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Abstract—Compressive sensing (CS) for urban operations and
through-the-wall radar imaging has been shown to be successful in
fast data acquisition and moving target localizations. The research
in this area thus far has assumed effective removal of wall elec-
tromagnetic backscatterings prior to CS application. Wall clutter
mitigation can be achieved using full data volume which is, how-
ever, in contradiction with the underlying premise of CS. In this
paper, we enable joint wall clutter mitigation and CS application
using a reduced set of spatial-frequency observations in stepped
frequency radar platforms. Specifically, we demonstrate that wall
mitigation techniques, such as spatial filtering and subspace pro-
jection, can proceed using fewer measurements. We consider both
cases of having the same reduced set of frequencies at each of
the available antenna locations and also when different frequency
measurements are employed at different antenna locations. The
latter casts a more challenging problem, as it is not amenable to
wall removal using direct implementation of filtering or projection
techniques. In this case, we apply CS at each antenna individually
to recover the corresponding range profile and estimate the scene
response at all frequencies. In applying CS, we use prior knowl-
edge of the wall standoff distance to speed up the convergence of
the orthogonal matching pursuit for sparse data reconstruction.
Real data are used for validation of the proposed approach.

Index Terms—Compressive sensing (CS), through-the-wall
radar imaging, wall mitigation.

I. INTRODUCTION

THROUGH-the-wall radar imaging (TWRI) is an emerging

technology of rising interest with the objectives of sensing

through the wall and inside enclosed building structures using

electromagnetic (EM) waves. The sensing could determine

the building layouts, discern the intent of activities inside the

building, and detect, identify, and track moving targets [1]–[19].

In order to detect and localize targets, the clutter, caused by
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the front wall EM backscatterings, must be suppressed, or

significantly mitigated, and its effects on the imaged scene

accuracy and fidelity must be limited.

Behind-the-wall target returns are relatively weak compared

to front wall reflections and, therefore, stationary targets cannot

be generally detected without an effective removal of front

wall clutter. Attempting to remove the front wall reflections

from the received data by change detection [20]–[22] cannot be

performed for stationary scenes. This is because the subtraction

of consecutive imaging results would eliminate both target and

clutter.

In TWRI, backprojection is typically employed for image

formation. Recently, it has been shown that compressive sens-

ing (CS) and l1 norm reconstruction techniques can be applied,

in lieu of backprojection, to reveal the target positions behind

walls. In so doing, significant savings in acquisition time can

be achieved. Further, producing an image of the indoor scene

using few observations can be logistically important, as some of

the data measurements in space and frequency can be difficult,

or impossible to attain. In this paper, we apply joint CS and

wall mitigation techniques using reduced data measurements.

In essence, we address wall clutter mitigations in the context

of CS.

The application of CS for TWRI was first reported in [23]

and further developed in [24]–[26]. However, wall mitigation

in conjunction with CS has never been considered in these

references. That is, CS was applied to TWRI, already assuming

prior and complete removal of the front wall EM returns.

Without this assumption, strong wall clutter, which extends

along the range dimension, reduces the sparsity of the scene

and, as such, impedes the application of CS. If the reference

scene is known, then background subtraction can be performed

to remove wall clutter, thereby improve sparsity. Having access

to the background scene or reference data, however, is not

always possible in practical applications.

There are several approaches which successfully mitigate

the front wall contribution to the received signal. These ap-

proaches were originally introduced to work on the full data

volume and did not account for nor were they ever examined

under reduced data measurements. They can be categorized

into those based on estimating the wall parameters and others

incorporating either wall backscattering strength or invariance

with antenna location [9], [27]–[30]. In [9] and [27], a method

to extract the dielectric constant and thickness of the non-

frequency-dependent wall from the time-domain scattered field

was presented. The time-domain response of the wall was then

analytically modeled and removed from the data. In [28], a

0196-2892/$31.00 © 2012 IEEE
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spatial filtering method was applied to remove the dc compo-

nent corresponding to the constant-type radar return, typically

associated with the front wall. The third method, presented in

[29] and [30], was based not only on the wall scattering invari-

ance along the antenna locations but also on the fact that wall

reflections are relatively stronger than target reflections. As a re-

sult, the wall subspace is usually captured in the most dominant

singular values when applying singular value decomposition

(SVD) to the measured data matrix. The wall contribution can

then be removed by orthogonal subspace projection.

In this paper, we examine the performance of the spatial

filtering and subspace projection wall mitigation techniques in

conjunction with sparse image reconstruction. Only a small

subset of measurements is employed for both wall clutter reduc-

tion and image formation. The wall parameter estimation and

backscattering modeling technique is outside the scope of this

paper. Unlike the two other techniques, strong antenna ringing

hinders EM modeling and prevents performance validation

experimentally in our lab.

We consider two cases of frequency measurement distribu-

tions over antenna positions. In the first case, the same subset

of frequencies is used for each antenna. The other case allows

the frequencies to differ from one antenna to another. For the

subspace projection and spatial filtering methods, we show that

when the same subset of frequency measurements is used at

each antenna, those two methods maintain their proper per-

formance as their full-data set counterparts. CS techniques for

image reconstruction can then be applied with the same reduced

measurements but of much higher signal-to-clutter ratio. On the

other hand, using different frequencies at different antenna po-

sitions would impede the application of either method. This is

because the phase returns across the antenna elements would be

different, which deprives the wall mitigation algorithms of the

underlying assumption of spatial invariance of the wall clutter.

This problem is overcome in this paper by first reconstructing

the range profile, which is based on l1 norm minimization. This

is performed at each antenna individually. Then, the data of the

missing frequencies can be obtained by taking the FFT of the

reconstructed range profile at each antenna. A similar approach

was adopted in [25]; however, it required the fundamental

assumption of prior removal of wall EM scattering. Once the

phase returns corresponding to all original frequencies are

estimated, wall mitigation can proceed using spatial filtering,

subspace projection, or any other conventional wall mitigation

method.

In this paper, sparse data reconstruction is performed using

orthogonal matching pursuit (OMP) which provides fast l1 so-

lutions and is appropriate for stepped frequency radar imaging.

