
JOLT: Lightweight Dynamic Analysis and Removal of Object Churn

Ajeet Shankar

University of California, Berkeley

aj@cs.berkeley.edu

Matthew Arnold

IBM T.J. Watson Research Center

marnold@us.ibm.com

Rastislav Bodı́k

University of California, Berkeley

bodik@cs.berkeley.edu

Abstract
It has been observed that component-based applications ex-
hibit object churn, the excessive creation of short-lived ob-
jects, often caused by trading performance for modularity.
Because churned objects are short-lived, they appear to be
good candidates for stack allocation. Unfortunately, most
churned objects escape their allocating function, making es-
cape analysis ineffective.

We reduce object churn with three contributions. First, we
formalize two measures of churn, capture and control (15).
Second, we develop lightweight dynamic analyses for mea-
suring both capture and control. Third, we develop an algo-
rithm that uses capture and control to inline portions of the
call graph to make churned objects non-escaping, enabling
churn optimization via escape analysis.

JOLT is a lightweight dynamic churn optimizer that uses
our algorithms. We embedded JOLT in the JIT compiler of
the IBM J9 commercial JVM, and evaluated JOLT on large
application frameworks, including Eclipse and JBoss. We
found that JOLT eliminates over 4 times as many allocations
as a state-of-the-art escape analysis alone.

Categories and Subject Descriptors D.3.4 Processors [Pro-
gramming Languages]: Optimization

General Terms Algorithms, Performance

Keywords Churn, allocation optimization, Java, virtual
machine, selective optimization, escape analysis, inlining

1. Introduction
Large-scale applications are often built on application frame-
works, such a Sun’s J2EE and IBM’s Eclipse. These frame-
works employ many reusable components and third-party
libraries. To allow composition with other components in
an application, components typically provide a simple, gen-
eral interface, which often necessitates construction of many

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

OOPSLA’08, October 19–23, 2008, Nashville, Tennessee, USA.
Copyright c© 2008 ACM 978-1-60558-215-3/08/10. . . $5.00

intermediate objects that are quickly discarded. This phe-
nomenon is known as object churn (15; 23).

Object churn is harmful for several reasons. First, it puts
pressure on the garbage collector. Second, if temporary ob-
jects appear to require synchronization, it inhibits paral-
lelization. Third, construction of temporary objects may re-
quire unjustified computational overhead, as fields in these
overly general objects might be used only once or not at all.

Churn-inducing code can be optimized manually, for ex-
ample with code refactoring. Dufour et al. (15) developed a
hybrid static/dynamic analyzer that uses notions of object
capture and control to guide programmers to problematic
program fragments. To eliminate the identified churn, a pro-
grammer may need to change the data structure representa-
tion. Because churn is pervasive (23), such refactoring may
involve several components, which may not be economical.
Churn may also involve libraries for which source code is
not available, preventing refactoring.

This paper explores automatic reduction of object churn
as might be performed in a JIT compiler. On first sight,
the problem of object churn removal appears to be solved:
escape analysis (10; 12; 29) identifies objects that can be
stack allocated, or even promoted to registers via scalar
replacement, and subsequent dead value analysis may be
able to remove useless object fields; existing JIT compilers
contain advanced implementations of these techniques.

However, we observed that object allocation optimiza-
tions based on escape analysis do not perform well on
component-based applications, largely because many short-
lived objects escape their allocating functions. In a typical
scenario, objects are passed up the stack via object facto-
ries or functions that compute intermediate values. While
the escape analyses reported in literature usually eliminate
over 20% of allocations on test programs (10; 12; 29) , our
measurements on large component-based applications indi-
cate that even a sophisticated escape analysis performed on
function boundaries in a high-performing commercial JVM
generally eliminates fewer than 10% of allocations (see Sec-
tion 6).

Another factor limiting the effectiveness of escape analy-
sis is the stringent budget available to the JIT compiler. The
VM must select methods for compilation and choose which
optimizations to apply to each method. A common heuris-

tic used by profile-guided compilers is to select optimiza-
tions based on execution frequency (or “hotness”), but such
a heuristic may overlook many of the tens of thousands of
functions in a component-based applications that exhibit ob-
ject churn but are not very hot. In addition, the hottest meth-
ods are not necessarily involved in object churn. Excessive
inlining, which improves churn elimination, can negatively
impact performance (8), particularly if applied unjudiciously
in large framework-based applications.

Figure 1 illustrates these concerns with an example of
a standard library function used in many business applica-
tions. The code exhibits typical object churn: objects cre-
ated in functions called by divide are immediately used in
divide and subsequently discarded. Since these functions
are not often among the hottest functions in a program, es-
cape analysis may not be performed on them. Even if it was,
the analysis would find that the objects escape their allocat-
ing functions. This problem can be alleviated with inlining,
but we observed that several of the called functions are over-
looked by a standard inliner, because it considers them too
large and is unaware of the potentially large stack allocation
benefit that could result.

In summary, there are two main obstacles to the elimi-
nation of object churn from component-based applications
using a JIT compiler:

1. The JIT lacks the budget to perform allocation optimiza-
tions on all functions and, conversely, sufficient informa-
tion to determine which subset of functions would benefit
from allocation optimizations.

2. Short-lived objects often escape their allocating func-
tions, defeating traditional escape analysis.

JOLT, the system described in this paper, deals with these
two issues by (a) using a lightweight dynamic analysis to
identify churn scopes, which are subgraphs of the call graph
with significant churn; and (b) performing selective function
inlining to make allocation sites in churn scopes amenable
to traditional allocation optimizations.

Our solution for short-lived escaping objects is moti-
vated by the empirical observation of Dufour et al. (15)
that many escaping objects are eventually contained. Con-
sistently across large programs, over 50% of objects did not
escape from their allocating method or one of its three an-
cestors in the call chain at the time of object allocation. The
churn scopes computed by JOLT encapsulate live ranges of
short-lived objects. The JIT compiler’s inliner is instructed
to inline methods in the churn scope, making them visible
to escape analysis. With this profile guidance, the JIT’s opti-
mizer can better select and optimize targets from among the
thousands moderately hot functions that typically exist in a
large-scale application.

JOLT optimizes the code in Figure 1 in three steps. First,
the JOLT dynamic analysis detects that divide() captures
many objects and hence makes divide() the start of a
churn scope, meaning that some subgraph (of the call graph)

rooted at divide()may be worth optimizing. Second, JOLT

identifies what subgraph that is. Although divide() makes
many calls, JOLT’s inliner, still observing an inlining budget,
will inline into divide() those calls that aid in eliminating
churn. These inlined calls become part of the churn scope.
Finally, JOLT invokes the escape analysis on this scope, even
if the divide function were not hot enough to justify this
level of optimization using traditional JIT heuristics.

This paper makes the following contributions:

• We formalized two measures of churn locality, capture
and control (15). Together, they form the basis for identi-
fying areas of optimizeable object churn (Section 2).

• We developed efficient algorithms for measuring capture
and control at run time. The algorithms are designed for
a VM with contiguous memory allocations and thread-
local heaps (Section 3), a common configuration in mod-
ern VMs.

• We developed an alternate algorithm for approximating
these measures in any VM with a garbage collector (Ap-
pendix A).

• We developed an inlining algorithm that uses the results
of these churn analyses to expose profitable allocation
contexts, called churn scopes, to standard JIT compiler
allocation optimizations (Section 4).

