formulation, and analyze the complexity of the latter.
Sec. V presents our solution concept, while Sec. VI describes
how we deal with the special case of full-load conditions.
Sec. VII addresses scenarios with multiple VNF instances.
Finally, Sec. VIII presents performance evaluation results and
Sec. IX concludes the paper.

II. RELATED WORK

Network-centric optimization. Many works, includ-
ing [4]–[8], tackle the problems of VNF placement and routing
from a network-centric viewpoint, i.e., they aim at minimizing
the load of network resources. In particular, [4] seeks to
balance the load on links and servers, while [5] studies
how to optimize routing to minimize network utilization. The
above approaches formulate mixed-integer linear programming
(MILP) problems and propose heuristic strategies to solve
them. [6], [7] and [8] formulate ILP problems, respectively
aiming at minimizing the cost of used links and network nodes,
minimizing resource utilization subject to QoS requirements,
and minimizing bitrate variations through the VNF graph.

Service provider’s perspective. Several recent works take
the viewpoint of a service provider, supporting multiple ser-
vices that require different, yet overlapping, sets of VNFs,
and seek to maximize its revenue. The works [9], [10] aim
at minimizing the energy consumption resulting from VNF
placement decisions. [11], [12] study how to place VNFs
between network-based and cloud servers so as to minimize
the cost, and [13] studies how to design the VNF graphs
themselves, in order to adapt to the network topology.

User-centric perspective. Closer to our own approach, sev-
eral works take a user-centric perspective, aiming at optimizing
the user experience. [14], [15] study the VNF placement
problem, accounting for the computational capabilities of hosts
as well as network delays. In [16], the authors consider
inter-cloud latencies and VNF response times, and solve the
resulting ILP through an affinity-based heuristic.

Virtual EPC. The Evolved Packet Core (EPC) is a prime
example of a service that can be provided through SDN/NFV.
Interestingly, different works use different VNF graphs to

implement EPC, e.g., splitting user- and control-plane enti-
ties [17]–[19] or joining together the packet and service gate-
ways (PGW and SGW) [20], [21]. Our model and algorithms
work with any VNF graph, which allows us to model any
real-world service, including all implementations of vEPC.

A. Novelty

The closest works to ours, in terms of approach and/or
methodology, are [14], [15], [16], and [20].

However, [14], [15] and [20] model the assignment of
VNFs to physical servers as a generalized assignment problem,
a resource-constrained shortest path problem and a MILP
problem, respectively. This implies that either a server has
enough spare CPU capacity to offer a VNF, or it does not.
Our queuing model, instead, is the first to account for the
flexible allocation of CPU to the VNFs running on a host,
e.g., the fact that VNFs will work faster if placed at a scarcely-
utilized server. Furthermore, [14] and [20] have as objective
the minimization of costs and server utilization, respectively.
Our objective, instead, is to minimize the latency incurred
by requests of different classes, which changes the solution
strategy that can be adopted. Finally, [15] only considers
VNF chains instead of generic graphs, and does not account
for the possibility that the quantity of traffic changes across
processing steps.

The queuing model used in [16] is similar (in principle) to
ours; however, [16] does not address overlaps between VNF
graphs and only considers DAGs. Furthermore, in both [15]
and [16] no CPU allocation decisions are made, and the
objective is to minimize a global metric, ignoring the different
requirements of different service classes. Finally, the affinity-
based placement heuristic proposed in [16] neglects the inter-
host latencies and this, as confirmed by our numerical results
in Sec. VIII, can yield suboptimal performance.

III. SYSTEM MODEL

We model VNFs as M/M/1 queues, q ∈ Q, whose customers
correspond to service requests. The class each customer be-
longs to corresponds to the service each request is associated
to; we denote the set of such classes by K. The service
rate µ(q) of each queue q reflects the amount of CPU each
VNF is assigned to, and therefore influences the time it takes
to process one service request.

Arrival rates at queue q ∈ Q are denoted by λk(q). Note
that these values are class-specific, and reflect the amount of
traffic of different services. Class-specific transfer probabil-
ities P(q2|q1, k) indicate the probability that a customer of
class k enters VNF q2 after being served by VNF q1. We also
indicate with P(q|◦, k) the probability that a request of class k
starts its processing at VNF q.

