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Abstract

One important problem in computer vision is to provide a
demographic description a person from an image. In prac-
tice, many of the state-of-the-art methods use only an anal-
ysis of the face to estimate the age and gender of a person
of interest. We present a model that combines two problems,
height estimation and demographic classification, which al-
lows each to serve as context for the other. Our idea is to
use a calibrated camera for measuring the height of peo-
ple in the scene. Height is measured by jointly inferring
across anthropometric dimensions, age, and gender using
publicly available statistics. The height estimate provides
context for recognizing the age and gender of the subject,
and likewise age and gender conditions the distribution of
the anthropometric features for estimating height.

The performance of our method is explored on a new
database of 127 people captured with a calibrated camera
with recorded height, age, and gender. We show that es-
timating height leads to improvements in age and gender
classification, and vice versa. To the best of our knowledge,
our model produces the most accurate automatic height es-
timates reported, with the error having a standard deviation
of 26.7 mm.

1. Introduction

The goal of this paper is to describe a person’s height
and demographics from an image. In computer vision re-
search, algorithms exist to identify the age and the gender
of people. Broadly speaking, these algorithms build statis-
tical models for the image appearance of a person for dif-
ferent demographic categories, and these models are em-
ployed to categorize the image of a previously unseen face.
With few exceptions, demographic recognition is performed
solely based on facial appearance. In practice, however,
facial appearance does not provide enough information to
solve this problem with the desired level of accuracy.

Similarly, several researchers have investigated the prob-
lem of estimating the height of a standing or walking hu-
man. In some cases, the problem has been addressed solely
as a metrology problem, using similar techniques than can
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Figure 1. Measuring human height with a calibrated camera. Cal-
ibration provides the relationship between the image and world
coordinate systems. Facial key points fall on rays from the camera
center and corresponding images of the points. Anthropometric
data, conditioned by the estimated age and gender, provides dis-
tributions on distances between key points to infer distance from
subject to camera, height, age, and gender.

be applied for measuring any other vertical object.
The goal of our paper is to unite these two sub-problems

(height measurement and demographic estimation) into a
common framework employing a probabilistic model to al-
low evidence gathered for each sub-problem to reduce the
uncertainty about the other. Our approach is to combine
facial appearance with height estimation to improve our un-
derstanding of images of people. To this end, we exploit the
large volume of anthropometric measurements gathered by
the medical and health communities.

1.1. Related Work

A large amount of research is directed at understanding
images of humans, addressing issues such as recognizing
an individual, recognizing age and gender from facial ap-
pearance, and determining the structure of the human body.
Most age and gender classification algorithms construct fea-
ture vectors solely from the face region [2, 11, 12, 14]. In



fact, the vast majority of classification work related to im-
ages of people treats each face as an independent problem
and relies solely on information gleaned from images from
which classifiers are constructed. However, there are some
notable exceptions where information external to the image
is used as context for classification. In [4], names from news
captions are associated with faces from images or video in
a mutually exclusive manner. Similar constraints are em-
ployed in research devoted to solving the face recognition
problem for consumer image collections. In [10], the pop-
ularity trends of first names provide context in conjunction
with facial appearance to infer age and gender.

Regarding height estimation, several researchers either
estimate height, or use broad height distributions with
pedestrian detection to understand scenes. The position of
people in an image provides clues about the geometry of the
scene. As shown in [20], camera calibration can be achieved
from a video of a walking human, under some reasonable
assumptions (that the person walks on the ground plane and
head and feet are visible). In [18], the problem is reversed,
and the height of a person with visible feet and head is esti-
mated from a calibrated camera. Criminisi et al. [7], Hoiem
et al. [16], and Lalonde et al. [19] describe the measurement
of various objects (including people) rooted on the ground
plane. However, all of these papers require that the intersec-
tion of the object (i.e. the feet) and the floor be visible. Our
method relies on anthropometric face measurements and re-
quires instead that the face be visible.

