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Abstract—We present a jointly optimal selection and schedul-
ing scheme for the lossy transmission of frames governed by
a dependency relation and a delay constraint over a link with
limited capacity. A main application for this is scalable video
streaming. Our objective is to select a subset of frames and
decide their transmission schedule such that the overall video
quality at the receiver is maximized. The problem is solved for
two of the most common classes of dependency structures for
video encoding, which include as a special case the popular
hierarchical dyadic structure. We formally characterize the
structural properties of an optimal transmission schedule in
terms of frame dependency. It is shown that regardless of the
subset of frames selected for transmission, any optimal schedule
has an equivalent canonical form that is a subsequence of a
unique universal sequence containing all frames. The canonical
form can be computed efficiently through the construction of
a dependency tree. This leads to separable but jointly optimal
frame selection and scheduling algorithms that have quadratic
computational complexity in the number of frames. Simulation
with video traces demonstrates that the optimal scheme can
substantially outperform existing suboptimal alternatives.

I. INTRODUCTION

As video streaming contributes to an ever increasing portion
of the Internet traffic, efficient and adaptive transmission
of video is paramount to service providers and users alike.
Toward this goal, scalable video coding allows adaptation to
heterogeneous access networks and user devices to achieve
satisfactory viewing experience. For example, the H.264 Ad-
vanced Video Coding (AVC) standard, including its Scalable
Video Coding (SVC) enhancements [1], [2], is the most widely
adopted coding scheme, used in popular applications such as
Bluray and Youtube.

All such scalable video codecs rely on prediction between
the video frames to improve coding efficiency. An important
example is the Hierarchical Prediction Structure (HPS) in
H.264, in which one or more frames are used as the basis
to encode another frame. Such prediction structures lead to
decoding dependency between frames in a video sequence. The
implication of dependency is two-fold: First, the successful
reception of a frame before its playback deadline does not
necessarily imply the successful playback of the frame, since
the frame can be decoded only when all other frames that it
depends on have been decoded. Second, the transmitter should
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not necessarily drop a frame that has been delayed beyond its
playback deadline, since the frame may still be useful for the
receiver to decode other frames.

This dependency relation between frames, along with the
delay-sensitive nature of frame playback and the need to
adaptively select and drop frames for scalable transmission
under limited bandwidth, creates unique challenges in the
scheduling of video frames for transmission. Classical theories
of deterministic scheduling with delay constrained jobs are
insufficient to address these challenges [3]–[5]. In classical
scheduling, the schedule may need to satisfy some precedence
relation between jobs. However, if a job is discarded, it has
no effect on the other jobs. This is incompatible with the
dependency between video frames.

Therefore, a new approach is needed to jointly optimize
the selection of a subset of frames for transmission, and the
schedule to transmit those frames before their display dead-
lines expire. Many existing studies on efficient transmission of
scalable video address dependency by a simplified flow-based
model [6]–[12], in which a video layer can be decoded only
if all lower layers are already decoded. In the more realistic
frame-based approach [13]–[19], dynamic frame dropping and
retransmission are studied, but most of these studies rely
on heuristics that are challenging to analyze mathematically,
and none considers the utility of frames received after their
playback deadline.

In this work, we present a general method for frame
selection and scheduling, in order to optimize the transmission
of dependent frames with delay constraint under limited link
capacity. The optimization objective is to minimize the sum
utility of the dropped frames, which in the application of video
streaming is the loss of playback quality in the transmitted
video sequence. To the best of our knowledge, a solution to this
problem does not exist in the standard deterministic scheduling
literature. Furthermore, in the context of video scheduling, the
proposed algorithm is unique in providing a provably optimal
polynomial solution to scalable transmission that accounts for
popular forms of hierarchical prediction.

More specifically, the following is a summary of the main
contributions in this work:

∙ We formally characterize the structural properties of an
optimal transmission schedule in terms of frame depen-
dency. This leads to the categorization of two general
dependency structures of interest, termed Sequential Iso-978-1-4799-4852-9/14/$31.00 c⃝ 2014 IEEE



morphically Ordered (SIO) and Quasi Sequential Isomor-
phically Ordered (Quasi-SIO), which include as special
cases many common predictive coding structures such as
the H.264 AVC default B-frame prediction [20] and the
ubiquitous hierarchical dyadic structure [2].

∙ We show that for both the SIO and Quasi-SIO structures,
any given transmission sequence has an equivalent canon-
ical form, regardless of the subset of frames selected
for transmission. Furthermore, the canonical form of
any transmission sequence with dropped frames is a
subsequence of a unique universal transmission sequence
that contains all frames. We present a method to compute
the canonical form with linear complexity in the number
of frames.

∙ The above allows a two-step approach for jointly opti-
mal frame selection and scheduling, where the optimal
transmission order can be determined independently from
frame selection. We then develop dynamic programming
solutions to optimize frame selection and scheduling,
which have only quadratic complexity in the number of
frames for video streaming.

∙ Finally, simulation experiments with common test video
traces show that the proposed method can substantially
improve the quality of lossy streaming over a link with
limited capacity, in comparison with suboptimal alterna-
tives.

The rest of this paper is organized as follows. In Section
II, the related works are presented. In Section III, we explain
the system model and problem statement. In Section IV, we
discuss the special properties of an optimal schedule. In Sec-
tions V and VI, respectively, optimal algorithms for scheduling
in the SIO and Quasi-SIO cases are presented. In Section
VII, simulation experiments with video traces demonstrate
the performance advantage of the proposed solution. Finally,
Section VIII concludes the paper.

II. RELATED WORK

Previous works related to this paper can be categorized into
two groups: classical deterministic scheduling and scalable
video streaming.

A. Classical Deterministic Scheduling

The literature on deterministic scheduling is rich and di-
verse. Deterministic scheduling considers scenarios where a
set of jobs are to be processed through machines. As opposed
to stochastic scheduling, all system data is known in advance.
In general, each job is associated with a size, release time,
and a deadline. No machine can process more than one job a
time, but the processing can be preemptive or non-preemptive.
Surveys such as [3]–[5] have well summarized the existing
works.

In deterministic scheduling, various objective functions have
been considered for optimization, but the most relevant to
our work is the weighted sum value of feasible jobs [21]–
[25]. The authors of [21]–[24] are concerned with scheduling
independent jobs, whereas in our scheduling problem there

is a dependency relation among the frames. Furthermore,
preemption is not considered in studies such as [21] and [22],
while for our problem, through Theorem 1, we will show
that there is no benefit in preemption. In addition, jobs have
different release times in studies such as [23] and [24], while
in our problem all frames are initially available so release time
is not a concern.