Physical hosts are represented by elements h ∈ H. Each
host h has a finite CPU capacity κh. Host-specific κh values
account for both different capabilities and different hosts, and
the fact that some hosts may be assigned a low-power CPU
state [22] for energy-saving purposes. This implies that energy
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Fig. 1. Example 1: three service graphs, and six VNFs, corresponding to
the six queues, placed across three physical hosts. Dashed and dotted lines
represent the different paths that service requests can take.

constraints can be accounted for by properly setting the values
of the κh parameters.

Going from host h ∈ H to host l ∈ H entails a deterministic
network latency δ(h, l), which depends on the data transfer
time between the two hosts. Furthermore, the link between
hosts h and l has a finite capacity C(h, l).

For clarity, an example on the use of the above notation is
provided below.

Example 1: Assume that the network has to support
three services: video streaming, gaming, and vehicle col-
lision detection. Then the set of service classes is K =
{video, game, veh}. Each corresponds to a VNF graph, i.e.,
• video streaming: firewall – transcoder – billing;
• gaming: firewall – game server – billing;
• vehicle collision detection: firewall – collision detector.

Suspicious-looking packets belonging to the video streaming
and gaming services can further be routed through a deep
packet inspection (DPI) VNF. Hence, Q={firewall, transcoder,
billing, game server, collision detector, DPI}.

There are three physical hosts H = {h, l,m}, connected to
each other through links characterized by a latency δ and a link
capacity C. Fig. 1 illustrates the above quantities and shows
a possible VNF placement across the three hosts. Routing
can be deterministic, e.g., P(billing|transcoder, video)=1 or
it can be probabilistic, e.g., P(DPI|firewall, gaming)=0.1 and
P(game server|firewall, gaming)=0.9.

IV. PROBLEM FORMULATION AND COMPLEXITY

This section presents our joint problem formulation, in-
cluding both VNF placement and CPU allocation decisions.
For simplicity, we first formulate the problem for scenarios
where exactly one instance of each VNF is to be deployed in
the network; we will discuss the general case where multiple
instances of the same VNF can be deployed in Sec. VII.

Decisions and decision variables. We have two main de-
cision variables: a binary variable A(h, q) ∈ {0, 1} represents
whether VNF q ∈ Q is deployed at host h ∈ H, and a
real variable µ(q) expresses the amount of CPU assigned to

VNF q ∈ Q. Notice how µ(q) maps onto the service rate of
the corresponding queue.

System constraints. As mentioned above, we present our
model in the case where there is exactly one instance of each
VNF deployed in the system. This translates into imposing:∑
h∈HA(h, q) = 1, ∀q ∈ Q. Additionally, we have to honor

the computational capacity limits of physical hosts, i.e.,:∑
q∈Q

A(h, q)µ(q) ≤ κh, ∀h ∈ H. (1)

Arrival rates and system stability. Recall that input
parameters λk(q) express the rate at which new requests of
service class k arrive at queue q ∈ Q. We can then define an
auxiliary variable λ̂k(q), expressing the total rate of requests
of class k that enter queue q, either from outside the system
or from other queues. For any k ∈ K, we have:

λ̂k(q)=P(q|◦, k)
∑
q∈Q

λk,q +
∑

p∈Q\{q}

P(q|p, k)λ̂k(p). (2)

We can then define another auxiliary variable Λ(q), expressing
the total arrival rate of requests of any class entering queue q:

Λ(q) =
∑
k∈K

λ̂k(q).

Using Λ(q), we can impose system stability, requesting that,
for each queue, the arrival rate does not exceed the service
rate:

Λ(q) < µ(q), ∀q ∈ Q. (3)

In other words, each VNF should receive at least enough
CPU to deal with the incoming traffic. If additional CPU is
available at the host, it will be exploited to further speed up
the processing of requests.

Latency. This is our main metric of interest. It is due to two
components: the processing latency and the network transfer
latency.

The processing time, i.e., the time it takes for a service
request of class k to traverse VNF q is represented by an
auxiliary variable Rk(q). For FCFS (first come, first serve)
and PS (processor sharing) queuing disciplines, we have:

Rk(q) =
1

µ(q)− Λ(q)
, ∀q ∈ Q (4)

Note that the right-hand side of (4) does not depend on class k;
intuitively, this is because the queuing disciplines we consider
are unaware of traffic classes. The response times for other
queuing disciplines, including those accounting for priority
levels and/or preemption, cannot be expressed in closed form.
It is also worth stressing that present-day implementations of
multi-access edge computing (MEC) [2] are based on FIFO
discipline, and do not support preemption.