Our work uses information from anthropology and
medicine as context for demographic inference in computer
vision. In anthropology, the relationships between various
body measurements has been exploited to estimate an indi-
vidual’s height from a single recovered bone [8]. Perhaps
the closest work on human height measurement from im-
ages is BenAbdelkader and Yacoob [3] where anthropomet-
ric data is used in combination with manually identified key
points and apriori knowledge of age and gender. We build
on this work by automatically locating facial anthropomet-
ric features and introducing a model that naturally incor-
porates the uncertainty over gender and age. As a result,
gender, age and height can also be inferred from our model.

Our contributions are the following: We propose a model
for measuring the height of a person while jointly estimating
age, gender and facial feature points, based on a calibrated
camera and anthropometric data. We introduce the idea of
combining height estimation with appearance features for
demographic recognition, and show that estimating height
improves the recognition of demographic quantities. Fur-
ther, by performing inference over age, gender, and height
simultaneously with our model, we improve the accuracy
of height estimation. Finally, we demonstrate the effective-
ness of our model on a test set of 127 individuals to achieve
height estimates with good accuracy.

Figure 2. Left: During calibration, for one image a level is used
to position the calibration target to be perpendicular with the floor.
The distance between the floor and the world coordinate system
origin is measured by hand. Right: Our camera is a standard web-
camera with VGA resolution.

In Section 2, we introduce human height estimation with
a calibrated camera. In Section 3, we describe data related
to anthropometric features. Section 4 describes our model
of the relationship between height, gender, age and anthro-
pomorphic data. Section 5 contains experimental results.

2. Calibrated Camera Height Estimation

As is well known, a camera can be modeled as a projec-
tive pinhole [15] to map world points X to image points x
according to the following relationship:

x ≡ PX ≡ [
A b

]
X (1)

where the calibration matrix P is composed of internal cam-
era parameters K and extrinsic parameters including a co-
ordinate rotation matrix R, and translation t as follows:
P = K

[
R t

]
. In the form shown in (1), the 3 × 3 matrix

A = KR, and the 3 × 1 matrix b = Kt. The matrix P es-
sentially captures the relationship between image and scene
points, and allows one to extract metric information from
image coordinates. Each point in the image corresponds
with a world line passing through the camera center.

2.1. Camera Calibration

We perform camera calibration using a checkerboard tar-
get according to the method of [24], and shown in Figure 2.
The target defines the world coordinate system. As such, we
ensure that for one image, the target is held perpendicular
to the ground. Consequently, the world coordinate system
axes are aligned with the physical ground plane (the y-axis
is perpendicular to the ground plane, and the x- and z-axes
are parallel to the ground plane). In addition, for this im-

age, the distance hy from the coordinate origin
[
0 0 0

]T

is measured by hand, as shown in Figure 2. The floor has
the equation y = −hy in the world coordinate frame. Cali-
bration errors affect the quality of the algorithm results.



2.2. Estimating Subject Distance and Height

Our key idea is illustrated by Figure 1: Multiple feature
points on a face image corresponding to pairwise anthropo-
metric features define multiple rays in the world. The dis-
tribution of possible distances between the camera and the
subject is functionally related to the distribution of the size
of these anthropometric features. As the uncertainty in the
anthropometric feature distribution is reduced (e.g. by con-
cluding that the subject is an adult male), a corresponding
reduction in the uncertainty of the distance to the camera
is achieved. Furthermore, because the camera is calibrated,
an improvement in our confidence about the distance to the
subject is directly related to improvements in the determi-
nation of the height above the ground plane of each facial
feature point.

Estimating Subject Distance: We consider pairwise an-
thropometric features, defined as the distance between two
feature points on the human body. In world coordinates, the
pairwise anthropometric feature F is described by a Gaus-
sian distribution N(μF , σ2

F ) over a measurement metric.
Each feature F has a corresponding pair of image points
f =

{
xi xj

}
.

