
Jointly Learning Word Embeddings and Latent Topics

Bei Shi
Department of Systems Engineering

and Engineering Management
�e Chinese University of Hong Kong

Hong Kong
bshi@se.cuhk.edu.hk

Wai Lam
Department of Systems Engineering

and Engineering Management
�e Chinese University of Hong Kong

Hong Kong
wlam@se.cuhk.edu.hk

Shoaib Jameel
School of Computer Science and

Informatics
Cardiff University

Cardiff, UK
JameelS1@cardiff.ac.uk

Steven Schockaert
School of Computer Science and

Informatics
Cardiff University

Cardiff, UK
SchockaertS1@cardiff.ac.uk

Kwun Ping Lai
Department of Systems Engineering

and Engineering Management
�e Chinese University of Hong Kong

Hong Kong
kplai@se.cuhk.edu.hk

ABSTRACT

Word embedding models such as Skip-gram learn a vector-space

representation for each word, based on the local word collocation

pa�erns that are observed in a text corpus. Latent topic models,

on the other hand, take a more global view, looking at the word

distributions across the corpus to assign a topic to each word oc-

currence. �ese two paradigms are complementary in how they

represent the meaning of word occurrences. While some previous

works have already looked at using word embeddings for improving

the quality of latent topics, and conversely, at using latent topics

for improving word embeddings, such “two-step” methods cannot

capture the mutual interaction between the two paradigms. In this

paper, we propose STE, a framework which can learn word embed-

dings and latent topics in a unified manner. STE naturally obtains

topic-specific word embeddings, and thus addresses the issue of

polysemy. At the same time, it also learns the term distributions

of the topics, and the topic distributions of the documents. Our

experimental results demonstrate that the STE model can indeed

generate useful topic-specific word embeddings and coherent latent

topics in an effective and efficient way.
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1 INTRODUCTION

Word embeddings, also known as distributed word representa-

tions, are a popular way of representing words in Natural Lan-

guage Processing (NLP) and Information Retrieval (IR) applications

[7, 22, 27, 35, 39]. Essentially, the idea is to represent each word

as a vector in a low-dimensional space, in a way which reflects

the semantic, and sometimes also syntactic, relationships between

the words. One natural requirement is that the vectors of similar

words are themselves also similar (e.g. in terms of cosine similar-

ity or Euclidean distance). In addition, in some models, several

kinds of linear regularities are observed. For example, in Skip-gram

[21], one of the most commonly used word embedding models,

analogous word pairs tend to form parallelograms in the space, a

notable example being vec(“man”) - vec(“king”) ≈ vec(“woman”)

- vec(“queen”). Most word embedding models rely on statistics

about how o�en each word occurs within a local context window

of another word, either implicitly [22] or explicitly [27, 39].

Topic models, such as Latent Dirichlet Allocation (LDA) [5],

assign a discrete topic to each word occurrence in a corpus. �ese

topics can be seen as groups of semantically related words. In this

sense, like word embeddings, topic models can be viewed as models

for capturing the meaning of the words in a corpus. However, there

are several key differences between word embeddings and topic

models, which make them complementary to each other. First,

word embeddings are continuous representations, whereas topic

assignments are discrete. Second, word embeddings are learned

from local context windows, whereas topic models take a more

global view, in the sense that the topic which is assigned to a given

word occurrence (in the case of LDA) equally depends on all the

other words that appear in the same document. Several researchers

have already exploited this complementary representation between

word embeddings and topic models.



SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan B. Shi et. al.

On the one hand, topic models can be used to improve word

embeddings, by addressing the problem of polysemous words. Stan-

dard word embedding models essentially ignore ambiguity, mean-

ing that the representation of a word such as “apple” is essentially

a weighted average of a vector that would intuitively represent the

fruit and a vector that would intuitively represent the company. A

natural solution, studied in Liu et al. [19], is to learn different word

embeddings for each word-topic combination. In particular, they

propose a model called Topical Word Embeddings (TWE), which

first employs the standard LDA model to obtain word-topic assign-

ments. Regarding each topic as a pseudo-word, they then learn

embeddings for both words and topics. Finally, a given word-topic

combination is represented as the concatenation of the word vector

and the topic vector.

On the other hand, word embeddings can also be used to improve

topic models. For example, Nguyen et al. [26] suggest to model

topics as mixtures of the usual Dirichlet multinomial model and

a word embedding component. It is shown that the top words

associated with the resulting topics are semantically more coherent.

Word embeddings can also be used to help with identifying topics

for short texts or small collections. For example, Li et al. [16]

propose a model which can promote semantically related words,

identified by the word embedding, by using the generalized Polya

urn model during the sampling process for a given topic. In this

way, the external knowledge about semantic relatedness that is

captured by the word embedding is exploited to alleviate sparsity

problems.