To compute the network latency that requests incur when
transiting between hosts, we first need the expected number
of times, γk(q), that a request of class k visits VNF q ∈ Q,
i.e.,

γk(q) = P(q|◦, k) +
∑

p∈Q\{q}

P(q|p, k)γk(p). (5)
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In the right-hand side of (5), the first term is the probability
that requests start their processing at queue q, and the second is
the probability that requests arrive there from another queue p.
Note that γk(q) is not an auxiliary variable, but a quantity that
can be computed offline given the transfer probabilities P.
Using γk(q), the network latency incurred by requests of
class k is:∑

q,r∈Q
γk(q)P(r|q, k)

∑
h,l∈H

δ(h, l)A(h, q)A(l, r). (6)

We can read (6) from left to right, as follows. Given a service
request of class k, it will be processed by VNF q for γk(q)
number of times. Every time, it will move to VNF r with
probability P(r|q, k). So doing, it will incur latency δ(h, l) if
q and r are deployed at hosts h and l, respectively (i.e., if
A(h, q) = 1 and A(l, r) = 1).

The average total latency of requests of the generic class k
is therefore given by:

Dk=
∑
q∈Q

Rk(q)+
∑
q,r∈Q

γk(q)P(r|q, k)
∑
h,l∈H

A(h, q)A(l, r)δ(h, l).

Link capacity. Given the finite link capacity C(h, l), which
limits the number of requests that move from any VNF at host
h to any VNF at host l,we have:∑

k∈K

∑
q,r∈Q

λ̂k(q)P(r|q, k)A(q, h)A(r, l)≤C(h, l). (7)

Constraint (7) contains a summation over all classes k and all
VNFs q, r ∈ Q, such that q is deployed at h and r is deployed
at l, as expressed by the A-variables. For each of such pair of
VNFs, λ̂k(q) is the rate of the requests of class k that arrive
at q. Multiplying it by P(r|q, k), we get the rate at which
requests move from VNF q to VNF r, hence from host h to
host l.

Objective. Dk defined above represents the average latency
incurred by requests of class k. In our objective function,
we have to combine these values in a way that reflects the
differences between such classes, most notably, their different
QoS limits. Thus, we consider for each class k the ratio of
the actual latency Dk to the limit latency DQoS

k , and seek to
minimize the maximum of such ratios:

min
A,µ

max
k∈K

Dk

DQoS
k

. (8)

Importantly, the above objective function not only ensures
fairness among service classes while accounting for their limit
latency, but it also guarantees that the optimal solution will
match all QoS limits if possible. More formally:

Property 1: If there is a non-empty set of solutions that
meet constraints (1)–(7) and honor the services QoS limits,
then the optimal solution to (8) falls in such a set.
The proof is omitted for brevity and can be found in [23].

Furthermore, when no solution meeting all QoS limits ex-
ists, the the solution optimizing (8) will minimize the damage
by keeping all latencies as close as possible to their limit
values.

A. Problem complexity

The problem of optimizing (8) subject to constraints (1)–
(7) includes both binary (A(h, q)) and continuous (µ(q)) vari-
ables. More importantly, constraint (7) and objective (8) are
nonlinear and non-convex, as both include products between
variables. The binary part of the problem is akin to the max-
cut problem in graph theory [24], which has been proven to
be NP-hard [25]. Indeed, our problem is even harder, as it
includes evaluating and optimizing a non-convex function.

Such overwhelming complexity rules out not only the
possibility to directly optimize the problem through a solver,
but also commonplace solution strategies based on relaxation,
i.e., allowing binary variables to take values anywhere in [0, 1].
Even if we relaxed the A(h, q) variables, we would still be
faced with a non-convex formulation, for which no algorithm
is guaranteed to find a global optimum. We therefore present
an efficient, decoupled solution strategy, leveraging on sequen-
tial decision making.

V. SOLUTION STRATEGY

Our solution strategy is based on decoupling the problems
of VNF placement and CPU allocation, and then sequentially
and iteratively making these decisions. We begin by presenting
our VNF placement heuristic, called MaxZ, in Sec. V-A, and
then discuss CPU allocation in Sec. V-B.