• We implemented JOLT for Java in a development version
IBM’s J9 JVM (Section 5). Our evaluation of this system
on several large-scale applications (Section 6) shows that
our transformation increases 4-fold the rate of object
stack allocation.

2. Capture and Control Analysis
The ultimate goal of our dynamic analysis is to compute
churn scopes, subgraphs of the static call graph that encapsu-
late lifetimes of many objects; the functions comprising each
churn scope are inlined and handed over to escape analysis.
Clearly, the program as a whole represents a churn scope that
maximizes contained object lifetimes; it is, however, usually
too large too large to inline and optimize. Therefore, in Sec-
tion 4 we give heuristics that seek to balance the amount of
encapsulated lifetimes and the scope size.

In this section we take the first step towards computing
churn scopes. We formalize capture and control, two pro-
gram properties that we use to compute churn scopes in Sec-
tion 4. We motivate capture and control with how one would
compute churn scopes. In this section we assume that churn
scopes are rooted at some call graph node and contain all
nodes reachable from this root; this restriction is relaxed in
Section 4. This section first defines capture and control for a
dynamic call tree, and then does so for the static call graph.

2.1 Definitions

Consider an execution trace E of a program P composed of
a set of functions F . The trace E is a sequence of events
corresponding to the start and end points of function invo-

public BigDecimal divide(BigDecimal val, int newScale, int roundingMode)
throws ArithmeticException, IllegalArgumentException {

...
valIntVal = valIntVal.multiply(BigInteger.valueOf(10).pow(-power)); // 3 objects
...
BigInteger dividend = intVal.multiply(BigInteger.valueOf(10).pow(power)); // 3 objects
BigInteger parts[] = dividend.divideAndRemainder (valIntVal); // 2 objects
...
BigInteger posRemainder = parts[1].signum() < 0 ? parts[1].negate() : parts[1]; // 1 object
valIntVal = valIntVal.signum() < 0 ? valIntVal.negate () : valIntVal; // 1 object
int half = posRemainder.shiftLeft(1).compareTo(valIntVal); // 1 object
...
// (valueOf most likely using constant here)
unrounded = unrounded.add (BigInteger.valueOf (sign > 0 ? 1 : -1)); // 1 object
...
return new BigDecimal (unrounded, newScale);

}

Figure 1. An example of object churn from the the GNU Classpath implementation of the standard Java Class Library method
BigDecimal.divide(). The calls shown here each return either BigDecimal or BigInteger objects, which are immediately
used and then discarded. The number of churned object allocations is shown next to each call.

cations and object lifetimes. The events are identified with
unique timestamps. For each function f ∈ F , let f i denote
the ith invocation of f in E. Let start(fi) denote the begin-
ning of the ith invocation of fi and end(fi) the time when
the function returns. For an object o allocated in E, start(o)
gives the time of o’s allocation and end(o) marks the end of
o’s lifetime. Our implementation conservatively defines the
end of the lifetime as the time at which o becomes unreach-
able.

A function invocation cj is a child of invocation fi if fi

directly invokes cj . The set children(fi) gives all children
of fi. We have

cj ∈ children(fi) ⇒
start(fi) < start(cj) < end(cj) < end(fi)

Child invocations cannot overlap, so we have

cj , ck ∈ children(fi) ∧ j �= k ⇒
end(cj) < start(ck) ∨ end(ck) < start(cj)

The children relation on invocations defines the dynamic
call tree. The static counterpart, defined over functions in F ,
defines the static call graph: a function c is a child of f ∈ F
if there are i, j such that fi invokes cj .

We define alloc(fi) as the set of all objects allocated by
fi and its descendents. We define escape(fi) as the subset of
alloc(fi) composed of objects that escape fi:

alloc(fi) := {o | start(fi) < start(o) < end(fi)}
escape(fi) :=

{o | start(fi) < start(o) < end(fi) < end(o)}

A dynamic churn scope of the function invocation f i is
a subtree of the dynamic call tree rooted at the node f i; the
churn scope contains all nodes reachable from node f i. A
static churn scope of a function f is a subgraph of the call
graph rooted at the node f that contains all nodes reachable
from the node f .

2.2 Capture

Our first property uses the notion of capture introduced by
Dufour, et al. (15). We define the capture of a function
invocation fi as the set of all objects allocated by fi and
its descendents whose lifetimes end before fi returns.

capture(fi) := alloc(fi) \ escape(fi)

The capture of a function invocation f i is an indicator of
object churn: if fi or its descendents create many short-lived
objects, these objects are likely captured by f i. In the context
of the optimization that we have in mind, capture(f i) gives
an upper bound on the number of object allocations that can
be eliminated if the optimization selects fi as the root of a
churn scope.

Though fi’s scope may have significant optimizeable ob-
ject churn, we want to balance optimization benefit with its
cost, influenced primarily by the size of the scope. First, we
are interested in whether choosing an ancestor of f i might
expose even more churn. Second, we want to determine
whether there is a smaller scope with comparable optimiza-
tion benefit. Such a scope may be rooted at one of f i’s chil-
dren.

The second question is answered in the following subsec-
tion. To answer the first question, we use the capture rate,
%capture, which normalizes capture to the number of object

E

P

N
E

N

f
iA

Figure 2. Object lifetime behavior of a function invocation
fi and one of its child calls. The circles denote allocation
events. The objects marked E, P , and N were are allocated
by fi or its child. The objects marked E remain reachable
past the exit of fi and are considered escaped. The object
marked P is unreachable at fi’s exit and is considered cap-
tured. The objects marked N are also captured but have an
additional property: they are live during f i’s execution, not
just during its descendants’ execution, and are thus consid-
ered controlled by fi. (The object marked A was live before
fi’s execution but is unreachable after it; it is considered ab-
sorbed and is relevant to Section A.3.)

allocations:

%capture(fi) :=
|capture(fi)|
|alloc(fi)|

The higher the value of %capture(fi), the less attractive it
is to grow the scope to the parent of fi, because most objects
are already captured by fi.

2.3 Control

To determine whether it may be more profitable to root the
scope at a child of fi, rather than at fi, we formalize control,
which indicates the level of “object encapsulation” provided
by fi. We define control(fi) as those objects allocated by
fi and its descendents whose lifetimes end in fi but not in
any of its children. The objects controlled by f i include in
particular objects that escape the immediate children of f i

but do not escape fi. The invocation fi controls these objects
in the sense that it uses them in its computation (including
passing these objects among its children), but they do not
survive past its return. Control is an indicator of churn: If f i

controls few of the objects that it captures, it may not be a
profitable root of a churn scope.

The set of objects controlled by fi is defined as follows.

control(fi) := capture(fi) \
⋃

cj∈children(fi)

capture(cj)

We also define the control rate, denoted %control:

%control(fi) :=
|control(fi)|
|alloc(fi)|

The control rate can be used to identify suitable churn
scopes. Imagine that we are looking for a suitable churn
scope by moving the churn scope root down the call graph.
In this case, the control rate %control acts as a sentinel:
a high value of %control(fi) suggests that shrinking the
scope from fi to one of fi’s children would deprive a signif-
icant number of objects controlled by f i of the context that
bounds their lifetimes. The control rate thus complements
%capture, which acts as a sentinel when moving the root
upwards (we may want to place the root high enough to cap-
ture most of the allocated objects). For a diagram of control
and capture, see Figure 2.