While combining word embeddings and topic models is clearly

beneficial, existing approaches merely apply a pipeline approach,

where either a standard word embedding is used to improve a

topic model, or a standard topic model is used to learn be�er word

embeddings. Such two-step approaches cannot capture the mutual

reinforcement between the two types of models. For example,

knowing that “apple” occurs in two topics can help us to learn be�er

word embeddings, which can in turn help us to learn be�er topic

assignments, etc. �e research question which we address in this

paper is whether a unified framework, in which topic assignments

and word embeddings are jointly learned, can yield be�er results

than the existing two-step approaches. �e unified framework

we propose, named STE, can learn different topic-specific word

embeddings, and thus addresses the problem of polysemy, while at

the same time generating the term distributions of topics and topic

distributions of documents. Our hypothesis is that this will lead

both to more meaningful embeddings and more coherent topics,

compared to the current state-of-the-art.

From a technical point of view, there are two challenges that need

to be addressed. �e first challenge concerns the representation

of topics with embedding vectors, and the mechanism by which

words are generated from such topics. Clearly, the commonly

used multinomial distribution is inappropriate in our se�ing. �e

second challenge is to obtain the embedding vectors efficiently.

Because of the huge amount of parameters, the traditional Skip-

grammodel exploits the Hierarchical So�max Tree [23] or Negative

Sampling method to maximize the likelihood. When latent topics

are considered, however, this alone does not lead to a sufficiently

efficient method.

To address the first challenge, we use a generating function

that can predict surrounding words, given a target word and its

topic. �e probability that a given word is generated is based on

the inner product of a topic-specific embedding of that word and

a topic-specific embedding of the target word. �is generating

function also allows us to identify the top-ranked words for each

topic, which is important for the interpretability of the model. To

address the second challenge, we design a scalable EM-Negative

Sampling method. �is inference method iterates over every skip-

gram (i.e. each local context window), each time sampling the

corresponding negative instances. In the E-step, we evaluate the

posterior topic distribution for each skip-gram. In the M-step, we

update the topic-specific embeddings and the topic distribution

of the documents. We consider two variants of our model, which

make different assumptions on the consistency of topics among the

word pairs in a skip-gram.

We compare our model with existing hybrid models and perform

extensive experiments on the quality of the word embeddings and

latent topics. We also evaluate our performance on the downstream

application of document classification. �e experimental results

demonstrate that our model can generate be�er word embeddings

and more coherent topics than the state-of-the-art models.

2 RELATED WORK

In traditional vector space models, individual words are encoded

using the so-called one-hot representation, i.e. a high-dimensional

vector with all zeroes except in one component, corresponding

to that word [1]. Such representations suffer from the curse of

dimensionality, as there are as many components in these vectors

as there are words in the vocabulary. Another important drawback

is that semantic relatedness of words cannot be modelled using

such representations. To address these shortcomings, Rumelhart

et al. [32] propose to use distributed word representation instead,

i.e., word embeddings. Several techniques for generating such

representations have been investigated. For example, Bengio et

al. [3, 4] propose a neural network architecture for this purpose.

Later, Mikolov et al. [21] propose twomethods that are considerably

more efficient, namely Skip-gram and CBOW. �is has made it

possible to learn word embeddings from large data sets, which has

led to the current popularity of word embeddings. Word embedding

models have been applied to many tasks, such as named entity

recognition [38], word sense disambiguation [8, 13], parsing [31],

and information retrieval [29].

Basic word embedding methods perform poorly for polysemous

words such as “apple” and “bank”, as the vectors for such words

intuitively correspond to a weighted average of the vectors that

would normally be associated with each of the individual senses.

Several approaches have been proposed to address this limitation,

by learning multiple vectors for each word, one corresponding to

each sense [28, 30, 33]. For example, Huang et al. [12] exploit global

properties such as term frequency and document frequency to learn

multiple embeddings via neural networks. Tian et al. [37] introduce

a latent variable to denote the distribution of multiple prototypes

for each word in a probabilistic manner. Neelakantan et al. [24]

propose a non-parametric way to evaluate the number of senses
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for each word. Bartunov et al. [2] also propose a non-parametric

Bayesian method to learn the required number of representations.

Note that our model is different from these models. First, the

aforementioned models consider the prototype vectors for each

word in isolation, intuitively by clustering the local contexts of

each word. �is means that these models are limited in how they

can model the correlations between the multiple senses of differ-

ent words. Second, these models do not capture the correlations

between the prototypes of words and topics of documents. While

there are some word embedding models that do consider topics, to

the best of our knowledge no approaches have been studied that

exploit the mutual reinforcement between latent topics and word

embeddings. For example, Liu et al. [19] concatenate pre-trained

topic vectors with the word vectors to represent word prototypes.

Building on this idea, Liu et al. [18] combine topic vectors and word

vectors via a neural network.

In traditional topic models, such as LDA [5] and PLSA [11], a

document is represented as a multinomial distribution of topics, and

the topic assignment of a word only depends on that multinomial

distribution. In the Bi-gram Topic Model [40, 41], the topic of a

given word additionally depends on the topic of the preceding word.

Our model is related to this bi-gram model, in the sense that the

objective functions of both models are based on a similar idea.

Nguyen et al. [26] propose a topic model named LFTM, which

generates vectors from a pre-trained word embedding, instead

of words. In this way, the model can benefit from the semantic

relationships betweenwords to generate be�er topics. �eGaussian

LDA model from Das et al. [9], similarly associates with each topic

a Gaussian in the word embedding, from which individual word

vectors are sampled. Li et al. [16] propose a model which can

promote semantically related words (given a word embedding)

within any given topic. Note that the above models all rely on a

pre-trained word embedding. Li et al [17] propose a model which

learns an embedding link function to connect the word vectors and

topics. However, their model mainly focuses on the distributed

representation of each topic, instead of words, and generates topics

as an abstract vector, thus losing the interpretability of topics.