A. The MaxZ placement heuristic

As mentioned earlier, the two main sources of problem
complexity are binary variables and non-convex functions in
both objective (8) and constraint (7). Our VNF placement
heuristic walks around these issues by:

1) formulating a convex version of the problem;
2) solving it through an off-the-shelf solver;
3) computing, for each VNF q and host h, a score Z(h, q),

expressing how confident we feel about placing q in h;
4) considering the maximum score Z(h?, q?) and placing

VNF q? at host h?;
5) repeating steps 2–4 until all VNFs are placed.

The name of the heuristic comes from step 4, where we seek
for the highest score Z.

1) Steps 1–2: convex formulation: In order to make the
problem formulation in Sec. IV convex, first we need to get
rid of binary variables; specifically, we replace the binary
variables A(h, q) ∈ {0, 1} with continuous variables Ã(h, q) ∈
[0, 1].

We also need to remove the products between Ã-variables
(e.g., in (6) and (7)), by replacing them with a new variable. To
this end, for each pair of VNFs q and r and physical hosts h
and l, we introduce a new variable Φ(h, l, q, r) ∈ [0, 1], and
impose that:

Φ(h, l, q, r) ≤ Ã(h, q), ∀h, l ∈ H, q, r ∈ Q; (9)

Φ(h, l, q, r) ≤ Ã(l, r), ∀h, l ∈ H, q, r ∈ Q; (10)

Φ(h, l, q, r)≥Ã(h, q)+Ã(l, r)−1, ∀h, l ∈ H, q, r ∈ Q.
(11)
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The intuition behind constraints (9)–(11) is that Φ(h, l, q, r)
mimics the behavior of the product Ã(h, q)Ã(l, r): if ei-
ther Ã(h, q) or Ã(l, r) are close to 0, then (9) and (10)
guarantee that Φ(h, l, q, r) will also be close to zero; if both
values are close to one, then (11) allows also Φ(h, l, q, r) to
be close to one.

Another product between variables, i.e., a term in the
form A(h, q)µ(q), appears in (1). Following a similar ap-
proach, we introduce a set of new variables, ψ(h, q), express-
ing the fraction of h’s CPU that is allocated to q. We then
impose:

ψ(h, q) ≤ Ã(h, q), ∀h ∈ H, q ∈ Q; (12)∑
q∈Q

ψ(h, q) ≤ 1, ∀h ∈ H , (13)

which mimic (1). By replacing all products between Ã-
variables with a Φ-variable and all products between Ã- and
µ-variables with a ψ-variable, we obtain a convex problem,
which can efficiently be solved through commercial solvers.

2) Steps 3–4: Z-score and decisions: Let us assume that no
VNF has been placed yet. We then solve an instance of the
convex problem described in Sec. V-A1, and use the values
of the variables Ã(h, q) and ψ(h, q) to decide which VNF to
place at which host.

Recall that Ã(h, q) is the relaxed version of our placement
variable A(h, q), so we would be inclined to use that to
make our decision. However, we also need to account for
how much computational capacity VNFs would get, as ex-
pressed by ψ(h, q). If such a value falls below the threshold
Tψ(h, q) = Λ(q)

κh
, then VNF q may not be able to process the

incoming requests, i.e., constraint (3) may be violated.
To prevent this, we define our Z-score, i.e., how confident

we are about placing VNF q at host h, as follows:

Z(h, q) = Ã(h, q) + 11φ(h,q)≥Tψ(h,q) , (14)

where 11 is the indicator function. Recalling that Ã-values
are constrained between 0 and 1, favoring high values of
(14) means that we prefer a deployment that results in ψ-
values greater than the threshold, if such a deployment exists.
Otherwise, we make the placement decision based on the Ã-
values only.

Specifically, we select the host h? and VNF q? associated
with the maximum Z, i.e., h?, q? ← arg maxh∈H,q∈Q Z(h, q),
and place VNF q? in host h?. We fix this decision and repeat
the procedure till all VNFs are placed (i.e., we perform exactly
|Q| iterations).

We now present two example runs of MaxZ, for two
scenarios with different inter-host latencies.

Example 2: Consider a simple case with two hosts H =
{h1, h2} with the same CPU capacity κh = 10 requests/s,
two VNFs Q = {q1, q2}, and only one request class k
with λk = 1 requests/s. Requests need to subsequently
traverse q1 and q2. The inter-host latency δ(h1, h2) is set to

10 ms, while DQoS = 100 ms. Then, intuitively, the optimal
solution is to deploy one VNF per host.