A world line L passing through a particular image fea-
ture point xi has the equation Li = Ω + tωi where the
camera center is Ω = −A−1b and the vector pointing from
Ω to the feature point xi is ωi = A−1xi.

The angle φ between two feature lines Li and Lj is:

φ = cos−1

(
ωT

i ωj

|ωi||ωj |
)

(2)

and the distance d in world coordinates from the camera
center Ω to the midpoint of two feature points on the human
body having separation distance dF is:

d = dF
1

2 tan(φ/2)
(3)

The distribution of the distance d is represented as a
Gaussian N(μd, σ

2
d) where the parameters are found by

considering that (3) is a linear function of random vari-
able F . Consequently, μd = μF

1
2 tan(θ/2) and σd =

σF
1

2 tan(θ/2) .
In summary, our knowledge about the distributions of

pairwise anthropometric features is exploited to estimate the
distance between the subject and the calibrated camera.

Estimating Subject Height: From a subject to camera
distance estimate di, the feature point can be approximately
located (assuming the pair of feature points is parallel to the
image plane) in the world coordinate frame as:

X̂i = Ω + di
ωi

|ωi| (4)

Because our world coordinate frame is axis-aligned with the
physical world (the xz-plane is parallel with the ground),
the height of a point hi above the ground is simply:

hi =
[
0 1 0

]
X̂i + hy (5)

The estimate for the subject’s stature is based on the pair-
wise anthropometric feature of the eye centers Fe. The
stature of a person is the height of the eyes above the
ground, plus the distance from the eyes to the top of the
head Fv,en, as reported in [9]. Note that this dimension
Fv,en has a distribution over gender and age and in prac-
tice, the expected value of this distribution is used.

h =
[
0 1 0

]
X̂i + hy + Fv,en (6)

As with distance, the distribution of height h is repre-
sented with a Gaussian, where the parameters are derived
by considering h as a function of the random distribution
over distance d.

3. Age, Gender, and Anthropomorphic Data

There exists a great amount of data describing the dis-
tribution of measurements of the human body [9, 13, 21].
Our goal is to use pairwise anthropometric features to infer
subject to camera distance, height, age and gender. Ideal
anthropometric features are those that markedly change in
size with age and gender. We have the additional practical
requirement that the corresponding image of each feature
point can be reliably located in the image automatically with
an Active Shape Model [5].

We consider two pairwise anthropometric features, illus-
trated in Figure 3. The size distributions as functions of age
and gender for each of these pairwise anthropometric fea-
tures is derived by smoothing data from [9]. The first fea-
ture F1 is the distance between eye centers, and the second
F2 is the distance between the mouth and the nasion (i.e.
the intersection of the nose and forehead). Our automatic
detection of the associated feature points on several images
is shown in Figure 4.

4. Anthropometric and Demographic Model

We would like to represent the relationships between a
person’s age, gender, height and appearance in the image.
Of course, our degree of uncertainty about one attribute af-
fects our belief about others. For example, if we are con-
fident that a subject is tall (e.g. 190 cm), then it is more
likely that the subject is an adult male than an adult fe-
male. However, it is intractable to learn the relationship
between all quantities simultaneously. Our model incorpo-
rates conditional independence assumptions to make infer-
ence tractable and allows inference over all quantities in a
unified manner.
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(b) The distribution over age and gender.

(c) Nasion to Mouth
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(d) The distribution over age and gender.
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(f) Growth curves over age and gender.

Figure 3. The two pairwise anthropometric features we use in this
paper are the distance between eye centers (Top), and the distance
between the mouth and nasion (the point between the eyes where
the nose bridge meets the frontal bone of the skull) (Middle),
which have known distributions with respect to age and gender.
The relationship between gender, age, and height is also shown
(Bottom). Error bars represent one standard deviation.