The precedence relation is considered in [25], i.e., some
jobs must precede other jobs in the schedule. Furthermore, two
modes of job processing are allowed, which, corresponding to
our scheduling problem, can be mapped to the special cases of
transmitting and dropping a frame. However, in our problem
we do not explicitly impose precedence constraints on the
transmission schedule, as long as the display deadline of each
frame is met. More specifically, the frames in our scheduling
problem depend on each other for the purpose of decoding,
but it is possible to transmit a frame prior to another frame
that it depends on; it will simply be stored at the receiver for
later decoding. Interestingly, through Theorem 2, we will show
that in our problem there exists an optimal schedule that has a
certain precedence structure. Even so, since the job scheduling
in [25] does not consider the effect of dropping a job on the
utility of the other jobs, it is not applicable to our work. To the
best of our knowledge, there is no known optimal algorithm
with polynomial complexity for scheduling with dependency
and delay constraint.

B. Scheduling for Scalable Video Streaming

Many prior works on scalable video streaming do not
consider the dependency relation in video transmission [26]–
[34]. In all of these works the video content is transmitted in
an earliest-deadline-first (EDF) fashion.

Studies that do consider the dependency relation can be
divided into two main groups: flow-based and frame-based.
In the flow-based approach [6]–[12], the video is modelled
as a set of inter-dependent data flows. There are usually
one base flow that provides minimum playback quality and
multiple enhancement flows. The transmitter’s choice is lim-
ited to choosing the subset of flows to schedule. Therefore,
it is a simplification that does not account for inter-frame
dependency.

In this work, we consider the more complicated frame-based
dependency relation. In the frame-based approach [13]–[15],
the video sequence is generally modelled as a set of data
units with coding dependency. In all three studies, heuristics
are proposed to drop data units under bad link conditions
according to some pre-defined priority. No analytical result
is presented on how to set priority levels, and evaluation
is performed through simulation only. In comparison, our
proposed scheduling algorithm is provably optimal.

More complex online frame-based transmission schemes for
dependent frames in the lossy environment have been studied
[16]–[19]. These works target more ambitious problems than
ours, since they need to account for the uncertainty in the sys-
tem data, including factors such as multipath congestions and
buffer overflows. Optimal solutions are generally intractable,



and only heuristic solutions are available. In this work, we
target a simpler offline scheduling problem that is suitable for
streaming pre-recorded videos over a stable link and propose
an efficient but jointly optimal frame selection and scheduling
algorithm.

Finally, our proposed optimal schedule permits the trans-
mission of frames past their display deadline, for the benefit
of decoding other frames. This is not available in any of the
works above. More detail on this is provided in Section III-B.

III. SYSTEM MODEL AND OPTIMAL TRANSMISSION

SEQUENCE

In this section, we detail the system model and the problem
of lossy transmission of dependent frames with delay con-
straint. For clarity of illustration, we focus on the application
of video streaming.

A. Sequence of Frames and the Dependency Relation

We consider a sequence of frames indexed by 1, 2, . . . , 𝑁 .
Each frame 𝑙 is associated with three parameters (𝑆𝑙, 𝑑𝑙, 𝑞𝑙),
where 𝑆𝑙 is its size in bits, 𝑑𝑙 is its deadline, and 𝑞𝑙 is its quality
measure. In the context of video frames, 𝑑𝑙 is the time at which
frame 𝑙 is to be displayed, and we assume the frames are
ordered, such that 𝑑1 < 𝑑2 < ⋅ ⋅ ⋅ < 𝑑𝑁 . The quality measure
may be the expected loss of video quality if the frame is not
displayed [16]. A common measure is the peak signal-to-noise
ratio of the frame.

The decoding of a frame may depend on other decoded
frames. In common video codecs, the frames are classified
into three groups: I-frames, P-frames, and B-frames. I-frames
are intra-coded and do not depend on other frames, P-frames
are inter-coded based on a preceding frame (in the display
order), and B-frames are inter-coded based on a preceding
frame and a successive frame. The set of P-frames and B-
frames between two consecutive I-frames, plus the leading I-
frame, is called a Group Of Pictures (GOP). The P-frames and
B-frames of different GOPs are isolated from each other, but
those within a GOP adhere to a specific dependency structure
governed by the prescribed prediction coding. Such frame
grouping is used the general Hierarchical Prediction Structure
(HPS) of H.264 AVC, which enables temporal scalability [2]1.
As an example, one of the most widely adopted HPS is the
hierarchical dyadic structure. Following the notations of [20],
a hierarchical dyadic structure is denoted by 𝐺𝑛𝐵𝑚, where
𝑛 is the size of each GOP and 𝑚 is the number of B-frames
between consecutive I-frames or P-frames, with 𝑚 = 2𝜔 − 1
for some 𝜔 ∈ ℕ. Figure 1 illustrates a GOP with 𝐺16𝐵3.

The dependency between frames can be represented as a
directed acyclic graph (DAG), where frames are nodes, and

1The H.264 AVC standard is one of the most popular video compression
techniques in the industry. For example, Blu-ray discs and players must
support the H.264 AVC codec. In addition, this standard is widely used by
video-streaming service providers such as Vimeo, Youtube, and iTuneStore,
and by various HDTV broadcasting standards. The SVC extension to H.264
provides a richer set of methods to achieve scalability, but that is at the cost
of significantly increased implementation complexity [2] [35]. A common
practical option is to operate SVC with only a single spatial or quality layer
[2].
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Fig. 1. Frames (0, 1, . . . , 15) form a GOP with hierarchical dyadic structure
𝐺16𝐵3.

TABLE I
TABLE OF TERMINOLOGY

(𝑆𝑙, 𝑑𝑙, 𝑞𝑙) Size, deadline, and quality of frame 𝑙
Δ𝑡𝑙 Transmission duration of frame 𝑙
𝑙 ⇎ 𝑙′ Frames 𝑙 and 𝑙′ are irrelevant
𝑙′ → 𝑙 Frame 𝑙 depends on frame 𝑙′
𝐺𝑂𝑃𝑖 The 𝑖-th GOP
𝐼𝑖 The 𝑖-th I-frame
𝒩𝑖 The set of non I-frames in 𝐺𝑂𝑃𝑖

𝒟𝑖 The set of frames dependent on both 𝐼𝑖 and 𝐼𝑖+1

𝒜𝑖, ℬ𝑖 The sets of frames in 𝐺𝑂𝑃𝑖 that are scheduled
prior and after 𝐼𝑖+1

𝑇 (𝑥) The subtree rooted at node 𝑥
𝑚𝑖𝑛 𝑑𝑙𝑛(𝑇 ),
𝑚𝑎𝑥 𝑑𝑙𝑛(𝑇 )

Minimum and maximum display deadlines in
rooted tree 𝑇

𝑐𝑖(𝑥) The 𝑖-th child of node 𝑥
𝑧(𝒮) Reward function of transmission schedule 𝒮
transmission
schedule/
sequence

The set of frames selected for transmission and
their order (timing information unimportant)

decodable frame A frame with none of its ancestors missing
successful frame A decodable frame which arrives at the receiver

prior to its deadline

their dependencies are indicated by edges as shown in Figure
1. If decoding frame 𝑙 requires frame 𝑙′ directly, which is
denoted by 𝑙′ → 𝑙, then a direct edge connects node 𝑙′ to node
𝑙. In this case, 𝑙′ is called a parent of 𝑙, and 𝑙 a child of 𝑙′. If
the decoding of frame 𝑙 depends on frame 𝑙′, possibly through
some intermediate nodes, then 𝑙′ is called an ancestor of 𝑙, and
𝑙 a descendant of 𝑙′. If two frames have no ancestral relation,
they are called irrelevant and denoted by 𝑙 ⇎ 𝑙′. Throughout
this paper, we use 𝐺 to denote the DAG corresponding to the
video sequence under consideration, and the terms “frame”
and “node” are used interchangeably depending on context.