We solve the problem in Sec. V-A1. After the first iteration,
we obtain Ã = [ 0.5 0.5

0.5 0.5 ], ψ = [ 0.5 0.5
0.5 0.5 ], and Z = [ 1.5 1.5

1.5 1.5 ] 2.
In such a case, using a tie-breaking rule, we place VNF q1 at
host h1. In the second iteration, we have Ã = [ 1 0.38

0 0.62 ], ψ =
[ 0.8 0.19

0 0.61 ], and Z = [ 2 1.38
0 1.62 ]. We ignore the entries pertaining

to VNF q1 that has been already placed and, since Z(h2, q2) >
Z(h1, q2), we deploy VNF q2 at host h2, which corresponds
to the intuition that, given the small value of δ, VNFs should
be spread across the hosts.

Example 3: Let us now consider the same scenario as in
Example 2, but assume a much longer latency δ(h1, h2) =
200 ms. The best solution will now be to place both VNFs at
the same host.

After the first iteration, we obtain Ã = [ 0.7 0.7
0.3 0.3 ], ψ =

[ 0.5 0.5
0.3 0.3 ], and Z = [ 1.7 1.7

1.3 1.3 ]. Again using a tie-breaking rule, we
place VNF q1 at host h1. In the second iteration, we have Ã =
[ 1 0.7
0 0.2 ], ψ = [ 0.6 0.4

0 0.2 ], and Z = [ 2 1.8
0 1.2 ]. We again ignore the

entries in the first column and, since Z(h1, q2) > Z(h2, q2),
we place VNF q2 at host h1, making optimal decisions.

B. CPU allocation

Once the MaxZ heuristic introduced in Sec. V-A provides
us with deployment decisions, we need to decide the CPU
allocation, i.e., the values of the µ(q) variables in the original
problem described in Sec. IV. This can be achieved simply by
solving the problem in (8) but keeping the deployment decision
fixed, i.e., replacing the A(h, q) variables with parameters
whose values come from the MaxZ heuristic. Indeed, we can
prove the following property.

Property 2: If the deployment decisions are fixed, then the
problem of optimizing (8) subject to (1)–(7) is convex.
The proof can be found in our technical report [23].

Property 2 guarantees that we can make our CPU allocation
decisions, i.e., decide on the µ(q) values, in polynomial time.
We can further enhance the solution efficiency by reducing the
optimization problem to the resolution of a system of equa-
tions, through the Karush-Kuhn-Tucker (KKT) conditions.

1) KKT conditions: In order to derive the KKT conditions
for the problem stated in Sec. IV, we need to re-write objective
(8) in standard form. This requires introducing an auxiliary
variable ρ representing the maximum Dk

DQoS
k

ratio, and imposing
that for each class k ∈ K:

ρ≥ 1

DQoS
k

∑
q∈Q

γk(q)

µ(q)− Λ(q)
+

∑
h1,h2∈H

νk(h1, h2)δ(h1, h2)


(15)

where νk(h1, h2) is the expected number of times that a
request of class k ever travels from host h1 to host h2. These
quantities depend upon the placement decisions A(h, q) and

2In all matrices, rows correspond to hosts and columns to VNFs.
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Fig. 2. The VNF graphs we consider in our performance evaluation, reflecting
real-world service implementations.

are input parameters to the CPU allocation problem. At this
point, the objective is simply to minimize ρ.

We also re-write constraints (1), (3) and (15) in normal
form, and associate to them the multipliers Mq , Mh and Mk

respectively. The resulting Lagrangian function is:

L = ρ+
∑
q∈Q

MqXq +
∑
h∈H

MhYh +
∑
k∈K

MkWk, (16)

where:
Xq = −µ(q) + Λ(q);

Yh =
∑
q∈Q

A(h, q)µ(q)− κh;

Wk=
∑
q∈Q

γk(q)

DQoS
k

1

µ(q)− Λ(q)
+

∑
h1,h2∈H

νk(h1, h2)
δ(h1, h2)

DQoS
k

−ρ.