Figure 5 shows a graphical representation of our model.
We represent the demographic and anthropometric quanti-
ties as random variables in the model. Each subject has an
age A, gender G, height H , and distance from the camera
D. The true value of the subject’s ith pairwise anthropo-
morphic feature is denoted by the variable Fi and the set
of all such features is F. Observed evidence includes a set
of image points for each pairwise anthropometric feature f ,
the camera calibration parameters P, and appearance fea-
tures extracted from the pixel values of the face region cor-

Figure 4. Example images with automatically recovered key points
corresponding to two pairwise anthropometric features. The eye
center distance is related to the distance between the circles, and
the mouth to nasion feature points are marked with the symbol ’+’.
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Figure 5. Our graphical model to infer over age A, gender G,
height H , and camera to subject distance D, based on the evidence
that includes the camera parameters P, the extracted feature points
fi, the anthropometric feature distributions Fi and the appearance
features Ta and Tg related to age and gender respectively. Hid-
den variables are squares, with adjacent squares representing joint
variables, and observed variables are circles.

responding the age Ta and gender Tg . Our model includes
simplifying conditional independence assumptions. For ex-
ample, we assume that once age and gender are known, the
facial appearance is independent of the height of the sub-
ject. Further, once the subject height and pairwise anthro-
pometric measurements are known, the calibration parame-
ters provide no further insight regarding the subject’s demo-
graphic information. The structure of the Bayes Network
is selected to exploit known relationships documented with
publicly available statistics as well as known relationships
from perspective geometry.

The model represents joint distribution of the variables
as a product of conditional probability terms:

P (A, G, H, F|P, f , Ta, Tg) ∝ P (H|D)P (D|P)P (A|Ta)P (G|Tg)∏
i

P (A, G|H, Fi)P (Fi|D)P (D|fi)
(7)

Gaussians are used to represent the distributions over vari-
ables related to distance (D, H and F). Gender G is a bi-



nary variable G ∈ {male, female}. Age A is a discrete
variable with a set of 125 possible states corresponding to
the ages 0 to 124 years. In the following sections, we de-
scribe the terms of our model and inference with the model.

4.1. Estimating Age and Gender from Appearance

Our model employs appearance-based age and gender
classifiers. These content-based classifiers provide proba-
bility estimates P (G|Tg) and P (A|Ta) that the face has a
particular gender and age category, given the corresponding
visual appearance features.

Our gender and age classifiers were motivated by the
works of [11, 14] where a low dimension manifold for the
age data. An independent set of 4550 faces is used for train-
ing. The age and gender of each person was labeled manu-
ally. To establish age ground truth, we labeled each face as
being in one of seven age categories: 0-2, 3-7, 8-12, 13-19,
20-36, 37-65, and 66+, roughly corresponding to different
life stages. Using cropped and scaled faces (61×49 pix-
els, with the scaling so the eye centers are 24 pixels apart)
from the age training set, two linear projections (Wa for
age and Wg for gender) are learned. Each column of Wa

is a vector learned by finding the projection that maximizes
the ratio of interclass to intraclass variation (by linear dis-
criminate analysis) for each pair of age categories, result-
ing in 21 columns for Wa. A similar approach is used to
learn the gender subspace Wg . A set of seven projections is
found by learning a single projection that maximizes gender
separability for each age range.

The distance dij between two faces is measured as:

dij = (Ti − Tj)WWT (Ti − Tj)T (8)

For classification for both age and gender, the nearest N
training samples (we use N = 101) are found in the space
defined by Wa for age or Wg for gender. The class la-
bels of the neighbors are used to estimate P (A|Ta) and
P (G|Tg) by MLE counts. One benefit to this approach is
that a common algorithm and training set are used for both
tasks, only the class labels and the discriminative projec-
tions are modified.

