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Abstract

Connections between relations in relation

extraction, which we call class ties, are

common. In distantly supervised scenario,

one entity tuple may have multiple relation

facts. Exploiting class ties between rela-

tions of one entity tuple will be promising

for distantly supervised relation extrac-

tion. However, previous models are not ef-

fective or ignore to model this property. In

this work, to effectively leverage class ties,

we propose to make joint relation extrac-

tion with a unified model that integrates

convolutional neural network (CNN) with

a general pairwise ranking framework, in

which three novel ranking loss functions

are introduced. Additionally, an effective

method is presented to relieve the severe

class imbalance problem from NR (not re-

lation) for model training. Experiments on

a widely used dataset show that leverag-

ing class ties will enhance extraction and

demonstrate the effectiveness of our model

to learn class ties. Our model outperforms

the baselines significantly, achieving state-

of-the-art performance.

1 Introduction

Relation extraction (RE) aims to classify the

relations between two given named entities from

natural-language text. Supervised machine learn-

ing methods require numerous labeled data to

work well. With the rapid growth of volume of

relation types, traditional methods can not keep

up with the step for the limitation of labeled data.

In order to narrow down the gap of data spar-

sity, Mintz et al. (2009) propose distant supervi-

sion (DS) for relation extraction, which automati-
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place lived (Patsy Ramsey, Atlanta)
place of birth (Patsy Ramsey, Atlanta)

Sentence Latent Label

#1 Patsy Ramsey has been living in
Atlanta since she was born.

place of birth

#2 Patsy Ramsy always loves At-
lanta since it is her hometown.

place lived

Table 1: Training instances generated by freebase.

cally generates training data by aligning a knowl-

edge facts database (ie. Freebase (Bollacker et al.,

2008)) with texts.

Class ties mean the connections between rela-

tions in relation extraction. In general, we con-

clude that class ties can have two types: weak

class ties and strong class ties. Weak class ties

mainly involve the co-occurrence of relations such

as place of birth and place lived, CEO of and

founder of. On the contrary, strong class ties

mean that relations have latent logical entailments.

Take the two relations of capital of and city of

for example, if one entity tuple has the rela-

tion of capital of, it must express the relation

fact of city of, because the two relations have the

entailment of capital of ⇒ city of. Obviously

the opposite induction is not correct. Further

take the sentence of “Jonbenet told me that her

mother [Patsy Ramsey]e1 never left [Atlanta]e2
since she was born.” in DS scenario for exam-

ple. This sentence expresses two relation facts

which are place of birth and place lived. How-

ever, the word “born” is a strong bios to extract

place of birth, so it may not be easy to predict the

relation of place lived, but if we can incorporate

the weak ties between the two relations, extracting

place of birth will provide evidence for prediction

of place lived.

Exploiting class ties is necessary for DS based

relation extraction. In DS scenario, there is a chal-

lenge that one entity tuple can have multiple rela-
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tion facts as shown in Table 1, which is called rela-

tion overlapping (Hoffmann et al., 2011; Surdeanu

et al., 2012). However, the relations of one entity

tuple can have class ties mentioned above which

can be leveraged to enhance relation extraction

for it narrowing down potential searching spaces

and reducing uncertainties between relations when

predicting unknown relations. If one pair entities

has CEO of, it will contain founder of with high

possibility.