3 MODEL DESCRIPTION

In this section, we present the details of our model, which we call

Skip-gram Topical word Embedding (STE).

3.1 Representing Topics and Embeddings

Each wordw is associated with an input matrixUw and an output

matrixVw , both of which have dimension K ×s , with K the number

of topics and s the number of dimensions in the word embedding.

�e fact that Uw and Vw are matrices, rather than vectors, reflects

our modelling assumption that a word w may have a different

representation under each topic.
As in standard topic models, a document will correspond to a

probability distribution over topics. In contrast to standard topics
models, however, topics in our case are more than probability dis-
tributions over words. In particular, for a document d and some
central wordwt under consideration, the probability of predicting
a surrounding wordwt+j depends on the topic of the wordwt . For
example, suppose that the central word is “apple”; if its topic relates
to technology, words such as “technology” might be predicted with

high probability, whereas if its topic relates to fruit, words such as
“juice” might instead be predicted. In particular, we assume that the
probability of predicting the wordwt+j given the wordwt under
the topic z is evaluated as follows:

p (wt+j |wt , d ) =
∑

z

p (wt+j |wt , z )p (z |d ) (1)

where the summation is over the set of all K topics, p (.|d ) is the

topic distribution of the document d , and we assume that j is within

the window size.

We consider two variants, which differ in how the probability

p (wt+j |wt , z) is evaluated. In the first variant, called STE-Same, we

assume that for each skip-gram 〈wt+j ,wt 〉, the wordswt+j andwt

belong to the same topic z:

p (wt+j |wt , z) =
exp(Vwt+j ,z ·Uwt ,z )∑
w ′∈Λ exp(Vw ′,z ·Uwt ,z )

(2)

whereΛ is the vocabulary of thewhole corpus. Computing the value

p (wt+j |wt , z) based on Eq. 2 is not feasible in practice, given that

the computational cost is proportional to the size of Λ. However,

similar as for the standard Skip-grammodel, we can rely on negative

sampling to address this (see Section 3.2).

In the second variant, called STE-Diff, we assume that for each

skip-gram 〈wt+j ,wt 〉, the topic assignment zt+j of word wt+j is

independent of the topic assignment zt of wordwt . We then have:

p (wt+j |wt , d ) =

K∑

zt =1

K∑

zt+j=1

p (wt+j |wt , zt , zt+j )p (zt , zt+j |d )

=

K∑

zt =1

K∑

zt+j=1

p (wt+j |wt , zt , zt+j )p (zt |d )p (zt+j |d )

(3)

�e probability that the wordwt+j is generated, given the central

word wt and the topic assignments zt+j and zt is then evaluated

as follows:

p (wt+j |wt , zt , zt+j ) =
exp(Vwt+j ,zt+j ·Uwt ,zt )∑
w ′∈Λ exp(Vw ′,zt+j ·Uwt ,zt )

(4)

Clearly, both variants have complementary advantages and draw-

backs. �e STE-Same model will lead to more coherent topics, but

it will not allow us to measure the similarity between words across

different topics. �e STE-Diff model, on the other hand, does allow

us to evaluate such inter-topic similarities, but the resulting topics

may be less coherent. In practice, we could of course also consider

intermediate approaches, where zt+j = zj is assumed to hold with

a high probability, rather than being imposed as a hard constraint.

3.2 Algorithm Design

We need an inference method that can learn, given a corpus, the

values of the model parameters, i.e. the word embeddings Uw,z

and Vw,z corresponding to each topic z, as well as the topic dis-

tribution p (z |d ) for each document d . Our inference framework

combines the Expectation-Maximization (EM) method with the neg-

ative sampling scheme. It is summarized for the STE-Same variant

in Algorithm 1. �e inference method for STE-Diff is analogous. In

each iteration of this algorithm, we update the word embeddings

and then evaluate the topic distribution p (z |d ) of each document.

To update the word embeddings, we iterate over each skip-gram,

sample several negative instances and then compute the posterior
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Algorithm 1 EM negative sampling for STE-Same

1: InitializeU , V , p (z |d )

2: for out iter = 1 to Max Out iter do

3: for each document d in D do

4: for each skip-gram 〈wt+j ,wt 〉 in d do

5: Sample negative instances from the distribution P.

6: Update p (wt+j |wt , z), p (zk |d,wt+j ,wt ) by Eq. 9

and Eq. 6 respectively.

7: for in iter = 1 to Max In iter do

8: UpdateU , V using the gradient decent method

with Eq. 10 and Eq. 11

9: end for

10: end for

11: Update p (z |d ) using Eq. 8

12: end for

13: end for

topic distribution for the skip-gram. �en we use the EM algorithm

to optimize the log-likelihood of the skip-grams in the document.

In the E-step, we use the Bayes rule to evaluate the posterior topic

distribution and derive the objective function. In the M-step, we

maximize the objective function with the gradient descent method

and update the corresponding embeddingsUw and Vw .