We denote the sequence of GOPs as {𝐺𝑂𝑃𝑖} in their
display order. We also denote the sequence of I-frames as
{𝐼𝑖} in their display order, so that 𝐼𝑖 corresponds to 𝐺𝑂𝑃𝑖.
Note that the descendants of 𝐼𝑖+1 can only be in 𝐺𝑂𝑃𝑖 or
𝐺𝑂𝑃𝑖+1, and except 𝐼𝑖+1, the frames in 𝐺𝑂𝑃𝑖 cannot depend
on any frame in other GOPs. Let 𝒩𝑖 be the set of non-I-
frames in 𝐺𝑂𝑃𝑖, and 𝒟𝑖 be the set of frames in 𝐺𝑂𝑃𝑖 that
are descendants of both 𝐼𝑖 and 𝐼𝑖+1. A partial list of the
terminology is provided in Table I.

B. Quality Optimization under Limited Link Capacity

We consider a time-slotted scenario, where the transmitter
sends a pre-recorded video sequence to the receiver through
a link with fixed capacity 𝐶 bits/timeslot. An application sce-
nario may be the transmission of a short video clip by Youtube.
We assume that lower-layer protocols in the network protocol



stack ensure the correct reception of any data transmitted at or
below the link capacity. Without loss of generality, we omit
the propagation delay on the link, since otherwise we only
need to shift the display time of all frames by an offset to
accommodate it.

Transmission schedule. A transmission schedule is a vector
containing the transmission starting times of a sequence of
video frames, sorted in ascending order. It indicates both the
selected frames for transmission and the timing of transmis-
sion. In a transmission schedule, a frame is decodable if and
only if its parents are already decoded. A frame is successful
if it becomes decodable and arrives at the receiver prior to its
display deadline.

Reward function. The reward function of a transmission
schedule, 𝒮 , is defined as the sum of the quality increment of
its successful frames, i.e.,

𝑧(𝒮) =
∑

𝑙∈𝒮, 𝑙 is successful

𝑞𝑙 (1)

Our objective is to find a transmission schedule that maximizes
the reward given a link capacity limit 𝐶. This problem is called
the scheduling problem throughout the rest of this paper. The
resultant transmission schedule is called an optimal schedule,
and the resultant reward function is indicated with 𝑧∗.

Transmission of unsuccessful frames. An optimal sched-
ule may permit unsuccessful frames to be transmitted. Al-
though these frames are not displayed, their importance arises
from the fact that due to the dependency structure, they can
help decode other frames. However, the transmission of an
unsuccessful frame which has no successful descendant is
useless. Therefore, in order to obtain an optimal schedule, we
need to focus only on transmission schedules in which each
unsuccessful frame has at least one successful descendant.

Sufficiency of one-by-one frame transmission. The fol-
lowing theorem indicates that it suffices to consider only
one-by-one frame transmission in the search for an optimal
schedule.

Theorem 1: Every schedule can be transformed into a
schedule with only one-by-one frame transmission, obtaining
at least the same successful frames and therefore the same
reward.

Proof: See Appendix I in [36].
Therefore, we consider only one-by-one transmission in

the rest of this paper. In this case, the number of timeslots
required to transmit frame 𝑙 is given by Δ𝑡𝑙 = 𝑆𝑙

𝐶 . We
assume the timeslot size is small enough such that Δ𝑡𝑙 are
well approximated by integers.

Optimal transmission sequence. With one-by-one frame
transmission, there is no benefit in leaving a gap between the
transmission of two consecutive frames, in terms of maximiz-
ing the reward. Neither is there a penalty in leaving a gap,
as long as the gap does not lead to out-of-date transmissions.
Therefore, in computing an optimal schedule, it suffices to
consider only the transmission sequence, i.e., the set of frames
selected for transmission and their order of transmission. With
an optimal transmission sequence, an optimal schedule can be

determined by simply transmitting the frames back-to-back
without any gap between them. Hence, throughout the rest of
this paper, a “transmission schedule” is synonymous with its
“transmission sequence” without the timing information.

The decision space of this problem includes all permutations
of all subsets of frames in the video sequence. Therefore, the
complexity of exhaustive search would be prohibitive. In the
next three sections, we first present some inherent properties
of an optimal transmission schedule, which will then be used
in Sections V and VI to develop polynomial solutions to the
scheduling problem.

IV. PROPERTIES OF AN OPTIMAL SCHEDULE

In this section, we first describe a transformation of the
dependency DAG of a video into rooted trees that indicate
decodability. Based on this representation, we then present two
general classes of dependency structures that are of interest.
We give some important properties of optimal scheduling com-
mon to both classes and essential to the solutions presented in
Sections V and VI.

A. Modified Breadth First Search Trees

We adopt a version of the Breadth First Search (BFS)
algorithm [37] on the video DAG 𝐺, which we call Modified
Breadth First Search (MBFS). It takes 𝐺 and a node 𝑠 as input
and outputs an MBFS tree rooted at 𝑠. The main difference
with BFS is the following: at each node, instead of picking
all unvisited children of that node, only decodable unvisited
children are picked, where a node is decodable if and only if
all of its ancestors have been visited. Moreover, in constructing
the MBFS tree, the decodable unvisited children are sorted in
ascending order of their deadlines. Such ordering is important
to the concept of isomorphically ordered trees presented later.
The pseudocode for MBFS is omitted to conserve space.

We run MBFS on 𝐺 and each I-frame in the display order,
creating an MBFS forest, whose components are MBFS trees
rooted at the I-frames, each tree corresponding to a GOP.
The complexity of this procedure is 𝑂(𝑁), since each MBFS
tree creation has constant complexity given a fixed GOP size.
Figure 2 illustrates the result of MBFS on the DAG in Figure
1 with node 16 removed. The main benefit of MBFS is to
represent the dependency structure of frames in the format of
trees.