To exploit class ties between relations, we pro-

pose to make joint extraction for all positive labels

of one entity tuple with considering pairwise con-

nections between positive and negative labels in-

spired by (Fürnkranz et al., 2008; Zhang and Zhou,

2006). As the two relations with class ties shown

in Table 1, by joint extraction of two relations, we

can maintain the class ties (co-occurrence) of them

from training samples to be learned by potential

model, and then leverage this learned information

to extract instances with unknown relations, which

can not be achieved by separated extraction for

it dividing labels apart losing information of co-

occurrence. To classify positive labels from nega-

tive ones, we adopt pairwise ranking to rank pos-

itive ones higher than negative ones, exploiting

pairwise connections between them. In a word,

joint extraction exploits class ties between rela-

tions and pairwise ranking classify positive labels

from negative ones. Furthermore, combining in-

formation across sentences will be more appropri-

ate for joint extraction which provides more infor-

mation from other sentences to extract each rela-

tion (Zheng et al., 2016; Lin et al., 2016). In Table

1, sentence #1 is the evidence for place of birth,

but it also expresses the meaning of “living in

someplace”, so it can be aggregated with sentence

#2 to extract place lived. Meanwhile, the word of

“hometown” in sentence #2 can provide evidence

for place of birth which should be combined with

sentence #1 to extract place of birth.

In this work, we propose a unified model that

integrates pairwise ranking with CNN to exploit

class ties. Inspired by the effectiveness of deep

learning for modeling sentences (LeCun et al.,

2015), we use CNN to encode sentences. Simi-

lar to (Santos et al., 2015; Lin et al., 2016), we

use class embeddings to represent relation classes.

The whole model architecture is presented in Fig-

ure 1. We first use CNN to embed sentences, then

we introduce two variant methods to combine the

x2x1 xn

s1 s2 sn

s

c1 c2 cm

𝑊[#$]
& 𝑠

class	

embedding

encoded	by	CNN

sentence	

embedding

bag	representation	

vector
combine	

sentences

Figure 1: The main architecture of our model.

embedded sentences into one bag representation

vector aiming to aggregate information across sen-

tences, after that we measure the similarity be-

tween bag representation and relation class in real-

valued space. With two variants for combining

sentences, three novel pairwise ranking loss func-

tions are proposed to make joint extraction. Be-

sides, to relieve the bad impact of class imbalance

from NR (not relation) (Japkowicz and Stephen,

2002) for training our model, we cut down loss

propagation from NR class during training.

Our experimental results on dataset of Riedel

et al. (2010) are evident that: (1) Our model is

much more effective than the baselines; (2) Lever-

aging class ties will enhance relation extraction

and our model is efficient to learn class ties by

joint extraction; (3) A much better model can be

trained after relieving class imbalance from NR.

Our contributions in this paper can be encapsu-

lated as follows:

• We propose to leverage class ties to enhance

relation extraction. An effective deep ranking

model which integrates CNN and pairwise rank-

ing framework is introduced to exploit class ties.

• We propose an effective method to relieve

the impact of data imbalance from NR for model

training.

• Our method achieves state-of-the-art perfor-

mance.

2 Related Work

We summarize related works on two main as-

pects:

2.1 Distant Supervision Relation Extraction

Previous works on DS based RE ignore or are

not effective to leverage class ties between rela-
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tions.

Riedel et al. (2010) introduce multi-instance

learning to relieve the wrong labelling problem,

ignoring class ties. Afterwards, Hoffmann et al.

(2011) and Surdeanu et al. (2012) model this prob-

lem by multi-instance multi-label learning to ex-

tract overlapping relations. Though they also pro-

pose to make joint extraction of relations, they

only use information from single sentence losing

information from other sentences. Han and Sun

(2016) try to use Markov logic model to capture

consistency between relation labels, on the con-

trary, our model leverages deep ranking to learn

class ties automatically.

With the remarkable success of deep learning in

CV and NLP (LeCun et al., 2015), deep learning

has been applied to relation extraction (Zeng et al.,

2014, 2015; Santos et al., 2015; Lin et al., 2016),

the specific deep learning architecture can be CNN

(Zeng et al., 2014), RNN (Zhou et al., 2016), etc.

Zeng et al. (2015) propose a piecewise convolu-

tional neural network with multi-instance learning

for DS based relation extraction, which improves

the precision and recall significantly. Afterwards,

Lin et al. (2016) introduce the mechanism of at-

tention (Luong et al., 2015; Bahdanau et al., 2014)

to select the sentences to relieve the wrong la-

belling problem and use all the information across

sentences. However, the two deep learning based

models only make separated extraction thus can

not model class ties between relations.