�e overall training objective measures how well we can predict

surrounding words, taking into account the topic distributions of

the documents. For each document d , given a sequence of words

w1,w2, · · · ,wTd , the log-likelihood Ld is defined as follows.

Ld =

Td∑

t=1

∑

−c≤j≤c
j,0

logp (wt+j |wt ,d ) (5)

where c is the size of the trainingwindows. �e overall log-likelihood

is then given by L =
∑
d Ld .

In the E-step, the topic distribution for each skip-gram in d can

be evaluated using the Bayes rule as:

p (z′
k
|d,wt ,wt+j ) =

p (wt+j |z
′
k
,wt )p (z

′
k
|d )

∑
z p (wt+j |z,w j )p (z |d )

(6)

In the M-step, given the posterior topic distribution Eq. 6, the goal

is to maximize the following Q function:

Q =
∑

d

Td∑

t=1

∑

−c≤j≤c
j,0

∑

z

p (z |d, wt , wt+j )loд (p (z |d )p (wt+j |z, wt ))

=

∑

d

∑

{wt ,wt+j }∈Pd

n (d, wt , wt+j )
∑

z

p (z |d, wt , wt+j )

[log(z |d ) + log(p (wt+j |z, wt ))]

(7)

where Pd is the set of the skip-grams in d . n(d,wt ,wt+j ) denotes

the number of the skip-gram 〈wt ,wt+j 〉 in d . Using the Lagrange

multiplier, we can obtain the update rule of p (z |d ), satisfying the

normalization constrains that
∑
z p (z |d ) = 1 for each document d :

p (z |d ) =

∑
{wt ,wt+j }∈Pd n(d,wt ,wt+j )p (z |d,wt ,wt+j )∑

{wt ,wt+j }∈Pd n(d,wt ,wt+j )
(8)

As already mentioned, it is not feasible to directly optimizeUw,z

and Vw,z due to the term
∑
w ∈Λ exp (Vw,z ·Uw,z ). Inspired by the

negative sampling scheme, we therefore estimate the probability of

predicting the context word p (wt+j |wt , z) as follows:

logp (wt+j |wt , z ) ∝ logσ (Vwt+j ,z ·Uwt ,z )

+

n∑

i=1

Ewi∼P [logσ (−Vwi ,z ·Uwt ,z )]
(9)

where σ (x ) = 1/(1 + exp(−x )) andwi is a negative instance which

is sampled from the distribution P (.). Mikolov et al. [21] have

investigated many choices for P (w ) and found that the best P (w ) is

equal to the unigram distribution Unigram(w ) raised to the 3/4rd

power. We exploit the same se�ing of P (w ) in [21]. Evaluating

logp (wt+j |wt , z) for each term in the overall objective function,

we obtain the following gradients: �erefore, the gradients of the

objective function with respect to U and V can be formulated as

follows:

∂L

Uwt ,z
= −(ξw ′wt

− σ (Vw ′,z ·Uwt ,z )) ·Vw ′,z · P (z |d,wt ,w
′) (10)

∂L

Vw ′,z
= −(ξw ′wt

− σ (Vw ′,z ·Uwt ,z )) ·Uwt ,z · P (z |d,wt ,w
′) (11)

where

ξw ′wt
=





1, if w ′is a word in the context window of wt

0, otherwise
(12)

�e difference between the updated rules ofU andV and those in

the original Skip-grammodel is that wemaximize P (zk |d,wt ,wt+j )·

log P (wt+j |wt , z) instead of log P (wt+j |wt ) for each skip-gram. �is

is in accordance with the fact that our model uses the topic distri-

bution to predict context words.

LBTM =
∑

d

Td∑

t=1

logp (wt+1 |wt ,d ) (13)

Comparing the original likelihood of Bi-gramTopicModel (BTM) [40]

in Eq. 13 with ours, we can see the connection between our STE

model and BTM. Specifically the objective functions in Eq. 5 and

Eq. 13 share similar form. Both of them are related to the product

of conditional probabilities which predict the next word given the

preceding word no ma�er skip-gram or bi-gram. Such connection

provides an insight for our model indicating that it is capable of dis-

covering good topics and identifying high-quality word embedding

vectors jointly.

3.3 Topic Generation

One important aspect of topic models is their interpretability, where

the semantic meaning of a topic can be naturally perceived by ex-

amining the top ranked words. In standard topic models, these

top-ranked words are simply those that maximize P (w |z) for the

multinomial distribution associated with the considered topic z. In

our model, on the other hand, we can evaluate the probability of

p (wt+j |z,wt ) for each skip-gram 〈wt ,wt+j 〉. �erefore, we repre-

sent each topic as the ranked list of bi-grams. Each bi-gram is sorted

using Eq. 9 and the top-ranked bi-grams are selected from the rank-

ing list. �e original time complexity of calculating p (wt+1 |z,wt )

is |Λ|2 × K , where |Λ| is the size of the vocabulary, i.e., around 105.

To make it more efficient, we first collect all the bi-grams in the

corpus and evaluate the corresponding probability p (wt+1 |z,wt ).