2.4 Aggregating Dynamic Information

We have defined capture and control for dynamic function
invocations, whose children relation defines the dynamic
call tree. Since JOLT needs to select scopes on the static call
graph, we also define capture and control for static func-
tions by aggregating the dynamic values. Note that capture
and control for function invocations range over sets of ob-
jects. To enable statistical aggregation, we define their static
counterparts,capture(f) and control(f), as the mean over
the cardinalities of these sets. (Instead of comptuing set car-
dinalities, we sometimes compute the aggregate memory
footprint of these objects.) Given a function f with invo-
cations f1, ..., fn, we define capture(f) and %capture(f)
as

capture(f) :=
1
n

n∑

i=0

|capture(fi)|

%capture(f) :=
1
n

n∑

i=0

%capture(fi)

The static values control(f) and %control are defined anal-
ogously, as the mean of the dynamic values control(f i) and
%control(fi), respectively.

control(f) :=
1
n

n∑

i=0

|control(fi)|

%control(f) :=
1
n

n∑

i=0

%control(fi)

It may seem that we could save work by computing the static
control values from the static capture values, as follows:

control(f) := capture(f) \
⋃

c∈children(f)

capture(c)

where the children relation is given by the static call graph.
This formula would avoid computing the dynamic values
control(fi) during profiling. The price, however, is the
loss of context sensitivity present in the dynamic values
control(fi). Because the dynamic values are computed on
the dynamic call tree, each invocation is analyzed in its call-
ing context. Since control(f) is computed from the dynamic
control values, it reflects only the behavior of children of f
when they are called from f , ignoring them when they are
called from other functions.

3. Computing Capture and Control
JOLT computes capture and an approximation of control
with low-level mechanisms typically available in modern
virtual machines. Specifically, our dynamic analysis exploits
the fact that (i) virtual machines contain a tracing garbage
collector; (ii) memory managers often allocate objects con-
tiguously, as in a copying collector; and (iii) heaps are typi-
cally thread-local, i.e., they service allocation requests from
a single thread. For JVMs that do not meet the assumption
of thread-local heaps (TLHs) and a contiguous allocator, we
have devised an alternate set of algorithms. These analyses,
given in Appendix A, approximate capture and control with
any garbage collector.

In this section, we first show how to compute alloc(fi)
and escape(fi) with a few simple measurements; as de-
scribed in Section 2, these values can be used to compute
capture(fi), %capture(fi), capture(f), and %capture(f).
We then describe a difficulty with computing control(f i)
with a garbage collector, and present an approximation of
control(f) that circumvents this difficulty.

3.1 Computing alloc and escape

In a JVM with contiguous allocations and thread-local heaps
it is straightforward to compute alloc(fi), the total size of
objects allocated by fi. Each thread has a pointer to the
beginning of the free space in its TLH. When a function
allocates an object, the free space pointer is incremented by
the size of the object, and the intervening space is returned
to the function to be used by that object. We use the function
tlhp(fi, t) to denote the value of the free space pointer at
time t in the thread executing fi.

To compute alloc(fi), we determine by how much the
free space pointer has moved between start(f i) and end(fi).
Since allocations are contiguous and thread-local, this value
gives the total size of objects allocated by fi. The range of
addresses of these objects is

〈tlhp(fi, start(fi)), tlhp(fi, end(fi))〉
This range is valid if no garbage collection occurred during
fi. If it did, our sampling profiler discards the measurement.

To compute escape, JOLT invokes the tracing garbage
collector at the end of fi and passes it the allocation range
computed above. As the GC traverses live objects on the

alloc(fi)

alloc(c
1
)

alloc(c
2
)

tlhp(fi, start(fi))

tlhp(c1, start(c1))

tlhp(c1, end(c1))

tlhp(c2, start(c2))

tlhp(c2, end(c2))

tlhp(fi, end(fi))

Figure 3. A view of the portion of a thread-local heap rel-
evant to a function invocation fi, illustrating the informa-
tion that a thread-local heap allocation pointer provides in
computing churn analyses. By tracking the position of this
pointer (shown at the left of the heap) as the program exe-
cution progresses, JOLT computes alloc for the function and
each of its children. Furthermore, by running a garbage col-
lection at the end of fi, JOLT identifies the set of objects that
are still live, escape(fi) (shown here in gray). The remaining
objects, in white, constitute capture(fi). Finally, the gray
objects in each child allocation region alloc(cj) provide a
lower bound on escape(cj).

heap, it checks whether the object’s address falls within the
allocation range of fi. Objects in alloc(fi) that are still alive
at fi’s exit comprise escape(fi). Figure 3 illustrates this
computation.

3.2 Computing control

Recall that to compute control

control(f) :=
1
n

n∑

i=0

control(fi)

we require a value for control(fi) for each invocation fi,
which in turn relies on the value of escape(cj) for each child
cj of fi. Unfortunately, we cannot compute escape(cj) for
each child cj of fi using the method described in the pre-
ceding subsection. Since the collector is copying, invoking
it at the end of cj will rearrange the heap, invalidating mea-
surements for fi and its other children. Thus, to compute
escape(fi), we can afford only one garbage collection dur-
ing the execution of fi, at the end of fi. To circumvent this
problem, JOLT samples the value escape(cj , fi), which is
the value of escape(cj) when cj executed as a child of fi.

In more detail, JOLT computes control(f) not from the
dynamic values control(fi), but from static information
that preserves context-sensitivity whenever possible. The
approximation uses static call graph edge frequencies freq

to weight the data from each of its static child calls:

control∗(f) = capture(f) −∑

c∈children(f)

freq(f, c) · cap∗
f (c)

The value freq(f, c) · cap∗
f (c) approximates the total objects

captured by c when c was called from f . The value cap ∗
f (c)

is computed in one of three ways, in order of preference:
Content-sensitive sampling of c in f . This approach

measures the behavior of c in the context of f . After f
has been sufficiently sampled to establish a stable value for
capture(f) (in practice, we use six samples), JOLT alters its
behavior the next time f is scheduled for sampling. Rather
than sampling capture(fi), JOLT randomly selects a child
call cj from fi’s execution. It then profiles that child call,
computing capture(cj) by invoking the garbage collector
at the end of cj and storing this information as the calling-
context-sensitive value capture(cj , fi). During the summa-
rization of f , if such a context-sensitive sample of c is avail-
able, the specific value capture(cj , fi) is summarized to
capturef (c), which cap∗

f then uses to compute control(f)
as per the formula above.

Context-insensitive value for c. If no such context-
sensitive value is available for a given child c, JOLT attempts
to use the context-insensitive value capture(c) that is com-
puted as the mean of all available samples of capture(cj).
This approach is less accurate, because it does not consider
the context-sensitive behavior of c when called by f .

Upper-bound value of capture(cj). Finally, in the rare
case that no samples of capture(cj) have been taken, JOLT

falls back to computing an upper bound for capture(c j).
This is done by computing a lower bound on escape(c j).
During the initial profiles of f , when the garbage collector
is being invoked at the end of fi, JOLT passes the collector
the allocation range not only for f i but also for each of its
children (see Figure 3). Then, during the collector’s mark-
ing phase, if a live object happens to fall within the alloca-
tion range of fi, the GC checks further to see whether the
object also lies within the allocation range of cj (see Fig-
ure 4 for pseudocode). If so, the object escapes c j since
it escapes its caller fi. Because alloc(cj) is measured pre-
cisely, this lower bound on escape(cj) yields an upper bound
on capture(cj). Though this upper bound is not very accu-
rate (specifically, it cannot determine how many objects es-
caping cj are controlled by fi), it is inexpensive to obtain
and serves to bound the error when no other information
about c is available. As with the context-sensitive sampling,
this upper bound on capture(cj) is summarized to an upper
bound on capturef (c), which cap∗

f uses in the computation
of control(f).