2.2 Deep Learning to Rank

Deep learning to rank has been widely used in

many problems to serve as a classification model.

In image retrieval, Zhao et al. (2015) apply deep

semantic ranking for multi-label image retrieval.

In text matching, Severyn and Moschitti (2015)

adopt learning to rank combined with deep CNN

for short text pairs matching. In traditional super-

vised relation extraction, Santos et al. (2015) de-

sign a pairwise loss function based on CNN for

single label relation extraction. Based on the ad-

vantage of deep learning to rank, we propose pair-

wise learning to rank (LTR) (Liu, 2009) combined

with CNN in our model aiming to jointly extract

multiple relations.

3 Proposed Model

In this section, we first conclude the notations

used in this paper, then we introduce the used

CNN for sentence embedding, afterwards, we

present our algorithm of how to learn class ties be-

tween relations of one entity tuple.

3.1 Notation

We define the relation classes as L =
{1, 2, · · · , C}, entity tuples as T = {ti}

M
i=1 and

mentions1 as X = {xi}
N
i=1. Dataset is constructed

as follows: for entity tuple ti ∈ T and its rela-

tion class set Li ⊆ L, we collect all the men-

tions Xi that contain ti, the dataset we use is D =
{(ti, Li, Xi)}

H
i=1. Given a data (tk, Lk, Xk) ∈

{(ti, Li, Xi)}
H
i=1, the sentence embeddings of Xk

encoded by CNN are defined as Sk = {si}
|Xk|
i=1 and

we use class embeddings W ∈ R|L|×d to represent

the relation classes.

3.2 CNN for Sentence Embedding

We take the effective CNN architecture adopted

from (Zeng et al., 2015; Lin et al., 2016) to encode

sentence and we briefly introduce CNN in this sec-

tion. More details of our CNN can be obtained

from previous work.

3.2.1 Words Representations

• Word Embedding Given a word embedding

matrix V ∈ R
lw×d1 where lw is the size of

word dictionary and d1 is the dimension of

word embedding, the words of a mention x =
{w1, w2, · · · , wn} will be represented by real-

valued vectors from V .

• Position Embedding The position embedding

of a word measures the distance from the word

to entities in a mention. We add position em-

beddings into words representations by append-

ing position embedding to word embedding for

every word. Given a position embedding matrix

P ∈ R
lp×d2 where lp is the number of distances

and d2 is the dimension of position embeddings,

the dimension of words representations becomes

dw = d1 + d2 × 2.

3.2.2 Convolution, Piecewise max-pooling

After transforming words in x to real-valued

vectors, we get the sentence q ∈ R
n×dw . The set

of kernels K is {Ki}
ds

i=1 where ds is the number

of kernels. Define the window size as dwin and

given one kernel Kk ∈ R
dwin×dw , the convolution

operation is defined as follows:

m[i] = q[i:i+dwin−1] ⊙Kk + b[k] (1)

1The sentence containing one certain entity is called men-
tion.
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where m is the vector after conducting convolu-

tion along q for n − dwin + 1 times and b ∈ R
ds

is the bias vector. For these vectors whose indexes

out of range of [1, n], we replace them with zero

vectors.

By piecewise max-pooling, when pooling, the

sentence is divided into three parts: m[p0:p1],

m[p1:p2] and m[p2:p3] (p1 and p2 are the positions of

entities, p0 is the beginning of sentence and p3 is

the end of sentence). This piecewise max-pooling

is defined as follows:

z[j] = max(m[pj−1:pj ]) (2)

where z ∈ R
3 is the result of mention x processed

by kernel Kk; 1 ≤ j ≤ 3. Given the set of kernels

K, following the above steps, the mention x can

be embedded to o where o ∈ Rds∗3.