We emphasize that in terms of the MBFS forest, the children
of each node are a subset of the children of that same node
in terms of the DAG 𝐺, as defined in Section III. This
is because being a child in the MBFS forest carries the
additional requirement of being decodable. Furthermore, the
set of descendants of an I-frame 𝐼𝑖 in terms of the DAG can be
partitioned into two subsets in𝐺𝑂𝑃𝑖−1 and 𝐺𝑂𝑃𝑖, where only
the latter subset is the descendants of 𝐼𝑖 in terms of the MBFS
forest. In the rest of this paper, when we refer to the parent-
child and ancestor-descendant relations between frames, they
are in terms of the DAG by default. When the relations are
in terms of the MBFS forest, such exceptions will be clearly
stated unless they are obvious from the context.
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Fig. 2. MBFS on DAG in Figure 1 with node 16 removed.

However, note that the set of descendants of a non-I-frame
remains the same in terms of either the MBFS forest or the
DAG. Hence, if we focus our attention within a single GOP,
then any frame has the same set of descendants in terms of
either the MBFS forest or the DAG. In that case we only need
to distinguish the reference terms of children but not those of
descendants.

B. SIO and Quasi-SIO Classes

Based on the MBFS forest, we next give two important def-
initions that characterize the dependency structures of interest.

Definition 1: The DAG representing the dependency struc-
ture of a video is called sequential if the ancestors of each
node lie only on the path between the node and the root of
the MBFS tree that contains the node.

Thus, if a DAG is sequential, then decoding a node only
requires the availability of nodes residing on the path between
the node and the root of the MBFS tree that contains the node.
Clearly, if a video sequence consists of only I-frames and P-
frames, then its DAG is sequential, since each node only has
a single parent. The situation is more complicated when there
are B-frames. From Figure 2, it is easy to see that the DAG
in Figure 1 is sequential if and only if edges 16 → 14 and
16→ 15 are removed.

In the MBFS forest, let 𝑇 (𝑥) denote the subtree rooted
at node 𝑥, and 𝑚𝑖𝑛 𝑑𝑙𝑛(𝑇 (𝑥)) and 𝑚𝑎𝑥 𝑑𝑙𝑛(𝑇 (𝑥)) be the
minimum and maximum display deadlines among the nodes
in 𝑇 (𝑥), respectively. Let 𝑐𝑖(𝑥) be the 𝑖th child of 𝑥.

Definition 2: An isomorphically ordered tree is a rooted tree
such that, if node 𝑥 has 𝑘 children, they can be re-ordered (and
re-indexed) such that

𝑚𝑎𝑥 𝑑𝑙𝑛(𝑇 (𝑐𝑖(𝑥))) ≤ 𝑚𝑖𝑛 𝑑𝑙𝑛(𝑇 (𝑐𝑖+1(𝑥))), 1 ≤ 𝑖 ≤ 𝑘−1 .
(2)

The above definition resembles that of B-trees [37], but
there is no requirement for the tree being balanced. An
example of isomorphically ordered trees are binary search
trees. A more general example is shown in Figure 2. We
confine our discussions to dependency structures whose MBFS
forest contain only isomorphically ordered trees. The follow-
ing lemma [36] will be used in deriving the optimal schedules.

Lemma 1: In an MBFS forest with isomorphically ordered
trees, consider two irrelevant nodes 𝑥 and 𝑦. If 𝑑𝑥 < 𝑑𝑦 , then
𝑚𝑎𝑥 𝑑𝑙𝑛(𝑇 (𝑥)) < 𝑚𝑖𝑛 𝑑𝑙𝑛(𝑇 (𝑦)).

From the two definitions above, we say that a dependency
structure is Sequential and Isomorphically Ordered (SIO) if
its DAG is sequential and its MBFS forest contains only
isomorphically ordered trees. For example, the dependency
structure shown in Figure 1 is SIO if edges 16 → 14 and
16→ 15 are removed. Furthermore, to extend the concept of
SIO to more general dependency structures that contain B-
frames that depend on an I-frame from the next GOP, we say
that a dependency structure is Quasi Sequential and Isomor-
phically Ordered (Quasi-SIO) if it would become SIO after
such dependency was removed. For example, the dependency
structure shown in Figure 1 is Quasi-SIO.

In this work, we focus on the SIO and Quasi-SIO classes
of dependency structures, since many common dependency
structures in practice belong to either class. For example,
the zero-delay structure [2] is SIO, and the classical B-frame
prediction structure used as default in MPEG 2 and H.264
AVC [20] is Quasi-SIO. Furthermore, the widely adopted
hierarchical dyadic structure [2] is Quasi-SIO (see Appendix
I for more details).

C. Canonical Form of Optimal Transmission Sequence

Theorem 2 below suggests that it suffices to search for an
optimal transmission sequence among those that satisfy some
special properties.

Theorem 2: In the SIO and Quasi-SIO classes, any trans-
mission sequence 𝒮 can be re-ordered into a transmission
sequence 𝒮 ′ with at least the same set of successful frames
(i.e., 𝑧(𝒮) ≤ 𝑧(𝒮 ′)) and with the following properties:

1) The ancestors of a frame are scheduled prior to that
frame.

2) Consider two irrelevant frames 𝑙𝑖 and 𝑙𝑗 with 𝑑𝑙𝑖 < 𝑑𝑙𝑗 .
If they are neighbors in the transmission sequence, then
𝑙𝑖 is scheduled before 𝑙𝑗 . If 𝑙𝑖 is scheduled after 𝑙𝑗 , then
not all of the frames scheduled between 𝑙𝑗 and 𝑙𝑖 are
irrelevant with respect to 𝑙𝑗 .

Proof: See Appendix IV in [36].
Theorem 2 will be used extensively in the rest of this paper.

In particular, for the SIO and Quasi-SIO classes, we say that
a transmission sequence that preserves the two properties in
Theorem 2 is in the canonical form.

Furthermore, the lemmas below [36] will also have impor-
tant usage in Sections V and VI.

Lemma 2: Under the properties in Theorem 2, consider the
frames 𝑓1, 𝑜1, . . . , 𝑜𝑘 such that 𝑓1 ∈ 𝐺𝑂𝑃𝑖, none of 𝑜1, . . . , 𝑜𝑘
belongs to 𝐺𝑂𝑃𝑖, and they are all irrelevant with respect to
𝑓1.

1) If they are scheduled in the order of 𝑓1, 𝑜1, . . . , 𝑜𝑘, then

𝑑𝑓1 < 𝑑𝑜𝑟 , 1 ≤ 𝑟 ≤ 𝑘 (3)

and all frames {𝑜𝑟}𝑘𝑟=1 belong to GOPs with indices
greater than 𝑖.

2) If they are scheduled in the order of 𝑜1, . . . , 𝑜𝑘, 𝑓1, then

𝑑𝑓1 > 𝑑𝑜𝑟 , 1 ≤ 𝑟 ≤ 𝑘 (4)



and all frames {𝑜𝑟}𝑘𝑟=1 belong to GOPs with indices
less than 𝑖.