4. Selecting Churn Scopes For Optimization
This section describes the heuristics used to select and opti-
mize churn scopes, the sets of functions encompassing ob-

function mark_object(object o) {
...
function f = currently_profiled_function;
if (f != null && o >= tlhp(f, start(f)) &&

o < tlhp(f, end(f))) {
add_to_escaped(f, o);
foreach(c in f.child_calls) {
if (o >= tlhp(c, start(c)) &&

o < tlhp(c, end(c)) {
add_to_escaped_with_context(c, f, o);

}
}
...

}

Figure 4. Pseudocode for JOLT’s escape algorithm during
the GC’s live object marking step.

ject churn that are transformed into a single function via
inlining and then handed to the optimizer. In the first step,
JOLT uses the dynamic analyses described in the previous
sections to find the root of a scope. In the second step, JOLT

inlines certain descendents of the root, depending on their
benefit and cost to the optimization, in order to expose allo-
cation sites to a traditional escape analysis. This algorithm is
based on several approximations, but it has the benefit of be-
ing very simple to implement, and has good results in prac-
tice; see Section 6.

4.1 Step 1: Finding the Root of the Scope

A churn scope is a subgraph of the static call graph that has a
single root from which all nodes in the scope are reachable.
This step finds a suitable root of the scope. JOLT uses three of
the analyses from previous sections in conjunction to select
scopes that are likely to result in beneficial optimization.
JOLT selects scope roots that

• have a high capture value, which ensures that there are
many churned objects in the scope, justifying the expense
of optimizing it.

• have a high %capture value, which indicates that the
scope would not gain many newly captured objected were
it to be grown to include a caller of the root function: most
of the allocated objects are being captured already.

• have a high %control value, which indicates that many of
the captured objects are live at the scope’s root. Thus, the
scope would lose these captured objects were it to shrink
to a child of the root, since the controlled objects would
escape that scope.

When a function f has accumulated a set number of
sampled profiles, a summary is generated using the tech-
niques described in Section 3. JOLT evaluates the churn
scope rooted at f by summing the rankings of capture(f),
%capture(f), and %control(f) against all currently sam-

pled functions. (No functions are ranked until 100 functions
have been summarized.) If f ’s summed ranking is in the top
1% of all functions, then it is selected as an churn scope root,
and its scope is scheduled for churn optimization.

4.2 Step 2: Inlining Descendents

Ideally, we would inline into the churn scope root f all func-
tions reachable from it. The resulting single function would
encapsulate all of its captured objects’ lifetimes, which
would allow standard escape analysis to optimize them. Un-
fortunately, excessive inlining causes well-known problems,
and JOLT therefore selects descendents of the root such that
an inlining budget is not exceeded. To aid in explaning this
selection process, we view the static call graph rooted at
f as a call tree, by conceptually removing any cycles, and
duplicating any vertices in the resulting DAG that have mul-
tiple in-edges. JOLT’s strategy for selection is based on two
observations.

Our first observation is that for the escape analysis to
identify and remove the churn, we need to inline into the
root f only those functions that allocate objects captured by
f ; this will make them optimizable by the escape analysis.
Functions without captured allocations can be given a lower
priority for inlining into f .

Our second observation helps us deal with the loss of
precision that occurs when we aggregate capture information
from the dynamic call tree onto the static call graph. Ideally,
to decide whether a function g should be inlined into the
root f , we want to know how many objects allocated by
g are captured by f . This seems to require maintaining
information for all pairs of reachable call graph nodes, which
we do not track for reasons of efficiency. To avoid this
overhead, we observe than f was selected as the root because
of its high %capture value, which means that most objects
allocated in f ’s scope are captured by f . Thus, we simplify
the problem with the assumption that any allocation site
is worth inlining, since it most likely allocates captured
objects.

Since inlining every function with an allocation site of-
ten exceeds the maximum permitted size bound, we need
to select the most profitable functions. We prefer to inline
functions that allocate the most objects; this policy gives the
largest number of allocations the chance of optimization. We
phrase our final problem as follows:

Given as input a call tree rooted at f , with the benefit of
each function in the tree equal to the number of allocations
it contains, what is the subtree rooted at f with the greatest
benefit that respects an inlining size bound k?

We show by reduction from the classic Knapsack problem
that this problem is NP-Hard. The inputs to Knapsack are a
set of items, each with a cost and a benefit, and the output
is the subset of these items with the maximum benefit that
does not exceed a given cost bound.

We represent each of the input items to Knapsack by a
function whose size is the item’s cost and which contains

totalCost := 0
S := set of initial candidate inlining decisions
while (totalCost < LIMIT && S != emptyset)
choose inlining decision D from S with the largest

benefit/cost ratio
if (totalCost + cost(D) < LIMIT)
inline D
totalCost += cost(D)
add children of D in tree to S

S = S \ { D }

Figure 5. The inlining algorithm, based on an approxima-
tion of Knapsack, used by JOLT.

as many allocations as the item’s benefit. Each of these
functions is added as a child of a root function f to form
a call tree. The size bound is set to the Knapsack input’s
cost bound. The solution to our problem yields a subtree
containing those items that maximize the total benefit while
respecting the bound, which solves the Knapsack problem.

We observe, based on this reduction, that our problem is
the Knapsack problem with the added restriction that for any
item to be selected, its ancestors in a provided tree must be
selected as well. Thus, we use an efficient approximation of
Knapsack, discussed in the context of inlining in Arnold, et
al. (5), and presented in a modified version in Figure 5, to
solve it.

The initial inputs to this approximation are f ’s children.
The algorithm chooses the input with the greatest bene-
fit/cost ratio to inline first, and subsequently adds that input’s
children as new inputs, repeating this process until the cost
limit is reached. Since it inlines from the root node f down
the tree, the restriction of requiring ancestor nodes to be in-
lined is implicitly satisfied.

However, the algorithm with its stated inputs is ill-suited
for maximizing the number of inlined allocations from the
whole tree, since it greedily favors local maxima. Consider
the chain of function calls f → g → h. If g has no
allocations, it has no benefit, and the greedy algorithm would
not inline along the f → g edge, even if h has many
allocations.

To address this problem, JOLT uses the alloc value from
its dynamic analyses to provide the Knapsack approximation
with more holistc cost and benefit values. We change the
benefit of each input n to be alloc(n) — the number of
allocations that occur in the entire subtree starting at n —
and the cost to be the total size of the functions in the subtree.
In the above example of f → g → h, the benefit of g, then, is
not just the number of allocations it contains, but the number
of allocations its subtree (including h) contains. Thus, even
at f we can choose to inline g, knowing that further along its
subtree are functions with many allocations.