3.2.3 Non-Linear Layer, Regularization

To learn high-level features of mentions, we ap-

ply a non-linear layer after pooling layer. After

that, a dropout layer is applied to prevent over-

fitting. We define the final fixed sentence repre-

sentation as s ∈ R
df (df = ds ∗ 3).

s = g(o) ◦ h (3)

where g(·) is a non-linear function and we use

tanh(·) in this paper; h is a Bernoulli random vec-

tor with probability p to be 1.

3.3 Learning Class Ties by Joint Extraction

with Pairwise Ranking

As mentioned above, to learn class ties, we

propose to make joint extraction with consider-

ing pairwise connections between positive labels

and negative ones. Pairwise ranking is applied to

achieve this goal. Besides, combining informa-

tion across sentences is necessary for joint extrac-

tion. More specifically, as shown in Figure 2, from

down to top, all information from sentences is

pre-propagated to provide enough information for

joint extraction. From top to down, pairwise rank-

ing jointly extracting positive relations by combin-

ing losses, which are back-propagated to CNN to

learn class ties.

3.3.1 Combining Information across

Sentences

We propose two options to combine sentences

to provide enough information for joint extraction.

1 2

x1 x2 xn

c1 c2 cm

s

Class	Ties

Combine	

information	from		

all	sentences

Joint	extraction	

by	combining	

losses

Figure 2: Illustration of mechanism of our model

to model class ties between relations.

• AVE The first option is average method. This

method regards all the sentences equally and di-

rectly average the values in all dimensions of sen-

tence embedding. This AVE function is defined as

follows:

s =
1

n

∑

si∈Sk

si (4)

where n is the number of sentences and s is the

representation vector combining all sentence em-

beddings. Because it weights the importance of

sentences equally, this method may bring much

noise data from two aspects: (1) the wrong la-

belling data; (2) irrelated mentions for one relation

class, for all sentences containing the same entity

tuple being combined together to construct the bag

representation.

• ATT The second one is a sentence-level atten-

tion algorithm used by Lin et al. (2016) to mea-

sure the importance of sentences aiming to relieve

the wrong labelling problem. For every sentence,

ATT will calculate a weight by comparing the sen-

tence to one relation. We first calculate the similar-

ity between one sentence embedding and relation

class as follows:

ej = a ·W[c] · sj (5)

where ej is the similarity between sentence em-

bedding sj and relation class c and a is a bias fac-

tor. In this paper, we set a as 0.5. Then we apply

Softmax to rescale e (e = {ei}
|Xk|
i=1 ) to [0, 1]. We

get the weight αj for sj as follows:

αj =
exp(ej)∑
ei∈e

exp(ei)
(6)

so the function to merge s with ATT is as follows:
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s =

|Xk|∑

i=1

αi · si (7)

3.3.2 Joint Extraction by Combining Losses

to Learn Class Ties

Firstly, we have to present the score function to

measure the similarity between s and relation c.

• Score Function We use dot function to produce

score for s to be predicted as relation c. The score

function is as follows:

F(s, c) = W[c] · s (8)

There are other options for score function. In

Wang et al. (2016), they propose a margin based

loss function that measures the similarity between

s and W[c] by distance. Because score function is

not an important issue in our model, we adopt dot

function, also used by Santos et al. (2015) and Lin

et al. (2016), as our score function.

Now we start to introduce the ranking loss func-

tion.

Pairwise ranking aims to learn the score func-

tion F(s, c) that ranks positive classes higher than

negative ones. This goal can be summarized as

follows:

∀c+ ∈ Lk, ∀c
− ∈ L−Lk : F(s, c+) > F(s, c−)+β

(9)

where β is a margin factor which controls the min-

imum margin between the positive scores and neg-

ative scores.