The first necessary KKT condition, i.e., ∇rρµ(q)L = 0,
translates into the following equations:

∂

∂ρ
L = 0 ⇐⇒ 1−

∑
k∈K

Mk = 0. (17)

Furthermore, for each q ∈ Q, we have:

∂

∂µ(q)
L = 0 ⇐⇒ −Mq +

∑
h∈H

MhA(h, q)+ (18)

−
∑
k∈K

Mkγk(q)

DQoS
k

1

(µ(q)− Λ(q))
2 = 0

Finally, complementary slackness requires that either the in-
equality constraints are active, or the corresponding multipliers
are zero, i.e.,

MqXq = 0, ∀q ∈ Q, (19)
MhYh = 0,∀h ∈ H, (20)

MkWk = 0, ∀k ∈ K . (21)

Based on (19)–(21), the multipliers assume the following
meaning:
• Mq is zero for all stable queues, i.e., the queues fulfilling

the condition µ(q) > Λ(q);
• Mh is zero for all non-strained hosts, i.e., hosts used for

less than their CPU capacity κh;
• Mk is zero for all non-critical classes, i.e., classes for

which the Dk
DQoS
k

ratio is strictly lower than ρ.

We can now determine the global computational complexity
of our approach, including the VNF placement through the
MaxZ heuristic and the CPU allocation by optimizing (8).

Property 3: Our solution strategy, including the MaxZ
VNF placement heuristic in Sec. V-A and the CPU allocation
strategy in Sec. V-B has polynomial computational complexity.
The proof can be found in [23].

VI. SPECIAL CASE: FULL-LOAD CONDITIONS

In this section, we seek to further reduce the complexity of
the CPU allocation problem. Let us start from the Lagrange
multipliers derived earlier, and recall that we require stability,
i.e., Λ(q) < µ(q), hence Mq = 0 for all queues q ∈ Q;

Given the above and (18), we can write that, for each
queue q ∈ Q deployed at host h,

Mh =
∑
k∈K

Mk
γk(q)

Dmax
k

1

(µ(q)− Λ(q))
2 . (22)

Recalling the meaning of the multipliers, we can state the
following lemma and properties. Proofs are omitted for brevity
and reported in [23].

Lemma 1: If CPU assignment decisions are made optimizing
the objective (8), then there exists at least one critical class,
i.e., for which equality holds in (15).

Property 4: All hosts traversed by service requests of critical
classes are strained.

Property 5: VNFs deployed at a strained host serve at least
one critical class each.

In summary, there is at least one critical class, all the hosts
it traverses are strained, and each of the VNFs deployed on
the strained hosts (not only the ones serving requests of the
original critical class) serve at least one critical class. This can
lead to a cascade effect, as shown in Example 4.

Example 4: Consider the case in Fig. 1. By Lemma 1, at
least one class is critical; let us assume that such a class is
collision detection. From Property 4, all hosts traversed by
collision detection requests, i.e., hosts h and l, are strained.
Since host l is strained, from Property 5 it follows that each of
its VNFs serves at least one critical class. Since the transcoder
queue only serves the video class, the video class is critical.
Similarly, since the game server only serves the game class,
that class is critical as well. Finally, both video and game
classes traverse host m; therefore, by Property 4, that host is
critical as well.

In scenarios like the one in Example 4, where all classes
are critical and all hosts are strained, we have:∑

q∈Q

γk(q)

DQoS
k

1

µ(q)− Λ(q)
+

∑
h1,h2∈H

νk(h1, h2)
δ(h1, h2)

DQoS
k

= ρ

∀k ∈ K,∑
q∈Q

A(h, q)µ(q) = κh, ∀h ∈ H.

The above equalities can be combined with the KKT condi-
tions stated in Sec. V-B1, thus forcing Yh = 0 ∀h ∈ H and
Wk = 0 ∀k ∈ K. This greatly simplifies and speeds up the
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Fig. 3. Normalized latency as a function of inter-host latency δ for the chain (left), light mesh (center), heavy mesh (right) VNF graphs. Note that the y-axis
scale varies across the plots.
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Fig. 4. Breakdown of the total latency as a function of inter-host latency δ,
for the heavy mesh topology and the MaxZ deployment strategy.

process of finding the optimal CPU allocation values µ(q).
Even more importantly, the equalities above also simplify the
computation of the µ(q) values within each iteration of the
MaxZ heuristic described in Sec. V-A.

VII. MULTIPLE VNF INSTANCES

So far, we presented our system model and solution strategy
in the case where exactly one instance of each VNF has to be
deployed. This is not true in general; some VNFs may need
to be replicated owing to their complexity and/or load.