Since the target is behind the wall, the OMP can be modified

such that the iterations corresponding to the range up to the wall

can be combined. This allows a quicker inclusion of the target

into the reconstruction algorithm. We compare OMP with the

modified OMP and show the abilities as well as the challenges

of performing TWRI with arbitrary data measurements.

The remainder of this paper is organized as follows.

Section II reviews CS fundamental formulation. Section III

presents the through-the-wall signal model and provides

the fundamental equations of the sparsity-based scene

reconstruction. Section IV reviews the spatial filtering and sub-

space projection-based wall clutter mitigation techniques pre-

sented in [28] and [30], respectively. The joint wall mitigation

and CS for TWRI is discussed in Section V. Finally, Section VI

presents the performance results of the spatial filtering and the

subspace projection in conjunction with CS and sparse image

reconstruction using real-data collected in a semi-controlled

environment. Conclusions are drawn in Section VII.

II. COMPRESSIVE SENSING

CS theory states that a sparsely representable signal can

be reconstructed using fewer measurements compared to the

signal dimension [31]–[33]. For a brief review of the main

ideas underlying CS, consider a finite length, discrete time

signal x ∈ C
N , which can be expressed in an orthonormal basis

Ψ = [ψ1 ψ2 . . . ψN ] as follows:

x =

N
∑

i=1

ψiθi. (1)

In (1), the vector θ = [θ1 θ2 . . . θN ]T is a sparse vector, which

means that it only has K(K ≪ N) non-zero components.

Using matrix notation, we can express x as

x = Ψθ. (2)

Consider only Q = O(K log(N/K)) linear non-adaptive sam-

ples of the signal x, i.e., y̆ = Φx where matrix Φ ∈ C
Q×N

with K < Q ≪ N is the sub-sampling matrix. The sparse

signal θ can be then recovered from y̆ by solving the following

optimization problem:

min
θ

‖θ‖l1 subject to y̆ ≈ ΦΨθ (3)

where ‖θ‖l1 =
∑

i |θi|. Several methods are available in the

literature to solve the optimization problem in (3). The l1-

minimization is a convex problem and can be recast as a linear

program [34]. This is the foundation for the basis pursuit tech-

niques [33], [35], [36]. Alternatively, greedy methods, known

as matching pursuit (MP), can be used to solve (3) iteratively

[37], [38].

III. COMPRESSIVE SENSING FOR TWRI

In this section, we first present the through-the-wall signal

model, followed by a brief description of the sparsity-based

scene reconstruction, highlighting the key equations.

A. Through-the-Wall Signal Model

Consider a homogeneous wall of thickness d and dielectric

constant ǫ located along the x-axis, and the region to be imaged

located beyond the wall along the positive z-axis. Assume that

an N -element line array of transceivers is located parallel to the

wall at a standoff distance zoff , as shown in Fig. 1. Let the nth

transceiver, located at xn = (xn,−zoff ), illuminate the scene

with a stepped-frequency signal of M frequencies, which are

equispaced over the desired bandwidth ωM−1 − ω0

ωm = ω0 +m∆ω m = 0, . . . ,M − 1 (4)
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Fig. 1. Geometry on transmit of the equivalent 2-D problem.

where ω0 is the lowest frequency in the desired frequency

band and ∆ω is the frequency step size. The reflections by

the wall and any targets in the scene are measured only at the

same transceiver location. Assuming the scene contains P point

targets, the output of the nth transceiver corresponding to the

mth frequency is given by

y(m,n) = σw exp(−jωmτw) +

P−1
∑

p=0

σp exp(−jωmτp,n) (5)

where σw is the complex reflectivity of the wall, σp is the com-

plex reflectivity of the pth target, τw is the two-way traveling

time of the signal from the nth antenna to the wall, and τp,n
is the two-way traveling time between the nth antenna and the

target. It is noted that both the wall and target reflectivities are

assumed to be independent of frequency and aspect angle. The

propagation delay τw is given by

τw =
2zoff
c

(6)

where c is the speed of light in free-space. On the other hand,

τp,n is given by [11]

τp,n =
2lnp,air1

c
+

2lnp,wall

v
+

2lnp,air2
c

(7)

where v = c/
√
ǫ is the speed through the wall, and the variables

lnp,air1, lnp,wall, and lnp,air2 represent the traveling distances

of the signal before, through, and beyond the wall, respectively,

from the nth transceiver to the pth target.

An equivalent matrix-vector representation of the received

signals in (5) can be obtained as follows. Assume that the

region of interest is divided into a finite number of pixels

Nx ×Nz in crossrange and downrange, and the point tar-

gets occupy no more than P (≪ Nx ×Nz) pixels. Let r(k, l),
k = 0, . . . , Nx − 1, l = 0, . . . , Nz − 1 be a weighted indicator

function, which takes the value σp if the pth point target exists

at the (k, l)th pixel; otherwise, it is zero. With the values r(k, l)
lexicographically ordered into a column vector r of length

NxNz , the received signal corresponding to the nth antenna can

be expressed in matrix-vector form as

yn = Ψnr (8)

where Ψn is a matrix of dimensions M ×NxNz , and its mth

row is given by

[Ψn]m = [e−jωmτn,00 . . . e−jωmτn,NxNz ]. (9)

Considering the measurement vector corresponding to all N
antennas, defined as

y =
[

yT
0 yT

1 . . . yT
N−1

]T
(10)

the relationship between y and r is given by

y = Ψr (11)

where

Ψ =
[

ΨT
0 ΨT

1 . . . ΨT
N−1

]T
. (12)

B. Sparsity-Based Data Acquisition and Scene Reconstruction

The expression in (11) involves the full set of measurements

made at the N array locations using the M frequencies. For

a sparse scene, it is possible to recover r from a reduced

set of measurements. Consider y̆, which is a vector of length

Q1Q2(≪ MN) consisting of elements chosen from y as

follows:

y̆ = Φy = ΦΨr (13)

where Φ is a Q1Q2 ×MN matrix of the form

Φ = kron (ϑ, IQ1
) · diag

{

ϕ(0), . . . ,ϕ(N−1)
}

. (14)