Lemma 3: Under the properties in Theorem 2, consider
some frames 𝑓1, 𝑜1, . . . , 𝑜𝑘 in an MBFS tree, which corre-
sponds to a GOP. Suppose all of 𝑜1, . . . , 𝑜𝑘 are irrelevant with
respect to 𝑓1.

1) If they are scheduled in the order of 𝑓1, 𝑜1, . . . , 𝑜𝑘, then

𝑑𝑓1 < 𝑑𝑜𝑟 , 1 ≤ 𝑟 ≤ 𝑘. (5)

2) If they are scheduled in the order of 𝑜𝑘, . . . , 𝑜1, 𝑓1, then

𝑑𝑓1 > 𝑑𝑜𝑟 , 1 ≤ 𝑟 ≤ 𝑘. (6)

V. OPTIMAL SCHEDULE FOR SIO CLASS

This section provides an algorithm to solve the scheduling
problem for the SIO class. We first show that each transmission
sequence has a unique canonical-form transmission sequence
as defined in Section IV-C. Noting that such a sequence
is a subsequence of some general pattern that we term the
universal sequence, we then select an optimal schedule from
the universal sequence through dynamic programming.

A. SIO Universal Sequence

First, we discuss how to find a canonical-form transmission
sequence 𝒲 given an arbitrary transmission sequence. The
lemma below [36] indicates that the frames of each GOP must
be transmitted together in 𝒲 . Moreover, due to the second
property of Theorem 2, GOPs with earlier deadlines must be
transmitted first.

Lemma 4: In an SIO canonical-form transmission sequence,
for any 𝑖, no frame other than the frames of 𝐺𝑂𝑃𝑖 can be
scheduled between the frames of 𝐺𝑂𝑃𝑖.

For the frames inside a GOP, the properties of isomorphi-
cally ordered MBFS trees presented in Section IV can be
used to determine the order of transmissions. Lemma 5 [36]
indicates that any subtree in an MBFS tree must be scheduled
together in order to preserve Theorem 2.

Lemma 5: In an SIO canonical-form schedule, any frame
scheduled between any two frames that are both in a subtree
𝑇 must itself be in 𝑇 .

In 𝒲 , consider an arbitrary node 𝑥 and the subtrees
𝑇 (𝑐1(𝑥)), . . ., 𝑇 (𝑐𝑛(𝑥)), where 𝑐1(𝑥), . . ., 𝑐𝑛(𝑥) are the
children of 𝑥 in the MBFS forest sorted in ascending order
of display deadlines. The frame 𝑥 is sent first according to
the first property of Theorem 2. Then, by Lemma 5, the
second property of Theorem 2, and isomorphic order, the
frames in each 𝑇 (𝑐𝑖(𝑥)) are sent together in the order of
𝑐𝑖(𝑥). Therefore, to determine the order of transmissions for
each GOP in 𝒲 , we should perform a generalized pre-order
tree walk [37] on each tree of the MBFS forest, where the
children of each node are visited in ascending order of display
deadlines. This procedure uniquely determines 𝒲 and has a
complexity of 𝑂(𝑁). Therefore, a canonical form transmission
sequence is uniquely determined only by the set of selected
frames for transmission.

Next, consider the sequence of all frames of the original
video. We call the canonical-form transmission sequence of
this sequence the SIO universal sequence. Note that since
we may hypothetically increase the link capacity until the
entire video is successfully schedulable, such a transmission
sequence always exists.

Then, Theorem 3 below suggests that, given a link capacity
limit, a transmission sequence that maximizes the playback
quality among all subsequences of the SIO universal sequence
is an optimal transmission sequence. This important observa-
tion will be used in the next subsection to compute an optimal
schedule.

Theorem 3: For the SIO class of dependency structures, the
canonical-form of any transmission sequence is a subsequence
of the SIO universal sequence.

Proof: See Appendix VI in [36].

B. Computation of Optimal Schedule

The following dynamic programming approach selects an
optimal subset of frames to transmit among the SIO universal
sequence, hence solving the scheduling problem for the SIO
class.

First, generate the SIO universal sequence as described
in the previous subsection and re-index its frames as
𝑓1, 𝑓2, . . . , 𝑓𝑁 . Then, define function ℎ(𝑗, 𝑡) as the maximum
reward function if frames {𝑓𝑖∣𝑗 ≤ 𝑖 ≤ 𝑁}, are to be scheduled
in the time interval [𝑡,∞), assuming all their parents with
indices in the range {𝑓𝑖∣1 ≤ 𝑖 ≤ 𝑗 − 1} (if any) are available.

From the system model in Section III, we have

𝑧∗ = ℎ(1, 0) (7)

and the boundary conditions

ℎ(𝑁 + 1, 𝑡) = 0, ∀𝑡 (8)

ℎ(𝑗, 𝑡) = 0, ∀𝑗, 𝑡 > 𝑑𝑁 . (9)

Furthermore, ℎ adheres to the following recursive equation:

ℎ(𝑗, 𝑡) = max

⎧⎨
⎩
ℎ(𝑗, 𝑡+ 1)

𝑞𝑓𝑗 + ℎ(𝑗 + 1, 𝑡+Δ𝑡𝑓𝑗 ), 𝑑𝑓𝑗 − 𝑡 ≥ Δ𝑡𝑓𝑗
ℎ(𝑗 + 1, 𝑡+Δ𝑡𝑓𝑗 ), 𝑑𝑓𝑗 − 𝑡 < Δ𝑡𝑓𝑗
ℎ(min{𝑘 : 𝑘 > 𝑗, 𝑓𝑘 ⇎ 𝑓𝑗}, 𝑡).

(10)
In the above, ℎ(𝑗, 𝑡) is set to be the best outcome among
four possible actions at time 𝑡. The first term corresponds to
the case where the optimal schedule for ℎ(𝑗, 𝑡 + 1) is also
optimal for ℎ(𝑗, 𝑡), so no action is needed at 𝑡. The second
term corresponds to starting to transmit frame 𝑓𝑗 at time 𝑡,
and the frame is successful, which is ensured by the condition
𝑑𝑓𝑗 − 𝑡 ≥ Δ𝑡𝑓𝑗 . In this case, we gain 𝑞𝑓𝑗 toward the objective
along with the reward for all future frames. Similarly, the third
term refers to starting to transmit frame 𝑓𝑗 at time 𝑡 and the
frame is not successful as indicated by the condition 𝑑𝑓𝑗 −𝑡 <
Δ𝑡𝑓𝑗 (although the frame’s transmission may still potentially
help its descendants to achieve successful transmission). The
fourth term corresponds to dropping frame 𝑓𝑗 and moving to



inspect the next frame in the universal sequence that does not
depend on 𝑓𝑗 .