4.2. Anthropometrics from Age and Gender

By assuming conditional independence between height
and anthropometric features when age and gender are
known, we can show that the term P (A, G|H, Fi) re-
quired by the model is proportional to P (A, G|Fi) and
P (A, G|H). For P (A, G|Fi), the conditional distribution
of age and gender given a particular pairwise anthropomet-
ric feature Fi. This term is provided by the statistical data
of [9], illustrated in Figure 3 for the two anthropometric
features we consider.
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Figure 6. Illustrations of P (A, G|H = h), the joint distributions
over age and gender given height, for several different heights h.
Top Left: When h = 140 cm, the subject age distribution is
centered at 10 years with nearly equal likelihood of each gender.
Top Right: There are two reasonable explanations when height is
h = 160 cm. Either the subject is an adult female, or an adoles-
cent male in the process of “growing through” that height. Bottom
Left: A person with a height h = 180 cm is most likely a male.
Bottom Right: The marginal distribution of gender given height.
Note the peaks at heights common for adult women and men.

4.3. Distance and Height

The relationship between the camera parameters P, the
pairwise demographic features F, the corresponding fea-
tures fi in the image, and distance to the subject D is a deter-
ministic function of random variables, described in Section
2.2. Therefore, the term P (D|Fi, fi, p) is simply a function
of a random variable, where the distribution of Fi is related
to the the distribution of D. Likewise, the term P (H |D)
is also a deterministic function of the random variable dis-
tance D (4)-(6).

4.4. Height, Age, and Gender

Our model requires the term P (A, G|H = h), the
conditional distribution of age and gender given height.
This term is provided by the statistical data of [21] and
is illustrated in Figure 6. The conditional probability of
age and gender given height is found with P (A, G|H) ∝
P (H |A, G)P (A)P (G), with the simplifying assumption
that age and gender are independent. The gender prior
P (G) is assumed to be equal for each gender (P (G =
male) = 0.5), and the prior for age P (A) is based on life
expectancy from a standard actuarial table [1].

We make several observations. First, the conditional dis-
tribution P (A, G|H) is not well-modeled with a Gaussian
distribution because of the rapid growth in the adolescent
years, justifying our decision to represent age as a discrete
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Figure 7. The distribution of the 127 subjects used in our study.
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Figure 8. A scatter plot of the estimated and actual height (cm) of
subjects in our study.

variable. Second, we note that for adults aged 20 or greater,
170 cm represents the optimal decision boundary to clas-
sify gender when height is the only available information.
Finally, we mention that our model does not consider the
phenomena of stature loss among the elderly, but this effect
could be added if the relevant statistical data are available.

4.5. Inference with Expectation Maximization

We perform inference on our model to consider all the
evidence from an image of a subject captured with the cal-
ibrated camera, and find the distribution over age, gender,
height and distance to the camera. Final classifications are
based on the maximum likelihood aposterior distributions
for age â, gender ĝ, height ĥ, and distance d̂ from the cam-
era. For each variable, our final estimate is the assign-
ment that maximizes its marginal distribution obtained by
marginalizing over all other variables.

For computational efficiency, we do not perform exact
inference over the entire model. Instead, similar to [23],
we use Expectation Maximization to simplify inference. In
the E-step, we fix the distribution over Fi as a unidimen-
sional Gaussian and perform inference on the model. In the
M-step, the distribution over each anthropometric feature
Fi is updated using the winner-take-all variant of EM [22]
based on the most likely estimate of age a∗ and gender g∗

as P (Fi|A = a∗, G = g∗). In our case, the winner-take-all
variant has the advantage that, in inference, each anthropo-
metric distribution remains a Gaussian. After convergence,
the most likely assignment of each variable is found. With
this inference, our algorithm is fast enough for real-time ap-
plication at video frame rates.

Height Distance Age Gender
MAD STD MAD STD MAD STD Error

Height 30.5 40.9 182 201 - - -
Model+Ta, Tg - - - - 8.5 12.3 32.8%

Model+P, fi 24.1 26.7 142 167 7.0 10.6 35.3%

Full Model 24.1 26.7 136 171 5.4 9.7 28.1%

Table 1. By reasoning about gender, age and height with our full
model we achieve the best overall results for predicting age and
gender. Errors (mean absolute and standard deviation) are shown
for height and distance. Age errors are in years, and gender classi-
fication error rate is shown. Results are shown for height alone (no
modeling of age or gender), using the model but observing only
appearance features, using the model but observing only height
(no appearance), and using the full model.