To learn class ties between relations, we extend

the formula (9) to make joint extraction and we

propose three ranking loss functions with variants

of combining sentences. Followings are the pro-

posed loss functions:

• with AVE (Variant-1) We define the margin-

based loss function with option of AVE to aggre-

gate sentences as follows:

G[ave] =
∑

c+∈Lk

ρ[0, σ+ −F(s, c+)]+

+ρ|Lk|[0, σ
− + F(s, c−)]+ (10)

where [0, · ]+ = max(0, · ); ρ is the rescale fac-

tor, σ+ is positive margin and σ− is negative mar-

gin. Similar to Santos et al. (2015) and Wang et al.

(2016), this loss function is designed to rank pos-

itive classes higher than negative ones controlled

by the margin of σ+ − σ−. In reality, F(s, c+)
will be higher than σ+ and F(s, c−) will be lower

than σ−. In our work, we set ρ as 2, σ+ as 2.5 and

σ− as 0.5 adopted from Santos et al. (2015).

Similar to Weston et al. (2011) and Santos et al.

(2015), we update one negative class at every

training round but to balance the loss between

positive classes and negative ones, we multiply

|Lk| before the right term in function (10) to ex-

pand the negative loss. We apply mini-bach based

stochastic gradient descent (SGD) to minimize the

loss function. The negative class is chosen as the

one with highest score among all negative classes

(Santos et al., 2015), i.e.:

c− = argmax
c∈L−Lk

F(s, c) (11)

• with ATT (Variant-2) Now we define the loss

function for the option of ATT to combine sen-

tences as follows:

G[att] =
∑

c+∈Lk

(ρ[0, σ+ −F(sc
+

, c+)]+

+ρ[0, σ− + F(sc
+

, c−)]+) (12)

where sc means the attention weights of represen-

tation s are merged by comparing sentence embed-

dings with relation class c and c− is chosen by the

following function:

c− = argmax
c∈L−Lk

F(sc
+

, c) (13)

which means we update one negative class in ev-

ery training round. We keep the values of ρ, σ+

and σ− same as values in function (10).

According to this loss function, we can see

that: for each class c+ ∈ Lk, it will capture the

most related information from sentences to merge

sc
+

, then rank F(sc
+

, c+) higher than all negative

scores which each is F(sc
+

, c−) (c− ∈ L − Lk).

We use the same update algorithm to minimize this

loss.

• Extended with ATT (Variant-3) According to

function (12), for each c+, we only select one neg-

ative class to update the parameters, which only

considers the connections between positive classes

and negative ones, ignoring connections between

positive classes, so we extend function (12) to bet-

ter exploit class ties by considering the connec-

tions between positive classes. We give out the

extended loss function as follows:

G[Exatt] =
∑

c∗∈Lk

(
∑

c+∈Lk

ρ[0, σ+ −F(sc
∗

, c+)]+

+ρ[0, σ− + F(sc
∗

, c−)]+) (14)
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Pro. Training Test

SemE. 17.63% 16.71%

Riedel 72.52% 96.26%

Table 2: The proportions of NR samples from

SemEval-2010 Task 8 dataset and Riedel dataset.

Similar to function (13), we select c− as follows:

c− = argmax
c∈L−Lk

F(sc
∗

, c) (15)

and we use the same method to update this loss

function as discussed above. From the function

(14), we can see that: for c∗ ∈ Lk, after merging

the bag representation s with c∗, we share s with

all the other positive classes and update the class

embeddings of other positive classes with s, in this

way, the connections between positive classes can

be captured and learned by our model.

In loss function (10), (12) and (14), we com-

bine losses from all positive labels to make joint

extraction to capture the class ties among rela-

tions. Suppose we make separated extraction, the

losses from positive labels will be divided apart

and will not get enough information of connec-

tions between positive labels, comparing to joint

extraction. Connections between positive labels

and negative ones are exploited by controlling

margins: σ+ and σ−.