In (14), “kron” denotes the Kronecker product, IQ1
is a Q1 ×

Q1 identity matrix, ϑ is a Q2 ×N measurement matrix con-

structed by either uniformly or randomly selecting Q2 rows of

an N ×N identity matrix, and ϕ(n), n = 0, 1, . . . , N − 1, is

a Q1 ×M measurement matrix constructed by uniformly or

randomly selecting Q1 rows of an M ×M identity matrix. We

note that ϑ determines the reduced antenna locations, whereas

ϕ(n) determines the reduced set of frequencies corresponding

to the nth antenna location. The number of measurements

Q1Q2 required to achieve successful CS reconstruction highly

depends on the coherence between Φ and Ψ. For the problem

at hand, Φ is the canonical basis and Ψ is similar to the

Fourier basis, which have been shown to exhibit maximal

incoherence [32]. Given y̆, we can recover r by solving the

following equation:

r̂ = argmin
r

‖r‖l1 subject to y̆ ≈ ΦΨr. (15)

In this paper, we consider MP to solve (15). More specifically,

we use the OMP, which is known to provide a fast and easy

to implement solution. Moreover, OMP is better suited when

frequency measurements are used [39]. OMP can be modified
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to take into account the specificities of through-the-wall radar

problems. Prior knowledge of the wall standoff distance in

the reconstruction algorithm can allow the OMP to reconstruct

the target pixels in fewer iterations and thus speed up the

convergence of the algorithm. A detailed description of the

proposed modification of the OMP is given in the Appendix.

In this paper, we consider five different measurement strate-

gies listed below. Reduced set of frequencies (antennas) means

using a smaller number of frequencies (antennas) than those

available.

(a) Measure all M frequencies at each of the N antenna

locations.

(b) Measure the same reduced set of frequencies for all N
antenna locations.

(c) Measure the same reduced set of frequencies for a re-

duced set of antenna locations.

(d) Measure a different set of reduced frequencies for each

of the N antenna locations.

(e) Measure a different set of reduced frequencies for a

reduced set of antenna locations.

Each of the above strategies has a corresponding Φ matrix as-

sociated with it. When the full set of measurements is available

[case (a)], Φ equals an identity matrix of dimensions MN ×
MN . If the same reduced set of frequency measurements are

used at each antenna location (case (b) and case (c)), then

ϕ(0) = ϕ(1) = . . . = ϕ and Φ takes the form

Φ = kron(IN ,ϕ) case(b) (16)

Φ = kron(ϑ,ϕ) case(c) (17)

where IN is an identity matrix of dimensions N ×N . For

case (d), in which all antenna positions are used but different

reduced frequency sets are emitted by different antennas, the

expression in (14) reduces to

Φ = diag
{

ϕ(0), . . . ,ϕ(N−1)
}

. (18)

The general expression presented in (14) corresponds to

case (e).

IV. WALL MITIGATION TECHNIQUES

In this section, we review the front wall clutter mitigation

techniques of spatial filtering and subspace projection presented

in [28] and [30], respectively.

A. Spatial Filtering Approach

From (5), we note that τw does not vary with the antenna

location since the array is parallel to the wall. Furthermore, as

the wall is homogeneous and assumed to be much larger than

the beamwidth of the antenna, the first term in (5) assumes the

same value across the array aperture. Unlike τw, the time delay

τp,n in (5) is different for each antenna location, since the signal

path from the antenna to the target is different from one antenna

to the other. For the mth frequency, the received signal is a

function of n via the variable τp,n. Therefore, we can rewrite

(5) as

yωm
(n) = vωm

+

P−1
∑

p=0

up,ωm
(n) (19)

where vωm
= σwe

−jωmτw and up,ωm
(n) = σpe

−jωmτp,n . Thus,

separating wall reflections from target reflections amounts to

basically separating constant from non-constant valued signals

across antennas, which can be performed by applying a proper

spatial filter [28] across the antenna array.

In its simplest form, the spatial filter, which removes, or

significantly attenuates, the zero spatial frequency component,

can be implemented as the subtraction of the average of the

radar return across the antennas. That is

ỹωm
(n) = yωm

(n)− ȳωm
(20)

where

ȳωm
=

1

N

N−1
∑

n=0

yωm
(n). (21)

It can be readily shown that the spatial frequency transform of

ỹωm
(n) is given by

Ỹωm
(κ) =

N−1
∑

n=0

ỹωm
(n) exp(−j2πκn/N)

=
N−1
∑

n=0

(yωm
(n)− ȳωm

) exp(−j2πκn/N)

=Yωm
(κ)−Nȳωm

δ[κ] (22)

where κ is the spatial frequency. As Yωm
(κ)|κ=0 equals Nȳωm

,

the filtered spatial spectrum Ỹωm
(κ) is 0 for κ = 0; otherwise,

Ỹωm
(κ) = Yωm

(κ). Thus, the subtraction operation removes

the single spatial frequency component (κ = 0) without chang-

ing other components. In practice, the spatial spectrum of the

wall reflections may have a non-zero width due to unstable

antenna path and/or local inhomogeneities, and a more sophis-

ticated filter with a wider stopband could be applied. How-

ever, care should be exercised to not alter the target response.

These issues are discussed in detail in [28]. The output spatial

filter data will have little or no contribution from the wall

reflections.

B. Subspace Projection

The signals received by the N antennas at the M frequencies

are arranged into an M ×N matrix, Y

Y = [y0 . . . yn . . . yN−1] (23)

where yn is the M × 1 vector containing the stepped-frequency

signal received by the nth antenna

yn = [y(0, n) . . . y(m,n) . . . y(M,n)]T (24)



LAGUNAS et al.: JOINT WALL MITIGATION AND COMPRESSIVE SENSING 895

with y(m,n) given by (5). The eigenstructure of the imaged

scene is obtained by performing the SVD of Y

Y = UΛVH (25)

where “H” denotes the Hermitian transpose, U and V are

unitary matrices containing the left and right singular vectors,

respectively, and Λ is a diagonal matrix containing the singular

values λ1, λ2, . . . , λN in decreasing order, i.e.,

Λ =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

λ1 . . . 0
...
. . .