This use of alloc is imprecise in the sense that it assumes
that an entire subtree’s cost and benefit will be acquired

JIT Profiler

Jolt Profiler

Jolt Selector

JIT Inliner

Jolt Inliner
… JIT Optimizations … Escape Analysis

JIT

Figure 6. A schematic of the JOLT implementation. The
profiler gathers data for the analyses (described in Section 2)
much like a normal VM profiler does, via sampling. It passes
this information on to a selector, which rates each function.
If a function’s aggregate rank is in the top 1% of all profiled
functions, it is selected for optimization. The JOLT inliner
(Section 4) then uses smart inlining (aided by the standard
JIT profiler) to expose as many allocations as possible. The
standard escape analysis is also prodded to run on the ex-
panded function, even if it might not have otherwise.

when the subtree’s root is selected for inlining, when in
fact only part of the subtree may be inlined, depending on
the inlining budget and what other inlining candidates are
available.

Once the churn scope has been selected and a subset of
its functions is inlined into the root function f , traditional
escape analysis is performed on the expanded f , eliminating
the captured allocations therein.

5. Implementation in J9
In this section we describe implementation details. JOLT is
implemented in a development version IBM’s J9 JVM. See
Figure 6 for a diagram of the JOLT architecture.

Analysis implementation. To reduce overhead, full-
duplication sampling (7) is used to gather runtime profiles.
Thus, JOLT’s profiler only runs during a function’s slow
path. JOLT optimizes slow-path overhead in two ways. First,
it does not instrument leaf calls (since they are served well by
normal JIT optimizations), and does not instrument around
child calls to functions which themsleves have no calls and
no allocations (and thus no objects to capture). Note that
even though these functions and calls may not be profiled
directly, their behavior is still captured by the statistics taken
by the calling function. Second, JOLT only instruments func-
tions when they are compiled at the intermediate optimiza-
tion level. Thus, the hottest functions accrue some samples,
and then have no instrumentation at all when they are re-
compiled by the JIT at a higher optimization level. After 10
samples, a function is considered for churn optimization.

Naturally, error is introduced by sampling data rather
than recording statistics from all function invocations. This
tradeoff is well documented (7): a lower sampling interval
enables quicker convergence toward unsampled data at the

cost of higher overhead. A judicious choice of interval can
affect the error as desired.

Note that this error does not affect any individual sample
on an invocation fi; it only affects the aggregate statistics for
function f because not all of its invocations are tracked.

Though the analysis summaries are defined in terms of
numbers of objects, JOLT’s implementation actually com-
putes the size of those objects in bytes. This decision makes
implementation easier, since it requires only computing the
size of heap ranges (a simple subtraction), rather than walk-
ing the heap to count objects.

Inlining implementation. JOLT’s inliner is implemented
alongside the standard VM inliner. Edge and basic block
frequencies used in dynamic allocation counts are gathered
from the VM’s built-in profiler. In the implementation, the
call graph explored starting from a function f is bounded
at depth 6. Though we describe the inlining algorithm in
Section 4.2 as operating on a call tree, due to the greedy
nature of the algorithm JOLT does not need to explicitly
convert the call graph to a tree. Instead, it retains the call
graph and only lazily duplicates nodes as necessary when
their parents are chosen for inlining.

6. Evaluation
We evaluated JOLT on a number of large and popular
framework-based benchmarks. These are: an implemen-
tation of TPC-W (2) running atop the JBoss application
server (16); the Eclipse benchmark found in the DaCapo
benchmark suite (9); the JPetStore e-commerce applica-
tion running atop the Spring application framework (1)
(the most popular framework listed on sourceforge.net); and
SPECjbb2005, a three-tiered client/server benchmark. We
also evaluated it against the DaCapo benchmark suite.

6.1 Methodology

Measurements were made with a developmental version of
IBM’s J9, a leading commercial VM, on a dual Xeon 2.8
Ghz machine with 1 GB of RAM running Red Hat Linux
with a 2.6.9 kernel. Baseline numbers were measured by
running the VM in its default configuration.

Each result was obtained by taking the median steady-
state performance of 5 program runs. The DaCapo bench-
marks, including Eclipse, were version 2006-10 and were
run with the parameters -n 10 -s large; the time of the
tenth run was taken as the steady-state. Unfortunately, the
developmental version of our VM was unable to execute
the jython benchmark from the DaCapo suite. Load for
the Petstore application was generated by the petload pro-
gram (3), running on another server. Two 100-second execu-
tions of petload were performed, with the second taken to
be steady-state. The TPC-W workload was generated with
the implementation’s accompanying remote browser pro-
gram; it was executed on another server with the relevant
parameters -TT 0.0 -RU 100 -MI 100 -GETIM false

Benchmark Comp. Runtime/ % # Objs % Objs Improvement
Time Throughput Speedup Eliminated Eliminated Over Base

Eclipse
Baseline 53s 94.7s 5.3m/1.2b 0.4%
Inlining 75s 98.0s -3.5% 9.6m/1.2b 0.7% 2.0x

Selection 58s 93.2s 1.6% 20.5m/1.2b 1.7% 3.8x
JOLT 62s 90.4s 4.8% 23.6m/1.2b 1.9% 4.6x

JPetstore on Spring
Baseline 61s 810 * 1.2m/169m 0.7%
Inlining 66s 790 * -2.5% 1.6m/170m 1.0% 1.3x

Selection 64s 816 * 0.7% 2.2m/166m 1.3% 1.9x
JOLT 77s 828 * 2.2% 4.1m/166m 2.5% 3.5x

TPCW on JBoss
Baseline 34s 98.9 * 4.8k/198m 0.0%
Inlining 44s 100.7 * 1.8% 896k/193m 0.5% 192x

Selection 36s 97.2 * -1.7% 5.7m/191m 3.0% 1.3x10 3

JOLT 43s 101.5 * 2.6% 8.0m/186m 4.3% 1.7x10 3

SPECjbb2005
Baseline 11s 20173 * 25.5m/267m 9.6%
Inlining 18s 20196 * 0.1% 24.0m/241m 9.9% 1.0x

Selection 18s 22233 * 10.2% 43.1m/238m 18.1% 1.9x
JOLT 20s 22828 * 13.2% 81.2m/253m 32.1% 3.4x

DaCapo
antlr Baseline 15s 6.6s 39.2k/85.2m 0.0%

antlr JOLT 21s 6.7s -1.5% 1.7m/83.2m 2.0% 44.4x
bloat Baseline 19s 81.4s 82.7m/1.1b 7.3%

bloat JOLT 28s 70.9s 14.8% 375m/1.1b 33.8% 4.6x
chart Baseline 16s 21.3s 20.7m/896m 2.3%

chart JOLT 21s 20.1s 6.0% 47.0m/905m 5.2% 2.3x
fop Baseline 5s 4.2s 120k/10.5m 1.1%

fop JOLT 8s 4.1s 2.4% 1.0m/9.6m 10.6% 9.3x
hsqldb Baseline 22s 11.4s 0/97.2m 0.0%

hsqldb JOLT 29s 11.4s 0.0% 4.7m/103m 4.6% ∞
luindex Baseline 14s 9.2s 2.1m/114m 1.8%

luindex JOLT 16s 8.6s 7.0% 4.9m/111m 4.4% 2.4x
lusearch Baseline 47s 11.6s 9.1m/395m 2.3%

lusearch JOLT 49s 10.6s 9.4% 173m/405m 42.7% 18.6x
pmd Baseline 19s 20.3s 163m/1.1b 15.5%

pmd JOLT 28s 20.5s -1.0% 164m/1.1b 15.5% 1.0x
xalan Baseline 41s 39.1s 955k/732m 0.1%

xalan JOLT 37s 38.3s 2.1% 9.8m/734m 1.3% 10.2x

Table 1. Steady-state performance numbers of JOLT on several benchmarks. Note that compilation time was measured over
the entire run and thus may exceed the single steady-state benchmark time. Performance numbers with a * indicate higher is
better. Number precision is discarded only for display; full precision was used in computing percentages and ratios.