If the number Nq of instances of VNF q to be deployed
is known, then we can replace VNF q in the VNF graph
with Nq replicas thereof, labeled q1, q2, . . . qNq , each with
the same incoming and outgoing edges. With regard to the
Λ(q) requests/s that have to be processed by any instance
of VNF q, they are split among the instances. If f(q, i)
is the fraction of requests for VNF q that is processed by
instance qi (and thus

∑Nq
i=1 f(q, i) = 1), then instance qi gets

requests at a rate f(q, i)Λ(q). It is important to stress that once
the f(q, i) splitting fractions are known, then the resulting
problem can be solved with the approach described in Sec. V.

Establishing the f(q, i) values is a complex problem; in-
deed, straightforward solutions like uniformly splitting flows
(i.e., f(q, i) = 1

Nq
), are in general suboptimal. We therefore

resort to a pattern search [26] iterative approach.
Without loss of generality, we describe our approach in

the simple case Nq = 2. In this case, the splitting values
are f(q, 1) = f and f(q, 2) = 1−f . Given an initial guess f0,
an initial step ∆ and a minimum step ε < ∆, we proceed as
follows:

1) we initialize the splitting factor f to the initial guess f0;

2) using the procedure detailed in Sec. V, we compute the
objective value (8) for the splitting values f , f + ∆,
and f −∆;

3) if the best result (i.e., the lowest value of (8)) is obtained
for splitting value f + ∆ or f −∆, then we replace f
with that value and loop to step 2;

4) otherwise, we reduce ∆ by half;
5) if now ∆ is lower than ε, the algorithm terminates;
6) otherwise, we loop to step 2.

The intuition of the pattern-search procedure is similar, in prin-
ciple, to gradient-search methods. If we find that using f + ∆
or f−∆ instead of f produces a lower delay, then we replace
the current value of f with the new one; otherwise, we try
new f -values closer to the current one. When we are satisfied
that there are no better f -values further than ε from the current
one, the search ends.

Notice that in step 2 of our procedure we run the decision-
making procedure described in Sec. V; this implies that, once
we find the best value of f , we also know the best VNF
placement and CPU allocation decisions.

VIII. NUMERICAL RESULTS

Reference scenario. We consider a reference topology with
three hosts having CPU capacity κh = 10 requests/ms each.
The hosts are connected by links having latency δ that varies
between 50 ms and 400 ms. For simplicity, we disregard the
link capacity, i.e., we assume computation to be the bottleneck
in our scenario. Throughout our performance evaluation, we
benchmark the MaxZ placement heuristic in Sec. V-A against
the following alternatives:
• global optimum, found through brute-force search of all

possible deployments;
• greedy, where the number of used hosts is minimized,

i.e., VNFs are concentrated as much as possible;
• affinity-based [16], trying to place at the same host VNFs

with high transition probability between them.
After the VNF placement decisions are made, we compute
the optimal CPU allocation, i.e., the optimal µ(q) values, as
explained in Sec. V-B. It is important to remark that the CPU
allocation strategy is the same for all placement strategies.

We first focus on a single request class k, fix the arrival
rate to λk = 1 requests/ms, and compare the three VNF
graphs depicted in Fig. 2, ranging from a simple chain to a
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Fig. 5. Normalized latency (log scale) as a function of arrival rate λ for the chain (left), light mesh (center), heavy mesh (right) VNF graphs.
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Fig. 6. Multi-class scenario, heavy mesh graph: normalized latency vs. arrival rate λ for the low-latency (left), medium-latency (center), high-latency (right)
service classes. Note that the y-axis scale varies across the plots.
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Fig. 7. Multi-instance scenario: normalized latency vs. inter-host latency δ for the chain (left), light mesh (center), heavy mesh (right) VNF graphs. Note
that the y-axis scale varies across the plots.

complex meshed topology. Notice how in graphs (b) and (c)
requests can branch and merge, i.e., the number of requests
outgoing from a VNF does not match the number of incoming
ones. This is the case with several real-world functions; in
particular, the light and heavy mesh topologies are akin to
vEPC implementations where user- and control-plane entities
are joint [21] and split [18], [19].