...

0 . . . λN
...
. . .

...

0 . . . 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(26)

and λ1 ≥ λ2 ≥ . . . ≥ λN . Without loss of generality, the num-

ber of frequencies is assumed to exceed the number of antenna

locations, i.e., M > N .

The subspace projection method assumes that the wall re-

turns and the target reflections lie in different subspaces. There-

fore, the first K dominant singular vectors of the Y matrix are

used to construct the wall subspace

Swall =

K
∑

i=1

uiv
H
i . (27)

The subspace orthogonal to the wall subspace is

S⊥
wall = I− SwallS

H
wall (28)

where I is the identity matrix. To mitigate the wall returns, the

data matrix Y is projected on the orthogonal subspace

Ỹ = S⊥
wallY. (29)

V. JOINT WALL MITIGATION AND CS FOR TWRI

In this section, we consider joint wall mitigation and sparsity-

based scene reconstruction under the various measurement

strategies enumerated in Section III.

A. Same Set of Reduced Frequencies at Each

Antenna Location

Both spatial filtering and subspace projection methods for

wall clutter reduction rely on the fact that the wall reflections

are the same for all antenna locations. When the same set of

frequencies is employed for all employed antennas, i.e., cases

(a), (b), and (c), the condition of spatial invariance of the wall

reflections is not violated. This permits direct application of the

wall clutter mitigation methods as a preprocessing step to the l1
norm-based scene reconstruction of (15).

B. Different Set of Reduced Frequencies at Each

Antenna Location

Cases (d) and (e) use different sets of reduced frequencies

for the various antenna locations, resulting in different wall

reflection phase returns across the antenna elements. This

would deprive the wall mitigation algorithms of the underlying

assumption of spatial invariance of the wall clutter, thereby

rendering the direct application of the wall mitigation methods

ineffective. Therefore, cases (d) and (e) require additional data

processing before the wall clutter mitigation techniques could

be applied. More specifically, the range profile at each antenna

location is first reconstructed through l1 norm minimization

using the reduced frequency set. Then, the Fourier transform

of each reconstructed range profile is taken to recover the full

frequency data measurements at each antenna location. Direct

application of the wall mitigation techniques can then pro-

ceed, followed by the scene reconstruction. Mathematically, the

problem can be formulated as follows. Assuming the range of

interest is divided into M equally spaced gates (range resolution

cells), the relationship between the nth received signal and the

target locations can be expressed as

yn = Asn (30)

where sn is the discrete range profile corresponding to the nth

antenna location, yn is the measured data corresponding to all

M frequencies at the nth antenna, and A is an M ×M matrix

whose lth column is given by

Al =
[

e−jω0

2ldr
c . . . e−jωM−1

2ldr
c

]T

l = 0, 1, . . . ,M − 1

(31)

with dr = c/2(ωM−1 − ω0) being the radar range resolution.

Note that the dimension of sn is equal to the number of range

gates, whereas the dimension of yn is equal to the number of

frequencies.

Consider y̆n, which is a vector of length Q(≪ M) consisting

of elements chosen from yn as follows:

y̆n = ϕ(n)yn = ϕ(n)Asn (32)

where the Q×M matrix ϕ(n) is constructed in the same

manner as in (14). Given y̆n, we can recover sn by solving the

following equation:

ŝn = argmin
sn

‖sn‖l1 subject to y̆n ≈ ϕ(n)Asn. (33)

As in the case of (15), exploitation of the prior knowledge

about the standoff distance from the wall can speed up the

convergence of the conventional OMP (see the Appendix).

Once the range profile ŝn has been obtained, we can recover

all M frequency measurements at the nth antenna location as

ŷn = Aŝn. Then, the wall mitigation methods can be readily

applied. Finally, backprojection can be used to reconstruct the

image of the scene [23]. However, since the wall clutter has

been suppressed, the l1 minimization-based scene reconstruc-

tion can be applied, in lieu of backprojection, to improve the

target-to-clutter ratio (TCR).
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Fig. 2. Backprojection images of the scene. (a) No preprocessing. (b) After
background subtraction.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

A through-the-wall wideband synthetic aperture radar system
was set up in the Radar Imaging Lab at Villanova Univer-
sity. A 67-element line array with an inter-element spacing of
0.0187 m, located along the x-axis, was synthesized parallel
to a 0.14-m-thick solid concrete wall of length 3.05 m and
at a standoff distance equal to 1.24 m. A stepped-frequency
signal covering the 1–3 GHz frequency band with a step size of
2.75 MHz was employed, providing a range resolution dr of
0.075 m. Thus, at each scan position, the radar collects 728
frequency measurements. A vertical metal dihedral was used
as the target and was placed at (0,4.4)m on the other side of
the front wall. The size of each face of the dihedral is 0.39 m
by 0.28 m. The empty scene without the dihedral target present
was also measured for comparison. The region to be imaged is
chosen to be 4.9 m × 5.4 m centered at (0, 2.7)m and divided
into 33 × 73 pixels, respectively. The back and the side walls
of the room were covered with RF absorbing material to reduce
clutter. However, Section VI-E shows the effectiveness of the
proposed techniques for the case where the back wall is not
covered with absorbing material.

B. Effect of the Wall Clutter

Fig. 2(a) shows the image corresponding to the measured
scene obtained with backprojection applied directly to the full
raw data set. In this figure and all subsequent figures in this
paper, we plot the image intensity with the maximum intensity
value in each image normalized to 0 dB. The true target position
is indicated with a solid red rectangle. With the availability of
the empty scene measurements, background subtraction gen-
erates an image where the target can be easily identified, as
shown in Fig. 2(b). Fig. 3(a) shows the result obtained with
l1 norm reconstruction using the full raw data set, while the
l1 norm reconstruction result after background subtraction is
provided in Fig. 3(b). The classic OMP was used in both cases.
The number of iterations of the OMP is usually associated with
the level of sparsity of the scene. For this particular example,
the number of OMP iterations was set to 100 for Fig. 3(a) and
5 for Fig. 3(b). Since access to the background scene is not
available in practice, it is evident from Fig. 3(a) that the wall
mitigation techniques must be applied, as a preprocessing step,
prior to CS in order to detect the targets behind the wall. As a

Fig. 3. l1 norm reconstruction obtained considering full data set. (a) No
preprocessing—classic OMP. (b) After background subtraction—classic OMP.