5. Experiments

Our model was tested on images of 127 subjects ranging
in age from 2 to 56 with a total of 81 male and 46 female
subjects. To sample from a wide variety of demographics,
subjects were recruited in several different venues (a science
museum, a research laboratory, and an educational institu-
tion) on four different occasions. The gender and age dis-
tribution of subjects is reported in Figure 7. Most subjects
are Caucasian, but a wide variety of ethnicities participated.
Each subject reported his or her age (binned into one of 14
bins) and gender, and a stadiometer was used to measure
each subject’s height. Subjects were photographed looking
toward the camera as our model currently assumes a frontal
facial pose, making the eyes and mouth coplanar with the
image plane (3). The camera height is about 160 cm off
the ground, but this varied at each session. Two pieces of
tape were placed on the floor at different distances from the
camera, one near (ranging from 0.91 m to 1.63 m) and one
far (ranging from 1.80 m to 2.69 m). Each subject was pho-
tographed at the two distances marked by the tape. The
camera has VGA resolution (480×640 pixels). The entire
procedure requires about five minutes for each subject. A
total of 237 images are used in our experiments (two im-
ages for most subjects; 17 subjects have only one image).

For detecting faces, we use a commercial package that
implements a cascade face detector similar to [17]. An ac-
tive shape model [5] is applied to recognize key points on
the face, as illustrated in Figure 4. Finally, for each subject
image, inference is performed with our model in Figure 5 to
obtain maximum likelihood aposterior estimates for age â,
gender ĝ, height ĥ, and distance d̂ from the camera.

5.1. Height and Distance Accuracy

Table 1 reports the accuracy of the model on our test set
for height, distance to the subject, age, and gender. We com-
pare height estimation with the baseline approach where age
and gender are not in the model, and the anthropometric dis-



Height Age Gender
MAD STD MAD STD Error

Single-frame 25.9 24.1 5.9 10.1 27.3%

Multi-frame 22.4 22.1 6.2 9.8 24.5%

Table 2. Compared with performing inference on each frame indi-
vidually (first row), using evidence from multiple frames (second
row) improves the accuracy.

tributions are from the entire population, marginalizing over
age and gender. Overall, the complete model estimates hu-
man height with an accuracy of 26.7 mm in standard devi-
ation, reducing the error of the baseline approach by 34.7%
(from 40.9 mm). Figure 8 shows a scatter plot of the true
and estimated statures of the subjects.

This result is believed to be the most accurate automatic
result achieved on a large dataset. In [3], estimation error of
about 50 mm in standard deviation is reported on a test set
of 27 adults, where the model has full knowledge of gender
and feature points are manually labeled. In [6], a reference
length from the scene is required, and the result on a single
subject is within 2 cm. Finally, in [18], height is estimated
by a calibrated camera detecting the full silhouette of the
subject. On three subjects, this achieves an estimation error
with standard deviation of 43 mm.

We estimate the distance between the subject and the
camera with an accuracy of 171 mm in standard deviation.
In reporting this result, it is noted that the distance to the
subject is somewhat variable as each subject’s interpreta-
tion of “standing on the tape” varied. Therefore, we ex-
pect that our reported results represents an upper (i.e. pes-
simistic) bound on the achievable distance accuracy. Fur-
ther, it should be noted that height accuracy is positively
correlated with both calibration accuracy and distance from
the camera. The height estimation error ranged from 15.2
mm for the most accurate calibration to 32.8 mm when the
calibration was poorest.

5.2. Combining Multiple Observations

Evidence from multiple observations is combined to es-
timate the age, gender, and height of a person using a Naı̈ve
Bayes model with an assumed uniform prior over the vari-
able in question. For example, when estimating height from
multiple images:

P (H |e1, . . . , eN ) =
N∏

n=1

P (H |en) (9)

where en represents all the available evidence associated
with the nth image capture.