Effect of the inter-host latency. Fig. 3 shows the average
global latency as a function of the inter-host latency δ, for
the VNF graphs presented in Fig. 2. We can observe that the
performance of Greedy is always the same regardless of δ, as
all VNFs are deployed at the same host. On the other hand,
the performance of Affinity-based is quite good for low values
of δ, but then quickly degrades, due to the fact that the affinity-
based heuristic disregards inter-host latency. As far as MaxZ is
concerned, it exhibits an excellent performance: it consistently
yields a substantially lower latency compared to Greedy and
Affinity-based, and is always very close to the optimum.

Fig. 4 focuses on the heavy mesh topology, and breaks
down the total latency yielded by MaxZ into its computation

and traversing latency components. Processing latency only
depends upon the VNF placement, while traversing latency
depends upon both the VNF placement (which determines how
many inter-host links are traversed) and the per-link latency δ.
When δ is low, MaxZ tends to spread the VNFs across all
available hosts, in order to assign more CPU. As δ increases,
the placement becomes more and more concentrated (thus
resulting in lower µ(q) values and higher processing times),
until, when δ is very high, all VNFs are placed at the same
host and there is no traversing latency at all.

Fig. 3 and Fig. 4 clearly illustrate the importance of flexible
CPU allocation. If we only accounted for the minimum CPU
required by VNFs, as in [14], [16], we could place all of them
in the same host, as the Greedy strategy does. This would
result, as we can see from the far right in Fig. 4, in high
processing times and two unused hosts.

Effect of arrival rate. We now fix the inter-host la-
tency to δ = 50 ms, and change the arrival rate λ be-
tween 0.1 requests/ms and 2 requests/ms; Fig. 5 summarizes
the latency yielded by the the placement strategies we study.
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A first observation concerns the Greedy strategy: since all
VNFs are placed in the same host, as λ increases, VNFs
receive an amount of CPU that is barely above the minimum
limit Λ(q). This, as per (4), results in processing times that
grow very large. The difference between the other placement
strategies tends to become less significant; intuitively, this is
because processing times dominate the total latency, and thus
spreading the VNFs as much as possible is always a sensible
solution. MaxZ still consistently outperforms Affinity-based,
and performs very close to the optimum.

Multi-class scenario. In Fig. 6, we move to a multi-
class scenario where |K| = 3 service classes share the same
VNF graph. The three classes have limit latencies DQoS of
10 ms, 45 ms, and 2 s, respectively corresponding to safety
applications (e.g., collision detection), real-time applications
(e.g., gaming), and delay-tolerant applications (e.g., video
streaming). Fig. 6 shows that all placement strategies result in
latencies that are roughly proportional to the limit ones. Also,
the relative performance of the placement strategies remains
unmodified – MaxZ outperforms Affinity-based and is close to
the optimum, while Greedy yields much higher latency. Notice
that, for very high values of δ, it is impossible to meet all QoS
constraints, i.e., Dk

DQoS
k

> 1 for at least one class k. In these

cases, MaxZ limits the damage by keeping the Dk
DQoS
k

ratios as
low as possible. It is also interesting to notice, in Fig. 6(center),
that the latency yielded by MaxZ is actually lower than the
optimum. This does not mean that MaxZ outperforms the
optimum, rather that it gives a lower latency to the medium-
latency, whose latency is closest to the QoS limit.

Multiple VNF instances. In Fig. 7, we drop the assumption
that there is only one instance of each VNF; specifically,
for VNF4 and VNF6 we allow two instances each. We can
immediately see, by comparing Fig. 7 to Fig. 3, that allow-
ing multiple VNF instances substantially decreases the total
latency. More interestingly, we can observe that MaxZ always
outperforms its alternatives, and is very close to the optimum,
except for some cases when the topology is very complex.

IX. CONCLUSION

We presented a model for SDN/NFV-based 5G networks
that is able to to capture all their main features, including
arbitrary VNF graphs, flexible CPU allocation to VNFs, and
the possibility to have multiple instances of the same VNF.
Leveraging this model, we presented a methodology, based on
the MaxZ placement heuristic, to make joint VNF placement
and CPU assignment decisions.

We combined MaxZ with a methodology to make optimal
CPU allocation decisions, requiring to solve a convex opti-
mization problem in the general case and a simple system of
equations in full-load conditions. By evaluating our solution
over several VNF graphs of different complexity, we consis-
tently found it to outperform state-of-the-art alternatives and
closely track optimal performance.

One direction for future work is enhancing the performance
of our heuristic in multi-instance scenarios, by improving the

pattern search approach we adopted and further customizing
it to our needs.
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