�en the time complexity is reduced to be linear to the number of
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bi-grams. Note that in Eq. 9, we do not need to consider the part

related to the sampled negative instances for each bi-gram, i.e., the

summation expression, as we can assume it to be constant.

3.4 Folding-in for New Documents

Given a new document d ′, our algorithm can infer the topic dis-

tribution of d ′. Given U and V learned from the training process,

we fix the values of U and V , and then only update p (z |d ′) using

Algorithm 1.

For each word w in d ′, the posterior topic distribution of w ,

p (z |w,d ′) can also be inferred. We consider that the topic distribu-

tion ofw is related to not only its context words but also the topic

distribution of d ′. �erefore, using the Bayes rule, we have:

logp (z |w, cw ,d
′) ∝ logp (z |d ′) + logp (cw |z,w,d

′) (14)

where cw is the set of the context words ofw . �e likelihood term

logp (cw |z,w,d
′) can be defined as the sum of logp (wt+j |wt , z),

wherewt+j belongs to the contextwords. �e probabilityp (wt+j |wt , z)

can be computed in Eq. 9. �e term p (z |d ′) is the corresponding

prior probability.

4 EXPERIMENTS

In this section, we present a detailed analysis of the performance of

our method. We first present a qualitative analysis of the learned

topic-specific embeddings. We then focus on evaluating the quality

of the word embedding on a standard word similarity benchmark.

Subsequently, we evaluate the quality of the identified topics, fo-

cusing in particular on their coherence. Finally, as an example of a

downstream task, we analyze the performance of our model in a

document classification task.

4.1 �alitative Analysis

To illustrate the interactions between word embeddings and latent

topics, we visualize the results of our STE-Same and STE-Diff mod-

els in Figures 1a and 1b respectively. For this figure, and in the

following experiments, we have used the Wikipedia dump from

April 2010 [34], which has previously been used for other word em-

bedding models [12]. We have chosen the number of topics K = 10.

�e number of outer iterations and inner iterations are both set to

15. �e dimension of the embedding vectors was chosen as 400, in

accordance with [19]. For each skip-gram, we set the window size

to 10 and sample 8 negative instances following [37]. To generate

the visualization in Figure 1, we have used the t-SNE algorithm [20],

applied to the vectors of the 500 most frequent words.

In Figure 1, each node denotes a topic-specific word vector. To

illustrate how polysemy is handled, we show labels for the word

“party”, as an example of a polysemous word, and for the word

“government”, as an example of a monosemous word. �e labels

show both the word and topic index, separated by “#”. In Figure 1a,

we can observe that our STE-Same model divides the whole space

into K disjoint subspaces, with each subspace representing a topic.

Within each subspace the words with similar meanings are close.

Note that the similarity of the words “government” and “party”

depend on the considered sense for the la�er word. Accordingly, we

see that “government” and “party” are close to each other in some

subspaces, but far apart in others. For example, in the subspace of

Topic 0, the position of the word “party” is far from the position

of the word “government”, which suggests that the meaning of

“party” under Topic 0 is not related to a political party. In contrast,

for Topics 4, 6 and 8, the vectors for “party” and “government” are

similar, suggesting that “party” in these spaces is regarded as a

political organization.

On the other hand, Figure 1b illustrates how STE-Diff generates a

more universal space in which word embeddings from different top-

ics co-exist in this shared space. Words from different topics with a

similar meaning are represented using similar vectors. In particular,

for monosemous words such as “government” the word vectors are

approximately the same. For the word “party”, on the other hand,

we see three clearly distinct representations, only one of which

(party#2) is close to the vectors for “government”. Moreover, we

found that “party#3” represents the semantic sense of community

because it is close to the word “organization” and the word “group”.

�e representations of the word “party” from the other topics are

approximately the same. �ey are close to the representations of

the word “summer” and the word “shout”. It indicates that the word

“party” represents the meaning about the concept of human activity.

From the comparison between Figure 1a and Figure 1b, the STE-

Samemodel and the STE-Diffmodel can be regarded as two different

paradigms derived from the treatment of topic consistency in a skip-

gram. �e advantage of the STE-Diff model over the STE-Same

model is that the STE-Diff model can support be�er the evaluation

of the similarity of words from different topics. For example, the

senses of “party” under Topics 4 and 6 are very close to “government”

in the STE-Same model. However, when we evaluate the similarity

between “party#4” and “government#6”, we find that the distance

cannot reflect very well the word similarity. Nevertheless, this STE-

Same model can still achieve comparable performance with existing

models in the quantitative word embedding evaluation experiment

as presented in the next subsection. On the other hand, our STE-

Diff model can handle very well the evaluation of the similarity

of words from different topics. �e reason is that it represents

every sense in a more universal shared space without gaps between

different topics.

Table 1: �e most similar words identified by the original

Skip-gram model and our STE-Diff model.

Model Words Similar Words

Skip-gram apple macintosh, ios, juice

STE-Diff
apple#1 peach, orange, juice

apple#2 macintosh, ipod, windows

Skip-gram java sumatra, html, somalia

STE-Diff
java#1 sumatra, somalia, sudan

java#2 html, lisp, jde

Skip-gram cell phones, viral, biology

STE-Diff
cell#1 phones, technology, scanner

cell#2 viral, tumor, embryonic

Table 1 shows the nearest neighbours of some polysemous words,

according to the Skip-gram model and our STE-Diff model (using

cosine similarity in both cases). We observe that these nearest

neighbours for Skip-gram mix different senses of the given words,

which is expected since Skip-gram does not address polysemy. For



SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan B. Shi et. al.