-CUST 144000 -ITEM 10000. The SpecJBB2005 bench-
mark was configured to run from 1 to 4 warehouses, with a
ramp up period of 60 seconds and a measurement period of
60 seconds. The throughput with four warehouses was taken
to be the steady-state performance.

6.2 Results and Analysis

The results are presented in Table 1. For each benchmark,
Baseline shows the steady-state performance of the orig-
inal, unmodified VM, while JOLT shows the steady-state
performance of the full JOLT optimizer, including profiling
overhead. The Inlining and Selection configurations are dis-
cussed later in this section.

% Speedup is computed from the ratio of a configura-
tion’s runtime to the Baseline runtime. # Objs Eliminated
displays two numbers, X/Y, where X is the number of dy-
namic object allocations eliminated of Y total dynamic ob-
ject allocations during an entire program run; k signifies
thousands, m millions, and b billions. The Improvement Over
Base column shows the ratio of the number of objects elim-
inated by a particular configuration to the number of objects
eliminated by the Baseline configuration.

In every benchmark, JOLT was able to eliminate more al-
locations than escape analysis alone. The increase ranged
from just over 1x to ∞ (in the case where escape analy-
sis was unable to remove any objects at all), with a me-
dian of 4.6x. Note that due to our measurement method-
ology, the numbers measured for the evaluation represent
eliminated object allocations, whereas JOLT’s optimizer at-
tempts to eliminate the maximum number of bytes allocated.
Thus the percentage of allocated bytes eliminated by JOLT is
likely to be greater.

Performance also improved under JOLT, with an av-
erage speedup of 4.8% for all applications, 5.7% for the
component-based applications, and a max speedup of 14.8%
for bloat.

The compilation overhead ranged from -10% with xalan 1

to 82% with SPECjbb2005, with an average of 32%. We feel
that this increase in the relatively constant-factor overhead
of compilation is acceptable in the context of long-running
programs that may execute from tens of minutes to days.

A surprising result is how few allocations escape analysis
is able to remove on these large-scale programs. Though
JOLT is able to improve upon these numbers, there remains
a significant opportunity for further optimization that we are
continuing to investigate.

JOLT is composed of two primary mechanisms, a set of
dynamic analyses and an inliner. It is possible that JOLT’s
empirical results are more due to one or the other of these;
for instance, it might be possible to do just as well with only
a dynamic analyses-driven scope selector and then a stan-
dard inliner. We evaluated this hypothesis on the component-

1 For reasons we could not fully diagnose, the JOLT run performed less
compilation than the baseline run.

Benchmark Profiling Overhead
Eclipse 0.8%
JPetstore/Spring 1.1%
TPCW/JBoss 1.7%
SPECjbb2005 1.2%
antlr 2.3%
bloat -0.2%
chart -1.6%
fop 2.6%
hsqldb 2.7%
luindex 0.5%
lusearch -0.4%
pmd 1.5%
xalan 0.3%

Table 2. Profiling overheads for computing the capture and
control analyses.

based benchmarks as follows. In addition to comparing the
default VM eliminations against the JOLT eliminations, we
also measured two other configurations: (a) the analyses
were used to select churn scopes, which were then fed to
the default VM inliner, rather than the JOLT inliner, before
escape analysis (“Selection”) (b) no churn scopes were se-
lected, and instead all hot functions were optimized using
the JOLT inliner (“Inlining”). The results are shown in Ta-
ble 1.

The Inlining configuration tended to slow the program
down; however, it did allow for more allocation elimination,
possibly because every hot method fed to the escape analysis
had far more allocation sites present. The Selection configu-
ration generally performed right at the baseline. Neither ex-
ceeded the combined JOLT configuration on any of the four
benchmarks, which seems to indicate that both are contribut-
ing to its performance.

We report the overhead of the capture and control anal-
ysis profiler in Table 2. The overhead numbers measure the
total overhead over the full long-running execution. The pro-
filer sampled one function invocation of every 100,000. See
Section 5 for details on how functions were profiled. The
speedups for several benchmarks are possibly due to the pro-
filer’s behavior of recompiling a function once it has taken
enough measurements, to remove the sampling code. The
cost of this approach is reflected in compilation time (Ta-
ble 1), but the aggressive recompilation of frequently exe-
cuted methods may be improving performance.

7. Related Work
Mitchell, et al. (23) identified the object churn and excessive
computation pervasive in component-based software. Du-
four, et al. (15) informally explored the notions of capture
and control, and used a hybrid analysis to aid a programmer
in finding areas of object churn. Our work strives to address

these same problems by automatically identifying and opti-
mizing churn in a virtual machine.

JOLT is prototyped in a leading production VM that per-
forms profiling and adaptive recompilation similar to other
virtual machines (4; 6; 18; 19; 25; 28). Methods begin ex-
ecuting in an interpreter, and hot methods are profiled and
promoted to higher levels of optimization using a JIT com-
piler. For the aggressive dynamic analysis, JOLT employs
the Arnold-Ryder sampling framework (7) to keep overhead
low.

Escape analysis (14; 26) (as pertains to Java (10; 12;
29)) is a critical component in JOLT’s optimization scheme.
Whaley and Rinard (29), Gay and Steensgaard (17), and
Blanchet (10) have described extensions to their escape anal-
yses that can detect object capture 1 and arbitrarily many
functions up the call stack, respectively. However, these ex-
tensions either are not benchmarked or do not perform well
in practice (10), possibly due to the large amount of dupli-
cated context necessary to eliminate each captured object.

Since then, advances have been made in the sophistica-
tion and aggressiveness of escape analysis in JIT compil-
ers (21) and the transformations that eliminate object alloca-
tion, such as lazily reallocating eliminated allocations if nec-
essary (22). Escape analyses can be used directly by JOLT

in its optimization procedure as they become available in
state-of-the-art VMs. Although these escape analyses use in-
terprocedural analysis to identify objects that do not escape
from non-inlined callees, unlike JOLT they do not use inter-
procedural analysis to identify callees containing key alloca-
tions, which thus must be inlined for the escape analysis to
be effective.

Many papers have used profiling information to guide
inlining (5; 8; 11; 20). Scheifler (27) first reduced a size-
bounded inlining problem to Knapsack. Like JOLT, several
works have used inlining not as an end in itself (as a call
overhead reduction) but as a means to enable other optimiza-
tions. EDO (24) inlined hot exception paths so that thrown
exceptions do not have to walk the call stack. Dean and
Chambers (13) decided between multiple inlining options
based on the benefits accrued by optimizations applied to
the inlined method’s body.

8. Conclusion
In this paper, we have presented JOLT, a fully-automatic
online churn optimizer. It selects scopes to optimize via a
novel lightweight dynamic analysis based on the notions of
control and capture. Churn elimination is achieved by using
combined dynamic and static analysis to guide inlining deci-
sions, making the resulting compilation unit more amenable
to escape analysis. The resulting code is fed to a state of the
art JIT optimizer that performs escape analysis along with
other standard optimizations.