TABLE I
TCR: BACKGROUND SUBTRACTION—FULL DATA

performance measure, we use the TCR [28], which is defined
as the ratio between the maximum pixel magnitude value of the
target to the average pixel magnitude value in the clutter region

TCR = 20 log10

(

max(k,l)∈At
|r(k, l)|

1
Nc

∑

(k,l)∈Ac
|r(k, l)|

)

(34)

where At is the target area, Ac is the clutter area, and Nc

is the number of pixels in the clutter area. The target area is
manually selected in close vicinity to the target (9 pixels in all).
We consider two types of clutter areas. Type I clutter area is
made up of all pixels, excluding the target area and including
the wall area, whereas Type II clutter area is the same as Type I,
but without considering the wall as a clutter. Figs. 2 and 3
show the target and wall clutter areas, indicated by solid and
dashed rectangles, respectively. Table I shows the TCR values
for the background subtracted images. As expected, the TCR is
improved when using l1 reconstruction over backprojection.

C. Wall Clutter Mitigation

1) Case (a)—Full Sets of Frequencies and Antenna Loca-

tions: The space-frequency sampling pattern corresponding to

case (a) is shown in Fig. 4, where the vertical axis represents

the antenna location, and the horizontal axis represents the

frequency. The filled boxes represent the sampled data. If

the full data set of 728 frequencies and 67 antenna locations

are available, the preprocessing based on the spatial filtering

method defined in (20) and the subspace projection method

defined in (29) results in the backprojection images shown in

Fig. 5(a) and (b), respectively. In general, the dimension of

the wall subspace depends on the wall-type and building ma-

terial. However, [40] showed that, for a frequency-independent

homogeneous wall, the wall subspace is 1-D. Thus, in all sub-

space projection-based method results presented in this section,

the first dominant singular vector (K = 1) of the data matrix Y
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Fig. 4. Case (a)—Illustration of an example of the pattern of the conventional
configuration.

Fig. 5. Case (a) backprojection images. (a) Spatial filtering. (b) Subspace
projection.

is used to construct the wall subspace. Although the wall

return has not been completely suppressed in both Fig. 5(a)

and (b), its shadowing effect has been sufficiently reduced,

allowing the detection of the target. Fig. 6(a) and (b) show the

l1 reconstructed images obtained with the classic OMP for the

spatial filtering and the subspace projection-based methods, re-

spectively. Finally, Fig. 6(c) and (d) depict the l1 reconstructed

images obtained using the modified OMP instead of the classic

OMP. The classic OMP required 25 iterations to include the

target in the reconstructions in Fig. 6(a) and (b), whereas the

scene reconstructions using the modified OMP in Fig. 6(c)

and (d) required only five iterations. Therefore, exploitation

of the prior knowledge about the standoff distance from the

wall resulted in an 80% reduction in the number of iterations

required by the OMP. The TCRs of the aforementioned figures

are provided in Table II. We observe from Table II that both

classic and modified OMP-based CS reconstructions provide

an improvement over the corresponding backprojection results.

However, in case of modified OMP, the reduction in the number

of iterations is achieved at the expense of the TCR for Type I

clutter, which is reduced due to an increase in the wall clutter

residuals compared to classic OMP reconstruction. Further,

comparing the TCR values in Tables I and II, we observe

that, as expected, background subtraction provides higher TCR

compared with the wall mitigation results.

Fig. 6. Case (a) l1 reconstruction-based imaging results. (a) Spatial
filtering—classic OMP. (b) Subspace projection—classic OMP. (c) Spatial
filtering—modified OMP. (d) Subspace projection—modified OMP.

2) Case (b)—Same Reduced Frequency Set for All Antenna

Locations: Instead of using full frequency data, we first use

146 uniformly selected frequencies at each of the 67 antenna

locations, which represent 20% of the total data volume. The

corresponding space-frequency sampling pattern is shown in

Fig. 7(a). Applying the spatial filtering and the subspace projec-

tion methods to the reduced data set provides the backprojection

images shown in Fig. 8(a) and (b), respectively, which are

degraded compared to their CS counterparts, shown in Fig. 9.

Both classic OMP and modified OMP were used to recover the

scene image using only 20% of the frequency measurements.

The l1 minimization-based reconstructed images using classic

OMP are plotted in Fig. 9(a) and (b) for the spatial filtering

and the subspace projection methods, respectively, where the

number of iterations was set to 25. The corresponding results

using the modified OMP with the number of iterations set to 5

are shown in Fig. 9(c) and (d). It is evident that the two wall mit-

igation techniques maintain their proper performance when the

same subset of uniformly selected frequencies is considered at

each antenna location. This statement is confirmed by the com-

parison of the TCR values for case (b), provided in Table III,

and the TCR values for case (a) in Table II. Alternatively, the

reduced set of frequencies can be chosen randomly instead

of a uniform selection, as shown in Fig. 7(b). Backprojection

and CS methods are applied to the reduced data comprising

20% randomly selected spatial-frequency measurements, main-

taining the same set of reduced frequencies at each antenna

location. In this case, and for all subsequent random selection-

based imaging, each imaged pixel is the result of averaging

100 runs, with a different random selection for each run. The

results for the random selection are summarized in Table III.

The TCR values provided in Table III suggest that, compared to

uniform selection, the random frequency selection reduces the
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TABLE II
TCR: CASE (A)

Fig. 7. Case (b)—Illustration of an example of subsampling pattern of the conventional configuration. (a) Uniform subsampling. (b) Random subsampling.

Fig. 8. Case (b) backprojection images with uniformly selected frequencies.
(a) Spatial filtering. (b) Subspace projection.

quality of the backprojection images while preserving the CS

reconstructed image quality. Similar to the uniform selection,

the performance of the modified OMP is comparable to that

of the classic OMP for Type II clutter, while it degrades for

Type I clutter.