Table 2 reports the result of consolidating evidence from
multiple frames (both the near and far image captures) for
each subject. Overall, more accurate height estimates and

Stature Distance Age Gender
MAD STD MAD STD MAD STD Error

Children(0-16) 22.4 22.3 106 116 0.5 0.9 29.6%

Adults(17+) 22.3 22.9 120 130 11.6 11.9 19.6%

Table 3. Age classification is an easier problem for children, and
gender classification is easier for adults. Height estimation per-
forms well across age. These results include using evidence from
two images of the same subject, when available.

gender classifications are achieved, but age estimation im-
provements are inconclusive based on which critera is ex-
amined. Note that the 17 subjects having only one image
are omitted from this analysis.

5.3. Gender and Age Accuracy

By using our model to infer gender and age using both
appearance and height, we achieve better accuracy than us-
ing either one alone, as reported in Table 1. Our appearance
classifier achieves 67.2% gender accuracy by itself. This is
lower than the results reported for this task using facial ap-
pearance (e.g. [2]), but our test set includes a large number
of children who have yet to develop gender-specific facial
features. Combining height with appearance by our model
improves the gender classification accuracy to 71.9%.

Each subject self-reported his or her age as belonging
to one of 14 age bins. Using our model, we find the most
likely aposterior age â, and compare this with the ground
truth age bin for the subject. When â falls within the bounds
of the age bin, the age error is zero, otherwise the age error
is the number of years between the estimated age â and the
closest bound on the true age bin. Again, by inferring age
with combined appearance and height features, we achieve
better age estimation than using either feature type alone.

More insight is gleaned by examining the performance
on children (ages 0-16) and adults (17+). Table 3 shows that
age is easier to estimate for children, and gender classifica-
tion is more accurate in adults. This result is explained by
considering our pairwise anthropometric features, as shown
in Figure 3. For age estimation, the gradient of each feature
with respect to age is greatest during childhood. However,
the greatest separation between the genders for the distribu-
tions for any of the anthropometric features given age oc-
curs when adulthood is reached.

Figure 9 discusses the height, age, and gender estimates
for several images from our dataset.

6. Conclusion

We introduce a model to unify inference over demo-
graphic quantities and anthropometric features using a cal-
ibrated camera. Instead of considering demographic clas-
sification and height estimation as separate problems to be



(a) Height (b) Appearance (c) Full Model (d) Height (e) Appearance (f) Full Model

(g) Height (h) Appearance (i) Full Model (j) Height (k) Appearance (l) Full Model

Figure 9. Height, age, and gender classification improve through our model that reasons over variables related to appearance, height,
demographics and pairwise anthropometric features. In each group of images, the model outputs are shown when height is observed (no
appearance features), appearance is considered (height is not estimated), and the full model is used. Accurate results are shown in green
text and poor results are in red text. The facial appearance in (b) allows the mistaken gender from height alone (a) to be corrected in the full
model (c). In (d), the subject’s height is similar to an adult woman, but appearance recognized the subject as a young male (e), and the full
model finds the most probable explanation is that the subject is an adolescent male (f). The incorrect age classification from appearance
alone (h) is corrected by height estimation in (g) to produce the reasonable estimates in (i). A failure is shown in (j)-(l). The subject is a
tall female, and the correct gender from appearance (k) is not strong enough to override the fact that few females are 179 cm in height from
(j), and in the final result (l), the demographic classification is worse than from appearance only (k). Best viewed electronically.

solved independently, our model merges these problems and
allows influence to flow throughout the variables.

We provide evidence our model’s effectiveness by test-
ing on images from 127 subjects spanning a wide age range
to achieve accurate automatic height estimation. We show
that when height provides context and is considered along
with facial appearance, the age and gender estimates im-
prove versus using appearance alone. Likewise, height es-
timation improves with our model which reasons about age
and gender as hidden variables. Our model is extensible in
that additional pairwise demographic features can be added,
assuming the corresponding feature points can be located.