3.4 Relieving Impact of NR

In relation extraction, the dataset will always

contain certain negative samples which do not ex-

press relations classified as NR (not relation). Ta-

ble 2 presents the proportion of NR samples in

SemEval-2010 Task 8 dataset2 (Erk and Strappa-

rava, 2010) and dataset from Riedel et al. (2010),

which shows almost data is about NR in the latter

dataset. Data imbalance will severely affect the

model training and cause the model only sensitive

to classes with high proportion (He and Garcia,

2009).

In order to relieve the impact of NR in DS based

relation extraction, we cut the propagation of loss

from NR, which means if relation c is NR, we set

its loss as 0. Our method is similar to Santos et al.

(2015) with slight variance. Santos et al. (2015)

directly omit the NR class embedding, but we keep

it. If we use ATT method to combine informa-

tion across sentences, we can not omit NR class

2This is a dataset for relation extraction in traditional su-
pervision framework.

Algorithm 1: Merging loss function of

Variant-3

input : L, (tk, Lk, Xk) and Sk;

output: G[Exatt];

1 G[Exatt] ← 0;

2 for c∗ ∈ Lk do

3 Merge representation sc
∗

by function (5),

(6), (7);

4 for c+ ∈ Lk do

5 if c+ is not NR then

6 G[Exatt] ← G[Exatt] + ρ[0, σ+ −

F(sc
∗

, c+)]+;

7 c− ← argmaxc∈L−Lk
F(sc

∗

, c);
8 G[Exatt] ←

G[Exatt] + ρ[0, σ− + F(sc
∗

, c−)]+;

9 return G[Exatt];

embedding according to function (6) and (7), on

the contrary, it will be updated from the negative

classes’ loss.

In Algorithm 1, we give out the pseudocodes

of merging loss with Variant-3 and considering to

relieve the impact of NR.

4 Experiments

4.1 Dataset and Evaluation Criteria

We conduct our experiments on a widely used

dataset, developed by Riedel et al. (2010) and has

been used by Hoffmann et al. (2011), Surdeanu

et al. (2012), Zeng et al. (2015) and Lin et al.

(2016). The dataset aligns Freebase relation facts

with the New York Times corpus, in which train-

ing mentions are from 2005-2006 corpus and test

mentions from 2007.

Following Mintz et al. (2009), we adopt held-

out evaluation framework in all experiments. Ag-

gregated precision/recall curves are drawn and

precision@N (P@N) is reported to illustrate the

model performance.

4.2 Experimental Settings

Word Embeddings. We use a word2vec tool

that is gensim3 to train word embeddings on NYT

corpus. Similar to Lin et al. (2016), we keep the

words that appear more than 100 times to construct

word dictionary and use “UNK” to represent the

other ones.

3http://radimrehurek.com/gensim/models/word2vec.html
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Parameter Name Symbol Value

Window size dwin 3
Sentence. emb. dim. df 690
Word. emb. dim. d1 50
Position. emb. dim. d2 5
Batch size B 160
Learning rate λ 0.03
Dropout pos. p 0.5

Table 3: Hyper-parameter settings.

Hyper-parameter Settings. Three-fold valida-

tion on the training dataset is adopted to tune the

parameters following Surdeanu et al. (2012). We

use grid search to determine the optimal hyper-

parameters. We select word embedding size from

{50, 100, 150, 200, 250, 300}. Batch size is tuned

from {80, 160, 320, 640}. We determine learning

rate among {0.01, 0.02, 0.03, 0.04}. The window

size of convolution is tuned from {1, 3, 5}. We

keep other hyper-parameters same as Zeng et al.

(2015): the number of kernels is 230, position em-

bedding size is 5 and dropout rate is 0.5. Table 3

shows the detailed parameter settings.

4.3 Comparisons with Baselines

Baseline. We compare our model with the fol-

lowing baselines:

• Mintz (Mintz et al., 2009) the original dis-

tantly supervised model.

• MultiR (Hoffmann et al., 2011) a multi-

instance learning based graphical model which

aims to address overlapping relation problem.