3) Case (c)—Same Set of Reduced Frequencies for a Re-

duced Set of Antenna Locations: The space-frequency sam-

pling pattern for case (c) is shown in Fig. 10(a) for uniform

sampling and in Fig. 10(b) for random sampling. We first con-

sider 146 uniformly selected frequencies (20% of 728) and 34

uniformly selected array locations (51% of 67), which collec-

tively represent 10.2% of the total data volume. As in case (b),

spatial filtering is implemented by subtraction of the average

value of (20) across the thinned array for each of the reduced

number of frequencies. The subspace projection-based method

is applied, in this case, to a reduced dimension Y matrix,

Fig. 9. Case (b) l1 reconstruction-based imaging results. (a) Spatial
filtering—classic OMP. (b) Subspace projection—classic OMP. (c) Spatial
filtering—modified OMP. (d) Subspace projection—modified OMP.

146 × 34 instead of 146 × 67 for case (b) and 728 × 67 for

case (a). The backprojection images corresponding to spatial

filtering and subspace projection methods are shown in

Fig. 11(a) and (b), respectively. The l1 norm reconstructed

images obtained with classic OMP are shown in Fig. 12(a)

and (b) for the spatial filter and subspace projection ap-

proaches, respectively, which have less wall clutter residuals
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TABLE III
TCR: CASE (B)

Fig. 10. Case (c)—Illustration of an example of subsampling pattern of the conventional configuration. (a) Uniform subsampling. (b) Random subsampling.

Fig. 11. Case (c) backprojection images. (a) Spatial filtering. (b) Subspace
projection.

compared to the corresponding modified OMP images, shown

in Fig. 12(c) and (d). It is clear that, even when both

spatial and frequency observations are reduced, the CS re-

sults for both classic and modifed OMP provide better

and cleaner images than those using backprojection. The

advantage of CS over backprojection is evident in Table IV,
where the TCR for the uniform sampling are illustrated. As
expected, the performance of the modified OMP is comparable
to that of the classic OMP for Type II clutter, while it degrades
for Type I clutter. The important point to note here is that the

Fig. 12. Case (c) l1 reconstruction-based imaging results. (a) Spatial
filtering—classic OMP. (b) Subspace projection—classic OMP. (c) Spatial
filtering—modified OMP. (d) Subspace projection—modified OMP.
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TABLE IV
TCR: CASE (C)

Fig. 13. Case (d)—Illustration of an example of random subsampling pattern
of the conventional configuration.

direct application of wall mitigation methods is robust to the
reduction of the spatial domain samples. The random spatial-
frequency measurements of Fig. 10(b) can alternatively be
used for CS-based imaging. The corresponding TCR values are
listed in Table IV, which indicate that, similar to the uniform
selection, the performance of the modified OMP is comparable
to that of the classic OMP for Type II clutter, while it degrades
for Type I clutter under random selection.

4) Case (d)—Different Sets of Reduced Frequencies for All

Antenna Locations: As discussed in the introduction, having
the same frequency observations may not always be possible.
Use of different sets of reduced frequencies at different antenna
locations would lead to different wall reflection phase returns
across the antennas, rendering the wall mitigation methods
ineffective. The method proposed in Section V-B combats this
shortcoming by recovering all the frequency measurements at
each antenna location through l1 norm range profile recon-
struction. Both classic OMP and modified OMP were used to
recover the range profiles using only 20% of the frequency
measurements. The space-frequency sampling pattern for case
(d) is shown in Fig. 13. Fig. 14(a) and (c) shows the back-
projection images obtained after applying spatial filtering to
the full data recovered from the reconstructed range profiles
using classic OMP and modified OMP, respectively. Fig. 14(b)

Fig. 14. Case (d) backprojection images with 20% frequency measure-
ments. (a) Spatial filtering—range profiles with classic OMP. (b) Subspace
projection—range profiles with classic OMP. (c) Spatial filtering—range pro-
files with modified OMP. (b) Subspace projection—range profiles with modi-
fied OMP.

and (d) shows the corresponding results when the subspace
projection method was used for wall clutter mitigation. We
observe that the target has not been localized in these images,
which is in contrast to case (b), wherein target localization was
successfully achieved with 20% data volume. This is because,
in case (d), the various range profiles are reconstructed prior
to the application of wall clutter mitigation techniques. As the
sparsity in range is lower in the presence of wall clutter, the
number of ob served frequencies required for sparse reconstruc-
tion of the range profiles is expected to be higher compared
with case (b). Next, the number of frequencies used for range
profile reconstruction was increased to 40%. The corresponding
backprojection images for classic OMP and modified OMP
based range profile reconstructions are provided in Fig. 15(a)
and (c), respectively, for the spatial filtering approach, and in
Fig. 15(b) and (d), respectively, for the subspace projection.
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Fig. 15. Case (d) backprojection images with 40% frequency measure-
ments. (a) Spatial filtering—range profiles with classic OMP. (b) Subspace
projection—range profiles with classic OMP. (c) Spatial filtering—range
profiles with modified OMP. (b) Subspace projection—range profiles with
modified OMP.

TABLE V
TCR: CASE (D)—BACKPROJECTION USING l1

RECONSTRUCTED RANGE PROFILES

The classic OMP required 100 iterations for each range profile
reconstruction. On the other hand, the modified OMP needed
only 70 iterations as all range gates from 0 m to 1.4 m were
reconstructed in the first iteration, thereby providing a 30%
reduction in the number of iterations compared to classic OMP.
The backprojection images for both classic and modied OMP-
based results appear very similar. This observation is confirmed
by the corresponding TCRs provided in Table V. Comparing
the TCR values in Table V with the backprojection TCR values
in Table III under random frequency selections for case (b),
we note that the cost for not using the same set of reduced
frequency measurements across all antennas manifests itself
in terms of a reduced TCR. This loss in quality is due to the
fact that the individual range profile reconstructions are not
perfect. As a result, there are discrepancies in the recovered
full-frequency data compared to the measured full-frequency
data, as demonstrated in Figs. 16 and 17 for the first and the
middle antenna positions, respectively. Finally, the l1 norm
image reconstruction was performed, in lieu of backprojection,
on the full frequency data recovered from the modified OMP-
based reconstructed range profiles. Fig. 18(a) and (b) shows

Fig. 16. Comparison between the original data vector y1 and the recovered
data vector from the range profile ŷ1. (a) Modulus of y1. (b) Modulus of ŷ1.
(c) Phase of y1. (d) Phase of ŷ1.