References
[1] E. Arias. United States life tables, 2003. Technical report, National

Center for Health Statistics, 2006.
[2] S. Baluja and H. Rowley. Boosting sex identification performance.

In IJCV, 2007.
[3] C. BenAbdelkader and Y. Yacoob. Statistical Estimation of Human

Anthropometry from a Single Uncalibrated Image. Springer Press,
2008.

[4] T. Berg, A. Berg, J. Edwards, M. Maire, R. White, Y.-W. Teh,
E. Learned-Miller, and D. Forsyth. Names and faces in the news.
In Proc. CVPR, 2004.

[5] T. Cootes, C. Taylor, D. Cooper, and J. Graham. Active shape
models-their training and application. CVIU, 1995.

[6] A. Criminisi. Accurate Visual Metrology from Single and Multiple
Uncalibrated Images. PhD thesis, University of Oxford, 1999.

[7] A. Criminisi, I. Reid, and A. Zisserman. Single view metrology.
International Journal of Computer Vision, 40:2000, 1999.

[8] C. Dupertuis and J. Hadden. On the reconstruction of stature from
long bones. American Journal of Physical Anthropology, 1951.

[9] L. Farkas. Anthropometric facial proportions in medicine. Raven
Press, New York, 1994.

[10] A. Gallagher and T. Chen. Estimating age, gender, and identity using
first name priors. In Proc. CVPR, 2008.

[11] X. Geng, Z.-H. Zhou, Y. Zhang, G. Li, and H. Dai. Learning from
facial aging patterns for automatic age estimation. In ACM MULTI-
MEDIA, 2006.

[12] B. Golomb, D. Lawrence, and T. Sejnowski. Sexnet: A neural net-
work identifies sex from human faces. In Proc. NIPS, 1990.

[13] C. Gordon, B. Bradtmiller, T. Churchill, C. Clauser, J. McConville,
I. Tebbetts, and R. Walker. 1988 anthropometric survey of US
army personnel: Methods and summary statistics. Technical Report
NATICK/TR-89/044, AD A225 094, 1988.

[14] G. Guo, Y. Fu, C. Dyer, and T. Huang. Image-based human age esti-
mation by manifold learning and locally adjusted robust regression.
In IEEE Trans. on Image Proc., 2008.

[15] R. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, ISBN: 0521540518, 2004.

[16] D. Hoiem, A. Efros, and M. Hebert. Putting objects in perspective.
In Proc. CVPR, 2006.

[17] M. Jones and P. Viola. Fast multiview face detector. In Proc. CVPR,
2003.

[18] I. Kispál and E. Jeges. Human height estimation using a calibrated
camera. In Proc. CVPR, 2008.

[19] J.-F. Lalonde, D. Hoiem, A. A. Efros, C. Rother, J. Winn, and A. Cri-
minisi. Photo clip art. ACM Trans. SIGGRAPH, 2007.

[20] M.-F. Lv, M.-T. Zhao, and F.-R. Nevatia. Camera calibration from
video of a walking human. IEEE Trans. Pattern Anal. Mach. Intell.,
28(9):1513–1518, 2006.

[21] National Center for Health Statistics. CDC growth charts, United
States. http://www.cdc.gov/nchs/data/nhanes/growthcharts/zscore/
statage.xls, 2007.

[22] R. Neal and G. Hinton. A view of the em algorithm that justifies
incremental, sparse, and other variants. In Learning in Graphical
Models, 1998.

[23] E. B. Sudderth, A. Torralba, W. T. Freeman, and A. S. Willsky.
Learning hierarchical models of scenes, objects, and parts. In Proc.
CVPR, 2005.

[24] Z. Zhang. A flexible new technique for camera calibration. IEEE
PAMI, 2001.