Since ℎ(𝑗, 𝑡) only needs to be computed for 1 ≤ 𝑗 ≤ 𝑁, 0 ≤
𝑡 ≤ 𝑑𝑁 , dynamic programming requires 𝑂(𝑁𝑑𝑁 ) processing
time and 𝑂(𝑁𝑑𝑁 ) memory to determine ℎ(1, 0) and extract
the optimal policy. Furthermore, since 𝑑𝑁 is linear in 𝑁 in
all practical video codecs, and creating the MBFS forest and
generating the universal sequence both require only 𝑂(𝑁)
processing time, we have an overall complexity of 𝑂(𝑁2).

VI. OPTIMAL SCHEDULE FOR QUASI-SIO CLASS

In this section, an optimal transmission sequence for the
more general Quasi-SIO class is presented, as an extension to
the solution in Section V.

A. Quasi-SIO Universal Sequence

Again, we will first show that all transmission sequences
have unique canonical-form transmission sequences, and then
they will be shown to be subsequences of a Quasi-SIO
universal sequence.

Let 𝒱 be a canonical-form transmission sequence of an
arbitrary transmission sequence in the Quasi-SIO class. From
the first property of Theorem 2, 𝐼𝑖 will be scheduled prior to
the frames in 𝒩𝑖 since 𝐼𝑖 is the ancestor of all of them, and
similarly 𝐼𝑖+1 is scheduled prior to the frames in 𝒟𝑖.

Consider the following lemmas [36]:
Lemma 6: In 𝒱 , if 𝑓1 and 𝑓2 are two frames in 𝒩𝑖 such

that no other frame in 𝒩𝑖∪{𝐼𝑖+1} is scheduled between them,
then no frame can be scheduled between them.

Lemma 7: In 𝒱 , if 𝐼𝑖+1 is scheduled after 𝑓1 ∈ 𝒩𝑖 such
that no other frame in 𝒩𝑖 is scheduled between them, then no
frame can be scheduled between them.

Lemma 8: In 𝒱 , if 𝐼𝑖+1 is scheduled before 𝑓2 ∈ 𝒩𝑖 such
that no other frame in 𝒩𝑖 is scheduled between them, then
no frame can be scheduled between them, and 𝑓2 must be a
descendant of 𝐼𝑖+1.

Lemma 9: In 𝒱 , if 𝐼𝑖+1 is scheduled before 𝑓 ∈ 𝒩𝑖+1

such that no other frame in 𝒩𝑖+1 is scheduled between them,
then only frames in 𝐺𝑂𝑃𝑖 and frame 𝐼𝑖+2 can be scheduled
between them.

Lemmas 6, 7, and 8 jointly indicate that the frames of
ℳ𝑖 = 𝒩𝑖 ∪ {𝐼𝑖+1} must be sent together. Moreover, Lemma
9 indicates that ℳ𝑖+1 must be scheduled immediately after
ℳ𝑖, for all 𝑖.

Next, we determine the transmission order of frames inside
each ℳ𝑖. Due to the first property of Theorem 2, each I-
frame 𝐼𝑖+1 is scheduled prior to 𝒟𝑖 in 𝒱 . With respect to
𝐼𝑖+1, the frames of 𝐺𝑂𝑃𝑖 can be divided into two groups:
𝒜𝑖, the frames scheduled prior to 𝐼𝑖+1, and ℬ𝑖, the frames
scheduled after 𝐼𝑖+1. Clearly all frames of 𝒟𝑖 are in ℬ𝑖. Since
the frames in ℳ𝑖 must be sent together, the frames in 𝒜𝑖 are
sent together, and the same holds for ℬ𝑖. The definition of
Quasi-SIO indicates that the frames of 𝒜𝑖 can be scheduled
by Lemma 5 using the subgraph of 𝐺 which comprises the
nodes of 𝒜𝑖. Moreover, since 𝐼𝑖+1 has already been scheduled,
the frames of ℬ𝑖 can be scheduled similarly based on the

𝑙1𝑖

𝐼𝑖

𝐼𝑖+1𝑙2𝑖

𝑙3𝑖

Fig. 3. Critical nodes in the 𝐺𝑂𝑃𝑖 MBFS tree of the Quasi-SIO class, plus
edges from 𝐼𝑖+1. Each triangle indicates a subtree rooted at the node located
at its top.

isomorphic ordering property, the second property of Theorem
2, and Lemma 5. Hence, all subtrees in ℬ𝑖 are transmitted
as contiguous blocks in the ascending order of the display
deadlines of their roots.

It remains to determine the relative position of the frames
in 𝒩𝑖−𝒟𝑖 with respect to 𝐼𝑖+1. Let a critical node be defined
as 𝑓 , 𝑓 ∈ 𝒟𝑖, such that in the path between 𝑓 and the root of
the MBFS tree containing 𝑓 , no other frame in 𝒟𝑖 appears. An
example of this is depicted in Figure 3, where 𝑙1𝑖 , 𝑙

2
𝑖 and 𝑙3𝑖 are

critical nodes. It is easy to see that a critical node in 𝐺𝑂𝑃𝑖 is
a child of 𝐼𝑖+1, but a child of 𝐼𝑖+1 in 𝐺𝑂𝑃𝑖 is not necessarily
a critical node. Let Γ𝑖 be the set of all critical nodes. It is clear
from Figure 3 that the set of nodes in the subtrees rooted at
the critical nodes of 𝐺𝑂𝑃𝑖 is equivalent to 𝒟𝑖. Furthermore,
by definition, the members of Γ𝑖 are pair-wise irrelevant. Let
𝜁𝑖 be the member of Γ𝑖 with the smallest display deadline. We
have the following lemmas [36]:

Lemma 10: In 𝒱 , frame 𝜁𝑖 must be scheduled immediately
after 𝐼𝑖+1.

Lemma 11: In 𝒱 , consider frame 𝑓 ∈ 𝒩𝑖 − 𝒟𝑖 that is
irrelevant with respect to 𝜁𝑖.

∙ If 𝑑𝑓 < 𝑑𝜁𝑖 , 𝑓 is scheduled before 𝐼𝑖+1.
∙ If 𝑑𝑓 > 𝑑𝜁𝑖 , 𝑓 is scheduled after 𝐼𝑖+1.
The above observations indicate that for any Quasi-SIO

transmission sequence, if we first ignore the backward predic-
tion edges from 𝐼𝑖+1 to B-frames in 𝐺𝑂𝑃𝑖, for all 𝑖, and create
the SIO canonical-form transmission sequence, then the Quasi-
SIO canonical-form transmission sequence can be obtained
by simply moving 𝐼𝑖+1, for all 𝑖, in the SIO canonical-
form transmission sequence backward so that it is positioned
immediately prior to the earliest frame of 𝒟𝑖 in the trans-
mission order. Furthermore, 𝒱 is uniquely determined given
any transmission sequence. Hence, we define the Quasi-SIO
universal sequence similarly to the SIO universal sequence in
the previous section.