(a) STE-Same

(b) STE-Diff

Figure 1: Visualization of the word embeddings learned using STE-Same and STE-Diff with 10 topics. �e polysemous word

“party” and the monosemous word “government” are highlighted for the comparison.



Jointly Learning Word Embeddings and Latent Topics SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan

example, the nearest neighbours of “apple” are given as “macintosh”,

“ios”, and “juice”, indicating the “company” and “fruit” interpreta-

tions of the word “apple” are mixed. In contrast, our STE-Diff model

can distinguish different prototypes of polysemous words via the

latent topics. For example, the most similar words of “apple” under

Topic 1 are “peach”, “orange” and “juice”, which clearly corresponds

to the fruit interpretation. Under Topic 2, they are “macintosh”,

“ipod” and “windows”, clearly referring to the company interpreta-

tion.

4.2 Word Embedding Evaluation

�e most common approach for evaluating word embeddings is to

assess how well the similarity scores they produce correlate with

human judgments of similarity. Although there are several word

similarity benchmark datasets, most do not provide any context

information for the words, and are therefore not appropriate for

evaluating models of similarity for polysemous words. Huang

et al. [12] prepared a data set, named Stanford’s Contextual Word

Similarity (SCWS) data set, which includes 2003 word pairs together

with their context sentences. �e ground truth similarity score

with the range [0, 10] was labeled by humans, according to the

semantic meaning of the words in the given contexts. We adopt

this benchmark data set for evaluating the quality of our word

embeddings.

We compare our results with the following baselines and state-

of-the-art methods, reporting the previously published results from

their papers.

TFIDF We consider two variants, TFIDF and Pruned TFIDF.

�e TFIDFmethod represents eachword as a vector, captur-

ing the context words with which it co-occurs in a 10-word

window. Each context word is presented by the one-hot

representation and weighted via TF-IDF learned from the

training set. �e Pruned TFIDF method proposed by [28]

improves the original TFIDF model by pruning the context

words with low TF-IDF scores.

Word embedding �ese baselines include the C&Wmethod

proposed by [7] and the Skip-gram model [21]. Note that

since neither of these methods considers polysemy, word

similarity is evaluated without regarding the context sen-

tences.

Topic models �efirstmodel, named LDA-S, represents each

wordw in a document d as the posterior topic distribution,

namely, p (z |w ) where p (z |w ) ∝ p (w |z)p (z |d ). �e second

model, named LDA-C, additionally considers the posterior

topic distribution of the surrounding context words, as

follows:

p (z |w, c ) ∝ p (w |z)p (z |d )
∏

w ′∈c

p (w ′ |z) (15)

where c is the set of the context words ofw .

Multiple prototype models �ese methods represent each

word sense as a fixed length vector. One representative

work, proposed by Huang et al. [12], exploits global proper-

ties of the corpus such as term frequency to learn multiple

embeddings via neural networks. Tian et al. [37] intro-

duce a latent variable to denote the distribution of multiple

prototypes for each word in a probabilistic manner. Liu

et al. [19] propose a model called TWE, which concate-

nates the pre-trained topics with the word embeddings for

representing each prototype.

We present the related parameter se�ings as reported in the pre-

vious papers [12, 19, 37]. For Pruned TFIDF, top 200 words with

the highest scores are preserved. For the model in [37], each word

is assumed with 10 prototypes. Following [19], the number of

topics of LDA-S, LDA-C and TWE is 400. Note that the size of

each embedding vector in TWE is 800 [19], which consists of 400-

dimension word embedding and 400-dimension topic embedding.

�e parameter se�ing of our STE model is the same as described in

Section 4.1.

For all the different representations, the word similarity is evalu-

ated using cosine similarity. However, for the multiple prototype

based methods, as well as for our STE model, two different variants

are considered:

AvgSimC Given a wordw and its associated context words

cw , we can infer the posterior topic distributionp (z |w, cw ,d )

according to Eq. 14. �en the averaged similarity between

two words (wi ,w j ) over the assignments of topics is com-

puted as:

AvgSimC(wi ,w j ) =
∑

zi

∑

zj

p (zi |wi , cwi )p (zj |w j , cw j )

× cos(Uwi ,zi ,Uw j ,zj )

where U (wi , zi ) is the embedding vector ofwi under the

topic zi and cos(·) is the cosine similarity.

MaxSimC In this case, we instead evaluate the similarity

between the most probable vectors of each word. It is

defined as:

MaxSimC(wi ,w j ) = Sim(Uwi ,zi ,Uw j ,zj )

where z = argmaxz (p (z |w, c )).

Following previous work, we use the Spearman correlation coef-

ficient as the evaluation metric. �e results are shown in Table 2.