Acknowledgements
We thank Nick Mitchell for several early discussions on ob-
ject churn, Gary Sevitsky for his feedback on a draft of this
paper, and Bill McCloskey for help with his petload tool.
We are grateful to the anonymous referees for their help-
ful comments. This work was supported in part by the Na-
tional Science Foundation with grants CCF-0085949, CNS-
0326577, and CNS-0524815, an NSF Graduate Fellowship,
a generous gift from IBM Corporation, the IBM Open Col-
laborative Research project, the AF-TRUST project, and the
University of California MICRO program .

References
[1] Spring framework. http://www.springframework.org/.

[2] TPC-W NYU. http://cs.nyu.edu/~totok/

professional/software/tpcw/tpcw.html.

[3] Personal communication with William McCloskey, October
2007.

[4] Ali-Reza Adl-Tabatabai, Jay Bharadwaj, Dong-Yuan Chen,
Anwar Ghuloum, Vijay Menon, Brian Murphy, Mauricio Ser-
rano, and Tatiana Shpeisman. The StarJIT compiler: A dy-
namic compiler for managed runtime environments. Intel
Technology Journal, 7(1):19–31, February 2003.

[5] Matthew Arnold, Stephen Fink, Vivek Sarkar, and Peter F.
Sweeney. A comparative study of static and profile-based
heuristics for inlining. In DYNAMO ’00: Proceedings of the
ACM SIGPLAN workshop on Dynamic and adaptive compi-
lation and optimization, pages 52–64, New York, NY, USA,
2000. ACM.

[6] Matthew Arnold, Michael Hind, and Barbara G. Ryder. On-
line feedback-directed optimization of java. In Proceedings of
the 17th ACM SIGPLAN conference on Object-oriented pro-
gramming, systems, languages, and applications, pages 111–
129. ACM Press, 2002.

[7] Matthew Arnold and Barbara G. Ryder. A framework for
reducing the cost of instrumented code. In Proceedings of
the 2001 ACM SIGPLAN Conference on Prgramming Lan-
guage Design and Implementation (PLDI), pages 168–179,
June 2001.

[8] Andrew Ayers, Richard Schooler, and Robert Gottlieb. Ag-
gressive inlining. SIGPLAN Not., 32(5):134–145, 1997.

[9] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, As-
jad M. Khang, Kathryn S. McKinley, Rotem Bentzur, Amer
Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer,
Martin Hirzel, Antony Hosking, Maria Jump, Han Lee,
J. Eliot B. Moss, B. Moss, Aashish Phansalkar, Darko Ste-
fanović, Thomas VanDrunen, Daniel von Dincklage, and Ben
Wiedermann. The dacapo benchmarks: java benchmarking
development and analysis. In OOPSLA ’06: Proceedings
of the 21st annual ACM SIGPLAN conference on Object-
oriented programming systems, languages, and applications,
pages 169–190, New York, NY, USA, 2006. ACM.

[10] Bruno Blanchet. Escape analysis for object-oriented lan-
guages: application to java. In OOPSLA ’99: Proceedings of
the 14th ACM SIGPLAN conference on Object-oriented pro-

gramming, systems, languages, and applications, pages 20–
34, New York, NY, USA, 1999. ACM.

[11] Pohua P. Chang, Scott A. Mahlke, William Y. Chen, and Wen-
Mei W. Hwu. Profile-guided automatic inline expansion for
C programs. Software—Practice and Experience, 22(5):349–
369, May 1992.

[12] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vu-
granam C. Sreedhar, and Sam Midkiff. Escape analysis for
java. In OOPSLA ’99: Proceedings of the 14th ACM SIG-
PLAN conference on Object-oriented programming, systems,
languages, and applications, pages 1–19, New York, NY,
USA, 1999. ACM.

[13] Jeffrey Dean and Craig Chambers. Towards better inlining
decisions using inlining trials. In LFP ’94: Proceedings of the
1994 ACM conference on LISP and functional programming,
pages 273–282, New York, NY, USA, 1994. ACM.

[14] Alan Deutsch. On determining lifetime and aliasing of dy-
namically allocated data in higher-order functional specifica-
tions. In POPL ’90: Proceedings of the 17th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages,
pages 157–168, New York, NY, USA, 1990. ACM.

[15] Bruno Dufour, Barbara G. Ryder, and Gary Sevitsky. Blended
analysis for performance understanding of framework-based
applications. In ISSTA ’07: Proceedings of the 2007 inter-
national symposium on Software testing and analysis, pages
118–128, New York, NY, USA, 2007. ACM.

[16] Marc Fleury and Francisco Reverbel. The JBoss extensi-
ble server. In Markus Endler and Douglas Schmidt, editors,
Middleware 2003 — ACM/IFIP/USENIX International Mid-
dleware Conference, volume 2672 of LNCS, pages 344–373.
Springer-Verlag, 2003.

[17] David Gay and Bjarne Steensgaard. Fast escape analysis and
stack allocation for object-based programs. In th Interna-
tional Conference on Compiler Construction (CC’2000), vol-
ume 1781. Springer-Verlag, 2000.

[18] Nikola Grcevski, Allan Kilstra, Kevin Stoodley, Mark Stood-
ley, and Vijay Sundaresan. Java just-in-time compiler and
virtual machine improvements for server and middleware ap-
plications. In 3rd Virtual Machine Research and Technology
Symposium (VM), May 2004.

[19] Kazuaki Ishizaki, Mikio Takeuchi, Kiyokuni Kawachiya,
Toshio Suganuma, Osamu Gohda, Tatsushi Inagaki, Akira
Koseki, Kazunori Ogata, Motohiro Kawahito, Toshiaki Yasue,
Takeshi Ogasawara, Tamiya Onodera, Hideaki Komatsu, and
Toshio Nakatani. Effectiveness of cross-platform optimiza-
tions for a Java just-in-time compiler. ACM SIGPLAN Notices,
38(11):187–204, November 2003.

[20] Owen Kaser and C. R. Ramakrishnan. Evaluating inlining
techniques. Computer Languages, 24(2):55–72, 1998.

[21] Thomas Kotzmann and Hanspeter Mössenböck. Escape anal-
ysis in the context of dynamic compilation and deoptimiza-
tion. In VEE ’05: Proceedings of the 1st ACM/USENIX inter-
national conference on Virtual execution environments, pages
111–120, New York, NY, USA, 2005. ACM.

[22] Thomas Kotzmann and Hanspeter Mossenbock. Run-time
support for optimizations based on escape analysis. In CGO

’07: Proceedings of the International Symposium on Code
Generation and Optimization, pages 49–60, Washington, DC,
USA, 2007. IEEE Computer Society.

[23] Nick Mitchell, Gary Sevitsky, and Harini Srinivasan. Model-
ing runtime behavior in framework-based applications. In Eu-
ropean Conference on Object-Oriented Computing (ECOOP)
2006, 2006.

[24] Takeshi Ogasawara, Hideaki Komatsu, and Toshio Nakatani.
Edo: Exception-directed optimization in java. ACM Trans.
Program. Lang. Syst., 28(1):70–105, 2006.

[25] Michael Paleczny, Christopher Vick, and Cliff Click. The Java
Hotspot server compiler. In Java Virtual Machine Research
and Technology Symposium (JVM), pages 1–12, April 2001.