Then, similarly to Section V-A, we have the following
theorem, which suggests that a transmission sequence that
maximizes the playback quality among all subsequences of
the Quasi-SIO universal sequence is an optimal transmission
sequence. This important observation will be used in the next
subsection to derive an optimal schedule.

Theorem 4: For the Quasi-SIO class of dependency struc-
tures, the canonical-form of any transmission sequence is a



subsequence of the Quasi-SIO universal sequence.
Proof: See Appendix VIII in [36].

B. Computation of Optimal Schedule

Similarly to Section V-B, we first generate the Quasi-SIO
universal sequence and re-index the frames as 𝑓1, 𝑓2, . . . , 𝑓𝑁 .
Then, define function 𝑔(𝑗, 𝑡, 𝑠), similarly to ℎ(𝑗, 𝑡), as the max-
imum sum quality of successful frames if frames {𝑓𝑖∣𝑗 ≤ 𝑖 ≤
𝑁} are to be scheduled in the time interval [𝑡,∞) assuming all
their parents with indices in the range {𝑓𝑖∣1 ≤ 𝑖 ≤ 𝑗 − 1} (if
any) are available. The additional parameter 𝑠 is an integer in
{0, 1, 2, 3}, whose binary representation specifies the status of
the two nearest I-frames in the Quasi-SIO universal sequence
that precede 𝑓𝑗 , i.e., 𝑠 = (𝑥1(𝑓𝑗), 𝑥2(𝑓𝑗)), where 𝑥2(𝑓𝑗) = 1
if the nearest preceding I-frame is selected for transmission
and 0 otherwise, and 𝑥1(𝑓𝑗) is similarly defined concerning
the second nearest preceding I-frame.

We again have

𝑧∗ = 𝑔(1, 0, 0), (11)

with boundary conditions

𝑔(𝑁 + 1, 𝑡, 𝑠) = 0, ∀𝑡, 𝑠 (12)

𝑔(𝑗, 𝑡, 𝑠) = 0, ∀𝑗, 𝑠, 𝑡 > 𝑑𝑁 . (13)

The recursive equations for 𝑔(𝑗, 𝑡, 𝑠) are given below, with
special consideration for the parameter 𝑠.

1) If 𝑓𝑗 is not an I-frame, let the index of the GOP that 𝑓𝑗
belongs to be 𝑖𝑗 . Three cases are considered:

1a) Suppose 𝑓𝑗 ∈ 𝒜𝑖𝑗 . This is the case where 𝑓𝑗 does not
depend on 𝐼𝑖𝑗+1 and is located prior to 𝐼𝑖𝑗+1 in the Quasi-
SIO universal sequence. If the nearest preceding I-frame, 𝐼𝑖𝑗 ,
is transmitted, then the outcome is similar to Section V;
otherwise, 𝑓𝑗 should not be selected. Hence, for 𝑠 = 1 or
3, we have

𝑔(𝑗, 𝑡, 𝑠) = max

⎧⎨
⎩
𝑔(𝑗, 𝑡+ 1, 𝑠)

𝑞𝑓𝑗 + 𝑔(𝑗 + 1, 𝑡+Δ𝑡𝑓𝑗 , 𝑠), 𝑑𝑓𝑗 − 𝑡 ≥ Δ𝑡𝑓𝑗
𝑔(𝑗 + 1, 𝑡+Δ𝑡𝑓𝑗 , 𝑠), 𝑑𝑓𝑗 − 𝑡 < Δ𝑡𝑓𝑗
𝑔(min{𝑘 : 𝑘 > 𝑗, 𝑓𝑘 ⇎ 𝑓𝑗}, 𝑡, 𝑠)

(14)
and for 𝑠 = 0 or 2, we have

𝑔(𝑗, 𝑡, 𝑠) = max

{
𝑔(𝑗, 𝑡+ 1, 𝑠)

𝑔(min{𝑘 : 𝑘 > 𝑗, 𝑓𝑘 ⇎ 𝑓𝑗}, 𝑡, 𝑠)
(15)

1b) Suppose 𝑓𝑗 ∈ 𝒟𝑖𝑗 . This is the case where 𝑓𝑗 depends
on both 𝐼𝑖𝑗 and 𝐼𝑖𝑗+1 and is located behind both in the Quasi-
SIO universal sequence. If both I-frames are transmitted, then
the outcome is similar to Section V; otherwise, 𝑓𝑗 should not
be selected. Hence, for 𝑠 = 3, we use (14), and for 𝑠 = 0, 1,
or 2, we use (15).

1c) Suppose 𝑓𝑗 ∈ ℬ𝑖𝑗 − 𝒟𝑖𝑗 . This is the case where 𝑓𝑗
does not depend on 𝐼𝑖𝑗+1 but is located behind 𝐼𝑖𝑗+1 in the
Quasi-SIO universal sequence. If the second nearest preceding
I-frame, 𝐼𝑖𝑗 , is transmitted, then the outcome is similar to

TABLE II
VIDEO TRACE SPECIFICATIONS

Sequence name Sony 1080 NBC News
Resolution 1920×1080 352×288

FPS 30 30
Encoder JSVM (9.15) JSVM (9.19.14)

Encoding Type High (Level 5) High (Level 2.1)

Section V; otherwise, 𝑓𝑗 should not be selected. Hence, for
𝑠 = 2 or 3, we use (14), and for 𝑠 = 0 or 1, we use (15).

2) If 𝑓𝑗 is an I-frame, then besides scheduling the frame
similarly to Section V-B, we also need to update 𝑠. It is easy
to verify that, if the frame is dropped, then we update to
(2𝑠) mod 4; if the frame is transmitted, then we update to
(2𝑠+ 1) mod 4. Hence,

𝑔(𝑗, 𝑡, 𝑠) = max

⎧⎨
⎩

𝑔(𝑗, 𝑡+ 1, 𝑠)

𝑞𝑓𝑗 + 𝑔(𝑗 + 1, 𝑡+Δ𝑡𝑓𝑗 , (2𝑠+ 1) mod 4),

𝑑𝑓𝑗 − 𝑡 ≥ Δ𝑡𝑓𝑗
𝑔(𝑗 + 1, 𝑡+Δ𝑡𝑓𝑗 , (2𝑠+ 1) mod 4),

𝑑𝑓𝑗 − 𝑡 < Δ𝑡𝑓𝑗
𝑔(𝐼𝑓𝑗 , 𝑡, (2𝑠) mod 4),

(16)
where 𝐼𝑓𝑗 indicates the next I-frame after 𝑓𝑗 , and we update
the two bits of 𝑠 depending on the scheduling outcome.