�e STE model performs comparably to the state-of-the-art TWE

model, and outperforms the baseline methods. TWE also exploits

both topics and embeddings. However, the vectors in the TWE

model have twice as many dimensions as those in our model, since

each word is represented as the concatenation of a word vector and

a topic vector. �e STE-Diff variant outperforms STE-Same, for

both the AvдSimC and MaxSimC ranking measures. While STE-

Same can generate more coherent topics as indicated in Section 4.3,

this comes at the price of slightly less accurate word vectors, which

is not unexpected.

It is interesting to note that the original Skip-gram model can

still achieve satisfactory performance. We observe that the words

in the SCWS data set are mostly monosemous words. Particularly,

among 2003 word pairs in this data set, there are 241 word pairs

containing the same word within a word pair. One may expect that

such identical words have different senses leading to a low ground

truth similarity score. However, only 50 of them have the ground

truth similarity score less than 5.0. It indicates that the proportion

of the challenging polysemous words in this data set is quite small.
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Table 2: Spearman correlation ρ × 100 for the SCWS data set.

Model Similarity Metrics ρ × 100

C&W Cosine Similarity 57.0

Skip-gram Cosine Similarity 65.7

TFIDF Cosine Similarity 26.3

Pruned TFIDF Cosine Similarity 62.5

LDA-S Cosine Similarity 56.9

LDA-C Cosine Similarity 50.4

Tian AvдSimC 65.4

Tian MaxSimC 63.6

Huang AvдSimC 65.3

Huang AvдSimC 58.6

TWE AvдSimC 68.1

TWE MaxSimC 67.3

STE-Same AvдSimC 66.7

STE-Same MaxSimC 65.5

STE-Diff AvдSimC 68.0

STE-Diff MaxSimC 67.7

4.3 Topic Coherence

In our model, topics can be interpreted by looking at the top-ranked

bi-grams according to Eq. 9. To evaluate how coherent these topics

are, we have applied our model to the training set of the 20News-

groups corpus. �e 20Newsgroups corpus1 is a collection of 19,997

newsgroup documents. �e documents are sorted by date and split

into training set (60%) and test set (40%). �e data is organized,

almost evenly, into 20 different newsgroups, each corresponding to

a different topic. Some of the newsgroups are very closely related

to each other, however. �e categories of this corpus, partitioned

according to subject ma�er. are shown in Table 3. As text prepro-

cessing, we have removed punctuations and stop words, and all

words were lowercased.

Table 3: �e categories of the 20Newsgroups corpus.

comp.graphics

comp.os.ms-windows.misc

comp.sys.ibm.pc.hardware

comp.sys.mac.hardware

comp.windows.x

rec.autos

rec.motorcycles

rec.sport.baseball

rec.sport.hockey

sci.crypt

sci.electronics

sci.med

sci.space

misc.forsale

talk.politics.misc

talk.politics.guns

talk.politics.mideast

talk.religion.misc

alt.atheism

soc.religion.christian

To evaluate the generated topics, we use a common topic coher-

encemetric whichmeasures the relatedness between the top-ranked

words [6, 36]. �e intuition is that topics where the top-ranked

words are all closely semantically related are easy to interpret, and

in this sense semantically coherent. Following Lau et al. [14, 25],

we use the pointwise mutual information (PMI) score as our topic

coherence metric. PMI has been found to strongly correlate with

human annotations of topic coherence. For a topic z, given the

top-ranked T words, namely,w1,w2, · · · ,wT , the PMI score of the

1h�p://qwone.com/ jason/20Newsgroups/

Table 4: Topic coherence evaluation using the PMI metric

with different numbers of top words.

T = 5 T = 10 T = 15 T = 20

BTM 0.014 0.036 0.041 0.048

STE-Same 0.180 0.110 0.107 0.102

STE-Diff 0.015 0.067 0.058 0.054

topic z can be calculated as follows:

PMI-Score(z) =
∑

1≤i≤j≤T

log
P (wi ,w j )

P (wi )P (w j )
(16)

where P (wi ,w j ) represents the probability that words wi and w j

co-occur and P (wi ) =
∑
w P (wi ,w ). We compute the average PMI

score of word pairs in each topic using Eq. 16. �e average score of

all the topics is computed. �e higher the value, the be�er is the

coherence. Newman et al. [25] observed that it is important to use

another data set to evaluate the PMI based measure. �erefore, we

use a 10-word sliding window in Wikipedia [34] to estimate the

probabilities P (wi ,w j ).

We compare our STE model with the Bi-gram Topic Model

(BTM) [40] which predicts the next word given the topic assign-

ments as well as the current word. Note that our STE model and

LDA are not directly comparable because LDA can only output

unigrams as topics.

All models are trained on the training set of the 20newsgroups

corpus. �e number of topics was set to 20 for all models, which is

the same as the number of categories in the 20Newsgroups corpus.

For our model, 400-dimensional word vectors were used. To extract

the top-ranked words, we first learn the topic-specific word embed-

dingsUw andVw and then use Eq. 9. Only bi-grams with frequency

greater than 5 are considered. For the BTM model, we use the

default se�ing of hyper-parameters provided by the package 2, i.e.,

α = 50.0, β = 0.01, and γ = 0.01.