Fig. 17. Comparison between the original data vector y34 and the recovered
data vector from the range profile ŷ34. (a) Modulus of y34. (b) Modulus of
ŷ34. (c) Phase of y34. (d) Phase of ŷ34.

the images reconstructed using classic OMP corresponding to
spatial filtering and subspace projection methods, respectively.
Fig. 18(c) and (d) shows the l1 reconstruction through mod-
ified OMP for spatial filtering and subspace reconstruction-
based preprocessing, respectively. In this case, the classic OMP
required 100 iterations to ensure the inclusion of the target
into the reconstructed image, while the modified OMP needed
70 iterations to achieve the same objective. We observe from
Fig. 18 that both classic OMP and modified OMP are able to
localize the target. The image quality of the l1 reconstructions
are compared in Table VI by means of the TCR, which approxi-
mately assumes the same values for classic and modified OMP.
To reiterate, the penalty for not using the same set of reduced
frequency measurements across the antennas is two-fold. First,
the reduction in data volume is lower compared to that of case
(b) in which the same set of reduced frequencies is employed
at each antenna location. Second, despite the use of a larger
amount of data in case (d), the corresponding TCR is lower
than that for case (b).

5) Case (e)—Different Sets of Reduced Frequencies for a

Reduced Set of Antenna Locations: This is the most general
case, where both spatial and frequency measurements are re-
duced and the employed frequency sets differ from one an-
tenna location to the other. The corresponding space-frequency
sampling pattern is shown in Fig. 19. We randomly selected
51% of the antenna locations and randomly chose 40% of the
frequencies at each selected antenna location. Therefore, the
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Fig. 18. Case (d) l1 reconstruction-based imaging results obtained using
the range profiles with modified OMP. (a) Spatial filtering—classic OMP.
(b) Subspace projection—classic OMP. (c) Spatial filtering—modified OMP.
(d) Subspace projection—modified OMP.

TABLE VI
TCR: CASE (D)—l1RECONSTRUCTED IMAGES USING THE

RANGE PROFILE OBTAINED WITH MODIFIED OMP

reduced data set considered in this case represents 20.3% of
the total data volume. Full frequency data measurements were
first recovered from both the classic OMP and modified OMP-
based reconstructed range profiles at each considered antenna
location. Wall mitigation methods were then applied, followed
by backprojection for image formation. The corresponding
backprojection images for classic OMP and modified OMP
are provided in Fig. 20(a) and (c), respectively, for the spatial
filtering approach, and in Fig. 20(b) and (d), respectively, for
the subspace projection approach. We observe that, despite the
use of fewer antenna locations than case (d), the target has
been successfully localized in all images. The TCRs of the
backprojection images in Fig. 20, summarized in Table VII,
indicate a slight deterioration in image quality compared to that
under case (d). Next, the l1 norm reconstruction procedure was
employed for image formation using the full frequency data
measurements recovered through modified OMP at the selected
antennas. Fig. 21(a) and (b) shows the images reconstructed us-
ing classic OMP corresponding to spatial filtering and subspace
projection methods, respectively, while Fig. 21(c) and (d) shows
the l1 reconstruction through modified OMP for spatial filtering
and subspace reconstruction-based preprocessing, respectively.

Fig. 19. Case (e)—Illustration of an example of random subsampling pattern
of the conventional configuration.

Fig. 20. Case (e) backprojection images with 40% frequency measure-
ments. (a) Spatial filtering—range profiles with classic OMP. (b) Subspace
projection—range profiles with classic OMP. (c) Spatial filtering—range pro-
files with modified OMP. (d) Subspace projection—range profiles with modi-
fied OMP.

Similar to case (d), modified OMP provides a 30% reduction
in the number of iterations required for image reconstruction.
The target is visible in both classic and modified OMP-based
reconstructed images, albeit with relatively more residual wall
clutter for the modified OMP recovered image. These observa-
tions are validated by the corresponding TCR values provided
in Table VIII.

D. Summary of the Results

A recapitulation of the experimental results is provided in
this section. The first part of the experimental results showed
that the front wall, which is a highly reflective and attenuative
medium, presents the main difficulty in revealing behind-the-
wall stationary targets. Background subtraction achieves the
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TABLE VII
TCR: CASE (E)—BACKPROJECTION USING l1

RECONSTRUCTED RANGE PROFILES

Fig. 21. Case (e) l1 reconstruction-based imaging results obtained using
the range profiles with modified OMP. (a) Spatial filtering—classic OMP.
(b) Subspace projection—classic OMP. (c) Spatial filtering—modified OMP.
(d) Subspace projection—modified OMP.

TABLE VIII
TCR: CASE (E)—l1RECONSTRUCTED IMAGES USING THE

RANGE PROFILE OBTAINED WITH MODIFIED OMP

best results in removing wall returns. It provides the highest
TCR (24.6 dB in backprojection image) compared with the
spatial filtering, and the subspace projection wall mitigation
results, which for the non-compressive case, provide TCR
of approximately 8 dB in backprojection images. Access to
the background scene is not typically available in practice.
Thus, spatial filtering, subspace projection, or any other wall
mitigation technique must be applied. The second part of the
experimental results dealt with the front wall clutter mitigation
in conjunction with CS. The results for both spatial filtering and

Fig. 22. Backprojection images of the scene without absorbing material in the
back wall of the room. (a) No preprocessing. (b) After background subtraction.

subspace projection methods demonstrated that target visibility
and high TCR can be achieved when the same subset of
frequencies is considered at each antenna location. This is due
to the fact that the condition of spatial invariance of the wall
reflections required by both spatial filtering and subspace pro-
jection methods is not violated when the same set of frequencies
is employed at each antenna location. Occasionally, the same
operating frequencies might not be available at each antenna
position. In this case, the proposed preprocessing step permits
the subset of frequencies to differ from one antenna location to
another. However, this is accomplished at the expense of target
visibility and TCR degradation; the latter being approximately
2 dB in backprojection images.