In the above dynamic programming formulation, state 𝑠
needs to take only four values due to the fact that the frames
of a GOP only depend on at most two I-frames. Therefore,
similarly to the SIO case, we again have an overall complexity
of 𝑂(𝑁𝑑𝑁 ) = 𝑂(𝑁2).

VII. EXPERIMENTS WITH VIDEO TRACES

The proposed frame selection and scheduling scheme is
optimal as shown in the previous sections. In this section, we
are further interested in its numeric performance when applied
to H.264 video traces.

A. Methodology

The proposed scheme is studied in Matlab, using H.264
video traces provided by [20]. We present here results for
the “NBC News (352 × 288)” and “SONY (1920 × 1080)”
traces, representing faster moving and slower moving scenes,
respectively. The details of the video traces are provided in
Table II. We take the first 305 frames of each video. As an
example for illustration, the luminance of a frame is used as
its quality measure, so the objective function averaged over
the number of frames represents the average Y-PSNR at the
receiver [7].

We compare the optimal solution with three suboptimal al-
ternatives. The first is a best-effort earliest-deadline-first (EDF)
algorithm, in which the frames are scheduled in their display
order, and the frames that cannot be successfully transmitted
are dropped by the transmitter. EDF is the traditional scheme
used for video streaming [12]. The second is a decoding order
earliest-deadline-first (DOEDF) algorithm, which is similar to
the first algorithm except the frames are transmitted in decod-
ing order. The third is a priority-based earliest-deadline-first
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Fig. 4. Comparison of algorithm performance.

(PBEDF) algorithm, which combines frame prioritization [13]
[14] with EDF. In PBEDF, the set of frames are partitioned into
blocks of size 𝑀 . In each block, the I-frames are scheduled
first in EDF order, and the B-frames are scheduled last in EDF
order. For fair comparison, in the results below we always use
an optimal 𝑀 obtained by exhaustive search. Note that EDF
and DOEDF both have 𝑂(𝑁) complexity, while PBEDF has
𝑂(𝑁2) complexity due to the need to search over all possible
values of 𝑀 . We aim to study the performance gain of the
proposed optimal schedule, in order to justify its tradeoff of
complexity for performance over the three alternatives.

B. Experimental Results

Video playback quality is dictated by the link rate and
the initial playback delay, which is defined as the time the
receiver waits before video playback while receiving data. In
Figure 4, we consider different initial delays of 0.1, 1, and 5
seconds, and for each initial delay, we study all values of link
capacity 𝐶 up to the point when all algorithms give lossless
performance. Note that since the video trace “SONY” has very
low motion, its data size is relatively small, so that high PSNR
can be achieved under moderate link capacity even for its high
resolution.

We observe that, for a wide range of parameter settings,
the optimal schedule substantially outperforms the sub-optimal
alternatives. The exception is only under extremely relaxed
environments, e.g., when the initial delay is large or when the

link capacity is high. In practical video streaming, where the
users are impatient, and the network bandwidth is limited, the
benefit of the optimal schedule is apparent.

In addition, under the optimal schedule, the Y-PSNR is
monotonically increasing in the link capacity as expected.
Interestingly, this is not the case for EDF, DOEDF, or PBEDF,
which results from the dependency structure. In particular, a
slightly higher link capacity may drive these schemes to over
zealously transmit a frame, which in turn reduces the time
left to transmit an ancestor that appears later in the display
order, possibly rendering the ancestor unsuccessful. Hence,
with these sub-optimal schemes, increasing the link capacity
is not always beneficial.

VIII. CONCLUSION AND DISCUSSION

A frame selection and scheduling scheme has been de-
veloped for optimal transmission of dependent and delay-
constrained frames over a link with limited capacity. For
two general classes of dependency structures that cover the
most common video predictive coding schemes, it is shown
that an optimal transmission sequence can be found as a
subsequence of a canonical-form optimal universal sequence.
Efficient dynamic programming solutions are then proposed
to identify the optimal frame selection and scheduling with
quadratic computational complexity. Experiments with video
traces show that the optimal schedule can substantially im-
prove the playback quality over suboptimal alternatives.
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APPENDIX I
HIERARCHICAL DYADIC STRUCTURE

In the hierarchical dyadic structure 𝐺𝑛𝐵𝑚, the GOP size
𝑛 is an integer power of 2, and 𝑚 is the number of B-frames
between consecutive non-B-frames, with 𝑚 = 2𝜔 − 1 for
some 𝜔 ∈ ℕ. Each GOP contains one leading I-frame and

𝑛
𝑚+1 − 1 P-frames. Each P-frame depends on the previous I-
frame/P-frame in the display order. The dependency structure
among the B-frames between two consecutive non-B-frames
is described by Dyadic-build(𝑖, 𝑗) in Algorithm 1, where 𝑗− 𝑖
is an integer power of 2. As an example, Figure 1 shows the
hierarchical dyadic structure for a GOP with 𝐺16𝐵3.

Algorithm 1 Dyadic-build(𝑖, 𝑗)

1: if ∣𝑖− 𝑗∣ ≤ 1 or log2 ∣𝑖− 𝑗∣ /∈ ℕ then
2: return
3: end if
4: 𝑖0 ← 𝑖+𝑗

2
5: 𝑖0 depends on 𝑖, 𝑗
6: Dyadic-build(𝑖, 𝑖0)
7: Dyadic-build(𝑖0, 𝑗)

The hierarchical dyadic structure does not belong to the
SIO class. This is because there is always a B-frame that is
the descendant of two consecutive I-frames, which violates the
sequential property. In Figure 1, frame 14 is an example of
such a frame that violates the sequential property.

However, we can show that the hierarchical dyadic structure
belongs to the Quasi-SIO class. This is accomplished by
demonstrating that a modification on the hierarchical dyadic
structure, which removes the backward DAG edges emanating
from each I-frame to its children in the preceding GOP,
results in a structure belonging to the SIO class. In this
modified hierarchical dyadic structure, no B-frame depends
on a succeeding I-frame. For instance, this means in Figure 1,
frames 14 and 15 no longer depend on frame 16. It is worth
mentioning that this modification is used as an approximation
in [18]. However, in our work, we show that an optimal
schedule can be obtained for the hierarchical dyadic structure
without modification, since it is a special case of the Quasi-
SIO class.

We use the following two conclusions, whose proofs can be
found in [36].

Theorem 5: The DAG of a modified hierarchical dyadic
structure is sequential.

Theorem 6: The MBFS trees under the hierarchical dyadic
structure (modified or not) are Binary Search Trees (BSTs)
with respect to the display deadlines.

The BSTs are a special case of isomorphically ordered trees.
Combining this with Theorem 5, we see that the modified
hierarchical dyadic structure belongs to the SIO class, and
hence, the hierarchical dyadic structure belongs to the Quasi-
SIO class.