�e average PMI scores with different numbers of top-ranked

words are shown in Table 4. We can see that our STE model gen-

erally improves the coherence of the learned topics. Compared

with BTM, our STE model incorporates the semantic relationship

between words which is learned from word embeddings to improve

the quality of topics. Compared with the variant STE-Diff, the

STE-Same model can produce more coherent topics as presented in

Figure 1.

Table 5 shows the top 10 bi-grams of the topics identified by

the STE-Same model. We can observe that many topics are corre-

sponding to categories from Table 3. For example, the top-ranked

bi-grams of Topic 1, such as the terminology phrase “remote sensing”

and the name of the company, “mcdonnell douglas”, indicate that

Topic 1 is related to the category “sci.space”. Similarly, most of the

top-ranked bi-grams of Topic 5 are medical terms, such as “mucus

membrane” and “amino acids”. �e top-ranked bi-grams of Topic 6

are the names of some famous baseball and hockey players, such as

“brind amour”3 and “garry galley”4, indicating that Topic 6 is asso-

ciated to the categories “rec.sport.baseball” and “rec.sport.hockey”.

Among others, we also observe a connection between Topic 4 and

2h�p://mallet.cs.umass.edu/topics.php
3h�ps://en.wikipedia.org/wiki/Rod Brind’Amour
4h�ps://en.wikipedia.org/wiki/Garry Galley
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“talk.politics”, Topic 7 and “comp.sys.ibm.pc.hardware”, as well as

Topic 8 and “soc.religion.christian”. �ese correspondences further

illustrate that our model can identify latent topics effectively.

Another interesting observation is that most of top-ranked bi-

grams are person names and domain-specific terms. �is arises be-

causewe rank the bi-grams according to the probabilityp (wi+1 |wi , z),

which indicates that the words wi+1 and wi should have strong

connections under the topic z. �e name of famous people and

domain-specific terms can satisfy this requirement.

4.4 Document Classification

We also analyze the suitability of our model for representing docu-

ments. To this end, we consider the task of document classification,

using again the 20Newsgroup corpus. We have used the original

splits into training (60%) and testing (40%) data. For our STE model,

as before, we set the number of topics as 20 and the dimensionality

of the vector space as 400. To apply our model to document rep-

resentation, we first infer the posterior topic distribution of each

word in the test set using Eq. 14, and then represent each document

as the average of the word vectors in the document, weighted by

the TF-IDF score of each word. In particular, each word vector is

given by:

Vecw = TFIDFw ×

K∑

z=1

p (z |w, c )Uw,z (17)

where TFIDFw is the TF-IDF score ofw in the document. To per-

form document classification, we use a linear SVM classifier using

the package from [10].

We compare our approach with several other methods for repre-

senting documents, including bag-of-words, vector-space embed-

dings and latent topics. BOW is the standard bag-of-words model,

which represents each document by weighting terms using the

TFIDF score. As a form of feature selection, we only consider the

50,000 most frequent words in the bag-of-words representation. �e

embedding-based methods include the word embedding method

Skip-gram, a document embedding method called the Paragraph

Vector model (PV) [15], and the TWE model which also considers

topics. For the Skip-gram model, we set the number of dimension

to 400. We represent each document as the average of word vec-

tors weighted by TFIDF scores. �e PV model proposed by [15]

represents each document directly as a vector. We use the doc2vec

implementation 5 for PV. For TWE, we report the experimental

results published in [19]. �e topic based methods include LDA,

LFTM [26], and GPU-DMM [16]. �ese models represent each doc-

ument via the posterior topic distributions. For LFTM, we reported

the experimental result published in [26]. Only F-measure of LFTM

is provided. �e number of topics for LFTM is 80, as that value

was reported to lead to the best performance in [26]. �e GPU-

DMM model promotes semantically related words learned from

pre-trained word embeddings by using the generalized Polya urn

model. We use the default parameter se�ing in the GPU-DMM

model. We use a number of standard evaluation metrics for classifi-

cation tasks, namely accuracy, precision, recall and F1 measure.

5h�p://github.com/ccri/gensim

�e results of the document classification task are presented

in Table 6, showing that our STE-Diff model achieves the best re-

sults. Good results are also obtained for the TWE model, which

suggests that the quality of document representations can clearly

benefit from combining topics models with word embeddings. Nev-

ertheless, compared to TWE, our model can take advantage of the

interaction between topics and word embeddings to improve both,

and is thus able to outperform the TWE model. �e performance

of GPU-DMM is not as good as expected. One reason is that this

model is proposed for handling short texts [16]. Unfortunately, the

documents in 20Newsgroups are not short texts.

5 CONCLUSIONS

We have proposed a model that jointly learns word embeddings

and latent topics. Compared to standard word embedding models,

an important advantage of incorporating topics is that polysemous

words can be modeled in a more principled manner. Compared to

standard topic models, using word embeddings can achieve superi-

ority because more coherent topics can be obtained. While some

previous works have already considered combinations of word em-

bedding and topic models, these works have relied on a two-step

approach, where either a standard word embedding was used as in-

put to an improved topic model, or a standard topic model was used

as input to an improved word embedding. In contrast, we jointly

learn both word embeddings and latent topics, allowing our model

to be�er exploit the mutual reinforcement between them. We have

conducted a wide range of experiments, which demonstrate the

advantages of our approach.
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