E. Effect of the Back Wall Reflections

In order to demonstrate the robustness of the proposed meth-
ods in a less controlled environment, a new through-the-wall
experiment was set up in the Radar Imaging Lab at Villanova
University. In this experiment, the side walls were covered
with the absorbing material, but the 0.31-m-thick reinforced
concrete back wall was left uncovered. For imaging, a 93-
element linear array with an interelement spacing of 0.02 m
was used, which was synthesized using a single horn antenna.
The scene was illuminated with a stepped frequency signal of
2-GHz bandwidth centered at 2 GHz, using 641 frequencies
with a step size of 3.125 MHz. A 0.2-m-thick solid concrete
block wall was placed 3.13 m in front of and parallel to the
antenna baseline. The distance between the back face of the
front wall and the front of the back wall is 3.76 m. The same
metal dihedral used for the previous experiments was used as a
target and was placed at (0.3,5.2)m. The region to be imaged is
chosen to be 4.9 m × 6.4 m centered at (0,4.3)m and divided
into 33 × 87 pixels, respectively. The backprojected images
using the full data measurements are shown in Fig. 22. In
Fig. 22(a), no preprocessing was applied to remove the front
wall reflections, whereas in Fig. 22(b), background subtraction
was applied. Fig. 22 confirms the need to reduce the front wall
clutter in order to detect the presence of the target. Next, we
applied the same space-frequency sampling pattern for case (c),
which is shown in Fig. 10(a). There are 65 uniformly selected
frequencies (20% of 641) and 47 uniformly selected array lo-
cations (51% of 93). The backprojection images corresponding
to spatial filtering and subspace projection methods are shown
in Fig. 23(a) and (b), respectively. They demonstrate that both
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Fig. 23. Case (c) backprojection images of the scene without absorbing
material in the back wall of the room. (a) Spatial filtering. (b) Subspace
projection.

Fig. 24. Case (c) l1 reconstruction-based imaging results of the scene without
absorbing material in the back wall of the room. (a) Spatial filtering—classic
OMP. (b) Subspace projection—classic OMP.

approaches are effective in reducing the wall reflections with-
out significantly compromising the target image. The l1 norm
reconstructed images obtained with classic OMP are shown in
Fig. 24(a) and (b) for the spatial filter and subspace projection
approaches, respectively, which have less wall clutter residuals
compared to the corresponding backprojected images.

VII. CONCLUSION

In this paper, we examined the performance of joint mitiga-
tion of the wall backscatterings and sparse scene reconstruction
in TWRI applications. We focused on two leading methods
for combating wall clutter, namely, spatial filtering and sub-
space projections. Using real data, collected in a laboratory
environment with a stepped-frequency radar, we showed that
these two methods maintain proper performance when act-
ing on reduced data measurements. We considered two cases
of frequency measurement distributions over antennas. Direct
application of wall clutter mitigation methods was effective
when the same frequencies were used for each antenna. For
the cases where different frequencies were used at different
antennas, we reconstructed the sparse range profiles with a CS
approach applied at each antenna. The signal responses of all
frequencies were then generated using the Fourier transform. In
so doing, signal processing techniques, such as spatial filtering
and subspace projections, can be applied to capture and remove
the wall EM returns. The proposed method is flexible in the
sense that it permits the use of a different set of frequencies at
each antenna location. Subsequent sparse reconstruction using

the much reduced wall-clutter data successfully detected and
accurately localized the targets. In applying CS, we used prior
knowledge of the standoff distance from the wall to speed up
the convergence of the OMP for sparse data reconstruction.

APPENDIX

MODIFIED OMP

Prior knowledge of the wall standoff distance can be in-
corporated into the l1 reconstruction algorithm to achieve fast
convergence. More specifically, the classic OMP is modified to
allow the algorithm to reconstruct all pixels in the image up
to and including the wall, in a single iteration. The proposed
modified OMP is described in detail in Algorithm 1, where
the variables Γ, Q̄, and D are equivalent to ΦΨ, Q1Q2, and
NxNz , defined in Section III-B, respectively. Let the set of
columns of the matrix Γ corresponding to the pixels up to the
wall maximum downrage distance be denoted by χwall and the
corresponding set of column indices be λwall. The first iteration
in Algorithm 1 reconstructs all of the pixels corresponding to
χwall. In each subsequent iteration, the algorithm proceeds as
for classic OMP. In so doing, the modified OMP algorithm is
forced to explore behind the wall scene in the subsequent iter-
ations, thereby significantly reducing the number of iterations
required to detect behind the wall targets.

It is noted that when solving (33) using the modified OMP,
the variables Γ, y̆, Q̄, and D are equivalent to ϕ(n)A, y̆n, Q,
and M , respectively.

Algorithm 1 Modified OMP for l1 minimization in TWRI

Input

(·) A Q̄×D(Q̄ ≪ D) matrix Γ which columns are ex-
pressed as γj

(·) The measurement data vector y̆ of dimension Q̄
(·) The sparsity level P of the vector being reconstructed
(·) The wall maximum downrange distance
Procedure

(1) Initialize the index set Λ0 = {λwall}, the matrix of
chosen atoms X0 = {χwall}, the vector being recon-
structed r̂ = 0, and the iteration counter t = 0.

if t 	= 0 then

(2) Find the index λt that solves the following optimiza-
tion problem,

λt = arg max
j=1,...,Q̄

∣

∣

〈

gt−1,γj

〉∣

∣

(3) Augment the index set and the matrix of chosen atoms,

Λt = Λt−1 ∪ {λt} Xt =
[

Xt−1 γλt

]

end if

(4) Solve the least square problem to obtain a new signal
estimate,

zt = argmin
z

‖y̆ −Xtz‖22
(5) Calculate the new residual,

gt = y̆ −Xtzt

(7) Increment t, and return to Step 2 if t < (P − 1).
(8) The final estimate r̂ is given by,

r̂(Λt) = zt
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