• MIML (Surdeanu et al., 2012) also solv-

ing overlapping relations in a multi-instance multi-

label framework.

• PCNN+ATT (Lin et al., 2016) the state-of-

the-art model in dataset of Riedel et al. (2010)

which applies ATT to combine the sentences.

Results and Discussion. We compare our three

variants of loss functions with the baselines and

the results are shown in Figure 3. From the re-

sults we can see that: (1) Rank + AVE (Variant-

1) achieves comparable results with PCNN+ATT;

(2) Rank + ATT (Variant-2) and Rank + ExATT

(Variant-3) significantly outperform PCNN + ATT

with much higher precision and slightly higher re-

call in whole view; (3) Rank + ExATT (Variant-3)

exhibits the best performances comparing with all

the other methods including PCNN + ATT, Rank

+ AVE and Rank + ATT.
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Figure 3: Performance comparison of our model

and the baselines.
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Figure 4: Results for impact of joint extraction and

class ties with methods of Rank + AVE, Rank +

ATT and Rank + ExATT under the setting of re-

lieving impact of NR.

4.4 Impact of Joint Extraction and Class Ties

In this section, we conduct experiments to re-

veal the effectiveness of our model to learn class

ties with three variant loss functions mentioned

above, and the impact of class ties for relation ex-

traction. As mentioned above, we make joint ex-

traction to learn class ties, so to achieve the goal

of this set of experiments, we compare joint ex-

traction with separated extraction. To make sep-

arated extraction, we divide the labels of entity

tuple into single label and for one relation label

we only select the sentences expressing this rela-

tion, then we use this dataset to train our model

with the three variant loss functions. We conduct

experiments with Rank + AVE (Variant-1), Rank

+ ATT (Variant-2) and Rank + ExATT (Variant-

3) relieving impact of NR. Aggregated P/R curves

are drawn and precisions@N (100, 200, · · · , 500)

are reported to show the model performances.
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P@N(%) 100 200 300 400 500 Ave.

R.+AVE+J. 81.3 76.4 74.6 69.6 66.0 73.6

R.+AVE+S. 82.4 79.6 74.6 74.4 69.9 76.2

R.+ATT+J. 87.9 84.3 78.0 74.9 70.3 79.1

R.+ATT+S. 82.4 79.1 75.9 71.9 69.5 75.7

R.+ExATT+J. 83.5 82.2 78.7 77.2 73.1 79.0

R.+ExATT+S. 82.4 82.7 79.4 74.2 69.2 77.6

Table 4: Precisions for top 100, 200, 300, 400, 500
and average of them for impact of joint extraction

and class ties.
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Figure 5: Results for comparisons of variant joint

extractions.

Experimental results are shown in Figure 4 and

Table 4. From the results we can see that: (1) For

Rank + ATT and Rank + ExATT, joint extraction

exhibits better performance than separated extrac-

tion, which demonstrates class ties will improve

relation extraction and the two methods are effec-

tive to learn class ties; (2) For Rank + AVE, sur-

prisingly joint extraction does not keep up with

separated extraction. For the second phenomenon,

the explanation may lie in the AVE method to ag-

gregate sentences will incorporate noise data con-

sistent with the finding in Lin et al. (2016). When

make joint extraction, we will combine all sen-

tences containing the same entity tuple no matter

which class type is expressed, so it will engender

much noise if we only combine them equally.

4.5 Comparisons of Variant Joint Extractions

To make joint extraction, we have proposed

three variant loss functions including Rank + AVE,

Rank + ATT and Rank + ExATT in the above dis-

cussion and Figure 3 shows that the three vari-

ants achieve different performances. In this ex-

periment, we aim to compare the three variants

in detail. We conduct the experiments with the

three variants under the setting of relieving im-

P@N(%) 100 200 300 400 500 Ave.

R.+AVE 81.3 76.4 74.6 69.6 66.0 73.6

R.+ATT 87.9 84.3 78.0 74.9 70.3 79.1

R.+ExATT 83.5 82.2 78.7 77.2 73.1 79.0

Table 5: Precisions for top 100, 200, 300, 400, 500
and average of them for Rank + AVE, Rank + ATT

and Rank + ExATT.
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Figure 6: Results for impact of relation NR with

methods of Rank + AVE, Rank + ATT and Rank +

ExATT. “+NR” means not relieving impact of NR.

pact of NR and joint extraction. We draw the P/R

curves and report the top N (100, 200, · · · , 500)

precisions to compare model performance with the

three variants.

From the results as shown in Figure 5 and Ta-

ble 5 we can see that: (1) Comparing Rank + AVE

with Rank + ATT, from the whole view, they can

achieve the similar maximal recall point, but Rank

+ ATT exhibits higher precision in all range of

recall; (2) Comparing Rank + ATT with Rank +

ExATT, Rank + ExATT achieves much better per-

formance with broader range of recall and higher

precision in almost range of recall.

4.6 Impact of NR Relation

The goal of this experiment is to inspect how

much relation of NR can affect the model perfor-

mance. We use Rank + AVE, Rank + ATT, Rank

+ ExATT under the setting of relieving impact of

NR or not to conduct experiments. We draw the

aggregated P/R curves as shown in Figure 6, from

which we can see that after relieving the impact

of NR, the model performance can be improved

significantly.

Then we further evaluate the impact of NR for

convergence behavior of our model in model train-
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Figure 7: Impact of NR for model convergence.

“+NR” means not relieving NR impact; “-NR” is

opposite.

ing. Also with the three variant loss functions, in

each iteration, we record the maximal value of F-

measure 4 to represent the model performance at

current epoch. Model parameters are tuned for

15 times and the convergence curves are shown in

Figure 7. From the result, we can find out: “+NR”

converges quicker than “-NR” and arrives to the fi-

nal score at the around 11 or 12 epoch. In general,

“-NR” converges more smoothly and will achieve

better performance than “+NR” in the end.

4.7 Case Study

Joint vs. Sep. Extraction (Class Ties). We

randomly select an entity tuple (Cuyahoga County,

Cleveland) from test set to see its scores for every

relation class with the method of Rank + ATT un-

der the setting of relieving impact of NR with joint

extraction and separated extraction. This entity tu-

ple have two relations: /location/./county seat and

/location/./contains, which derive from the same

root class and they have weak class ties for they

all relating to topic of “location”. We rescale the

scores by adding value 10. The results are shown

in Figure 8, from which we can see that: un-

der joint extraction setting, the two gold relations

have the highest scores among the other relations

but under separated extraction setting, only /loca-

tion/./contains can be distinguished from the neg-

ative relations, which demonstrates that joint ex-

traction is better than separated extraction by cap-

turing the class ties between relations.

4F = 2 ∗ P ∗R/(P +R)
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Figure 8: The output scores for every relation

with method of Rank + ATT. The top is under joint

extraction setting; the bottom is under separated

extraction.

5 Conclusion and Future Works

In this paper, we leverage class ties to enhance

relation extraction by joint extraction using pair-

wise ranking combined with CNN. An effective

method is proposed to relieve the impact of NR for

model training. Experimental results on a widely

used dataset show that leveraging class ties will

enhance relation extraction and our model is ef-

fective to learn class ties. Our method significantly

outperforms the baselines.

In the future, we will focus on two aspects: (1)

Our method in this paper considers pairwise inter-

sections between labels, so to better exploit class

ties, we will extend our method to exploit all other

labels’ influences on each relation for relation ex-

traction, transferring second-order to high-order

(Zhang and Zhou, 2014); (2) We will focus on

other problems by leveraging class ties between

labels, specially on multi-label learning problems

(Zhou et al., 2012) such as multi-category text cat-

egorization (Rousu et al., 2005) and multi-label

image categorization (Zha et al., 2008).
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