[26] Young Gil Park and Benjamin Goldberg. Escape analysis on
lists. In PLDI ’92: Proceedings of the ACM SIGPLAN 1992
conference on Programming language design and implemen-
tation, pages 116–127, New York, NY, USA, 1992. ACM.

[27] Robert W. Scheifler. An analysis of inline substitution
for a structured programming language. Commun. ACM,
20(9):647–654, 1977.

[28] Toshio Suganuma, Toshiaki Yasue, Motohiro Kawahito,
Hideaki Komatsu, and Toshio Nakatani. A dynamic optimiza-
tion framework for a Java just-in-time compiler. ACM SIG-
PLAN Notices, 36(11):180–195, November 2001. In Confer-
ence on Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA).

[29] John Whaley and Martin Rinard. Compositional pointer and
escape analysis for java programs. In OOPSLA ’99: Pro-
ceedings of the 14th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications,
pages 187–206, New York, NY, USA, 1999. ACM.

APPENDIX

A. Algorithms for Approximating Capture
and Control in Any VM

The algorithms for computing capture and control presented
in this paper rely on two virtual machine features: a contigu-
ous object allocator and thread-local heaps.

Though most production VMs support these features, not
all VMs do, and in this section we present an alternate set of
algorithms that can approximate capture and control on just
about any VM. The only requirement is that the VM have (a)
a garbage collector that can report the number of live objects
it has found after a collection and (b) an allocator that can
count the number of allocations it has made.

Naturally, with these two simple primitives, we aim to
approximate capture and control rather than to compute
them exactly. We do this by reducing the problem from
tracking the reachability of individual objects as they are
allocated to simply tracking differences in the number of
reachable objects present in the program as the execution
progresses. Below, we describe the two major steps of this
approximation, and then discuss the error the approximation
introduces.

A.1 Aggregation

We begin with the assumption that we can approximate
the two simple notions defined in Section 2.1, alloc and
escape, from the two VM primitives described above; the
actual approximation is described in Section A.2. Our first
step toward an approximation is to sacrifice object-level
precision in favor of aggregation. In other words, we forego
the knowledge of, say, exactly which objects are captured
by a particular function in favor of knowing how many such
objects there are.

Recall the definitions of capture and control in terms of
alloc and escape. Here, we show that these definitions hold
if we replace sets with their cardinalities.

LEMMA 1.

|capture(fi)| = |alloc(fi)| − |escape(fi)|
|control(fi)| = |capture(fi)| −

∑

c∈children(fi)

|capture(c)|

This computation of cardinality from the primitives alloc
and escape is precise, even in the presence of set subtraction.
In other words, we prove that we only lose the knowledge of
what objects are in each set; we still know the exact size of
the sets.

Proof. Consider some sets t, s1, s2, · · · and a set sub-
traction t \ ∪isi. We would like to show that |t \ ∪isi| =
|t| − ∑

i |si|.
For each si, then, we must show that (a) s ⊆ t (or else

subtracting the cardinality will undercount the result) and
(b) ∀j.i�=jsi ∩ sj = ∅ (or else the sum of the cardinalities of
the sis will be overcounted, and the result undercounted).

For capture(fi), we must only show that escape(fi) ⊆
alloc(fi). Consider an object o. o ∈ escape(fi) =⇒
start(fi) < start(o) < end(fi) =⇒ o ∈ alloc(fi).

We expand control(fi) to

control(fi) = (alloc(fi) \ escape(fi))\⋃

c∈children(fi)

capture(c)

Consider an object o and a child c of fi. By the def-
initions of capture, child, and alloc, we know that o ∈
capture(c) =⇒ start(c) < start(o) < end(c) =⇒
start(fi) < start(o) < end(fi) =⇒ o ∈ alloc(fi).

Thus, we have

escape(fi) ⊆ alloc(fi) (as above)
∀c∈children(fi)capture(c) ⊆ alloc(fi)

To prove null intersection, we first compare the escape
term to each of the capture terms, and then compare the
capture terms to each other. Again, consider an object o and
an arbitrary child call c.

By the definitions of escape, capture, and child, o ∈
escape(fi) =⇒ end(fi) < end(o) =⇒ end(c) <
end(o) =⇒ o �∈ capture(c).

Now consider two children, c1 and c2. By the defini-
tion of child, w.l.o.g. assume end(c1) < start(c2). Then
o ∈ capture(c1) =⇒ end(o) < end(c1) =⇒
end(o) < start(c2) =⇒ o �∈ capture(c2), and o ∈
capture(c2) =⇒ start(c2) < start(o) =⇒ end(c1) <
start(o) =⇒ o �∈ capture(c1). This yields

∀c∈children(fi)capture(c) ∩ escape(fi) = ∅
∀c,d∈children(fi).c �=dcapture(c) ∩ capture(d) = ∅

This completes the proof. ♦
A.2 Runtime Values

It remains to approximate alloc and escape for each function
in a program at runtime given the two memory management
primitives described at the beginning of the Appendix, which
we call objcount and reachcount.

objcount(t): the number of objects allocated from time 0
to time t

reachcount(t): the number of reachable objects at time t
Objcount is obtained by keeping a running counter of

object allocations, and gives us the exact cardinality of alloc.

|alloc(fi)| = objcount(end(fi)) − objcount(start(fi))

Reachcount is obtained by running the garbage collector
and counting the number of live objects it finds, and serves
as an approximation for escape.

|escape(fi)| ∼= reachcount(end(fi))−reachcount(start(fi))

The error introduced by this approximation is discussed
in Section A.3.

For a particular function invocation f i, we compute obj-
count and reachcount at its entry and exit. These data points
are sufficient to compute capture(fi) and control(fi). A
full-duplication sampling profiler is used to gather samples
without running an excessive number of garbage collections.

fi is also instrumented to compute objcount and reach-
count additionally at the beginning and end of any child calls
it makes, yielding |alloc(c)| and |escape(c)| for each child
call. This additional information yields control(fi), as per
the defintion in Section 2.3.

A summary of the runtime approximations of the analy-
ses described in Section 2 is shown in Figure 7. Unlike the
algorithm presented in the body of this paper, this approx-
imation generates control values for individual function in-
vocations fi. Thus, the formal definition of control can be
used to compute function averages.

A.3 Error

The approximation of capture and control detailed above
introduces error in two ways, discussed here.

Escape approximation. In Section A.2, we approxi-
mated escape by measuring the difference in the number

|capture∗(fi)| = (objcount(end(fi)) − objcount(start(fi))) − (reachcount(end(fi)) − reachcount(start(fi)))

|%capture∗(fi)| =
|capture∗(fi)|

objcount(end(fi)) − objcount(start(fi))

|control(fi)∗| = |capture∗(fi)| −
∑

c∈children(fi)

|capture∗(c)|

|%control∗(fi)| =
|control∗(fi)|

objcount(end(fi)) − objcount(start(fi))

Figure 7. A summary of the analysis approximations used by the generalized system described in the Appendix. We use x ∗

to denote the approximate version of x. To compute values for a static function f , we compute the median values over all
available dynamic datapoints fi.

of reachable objects between function beginning and func-
tion end. However, this difference actually accounts for two
phenomena: locally allocated objects that escape increase
the difference, but objects allocated before the function start
that are no longer reachable at function exit decrease the
difference. We call these latter objects absorbed by f i. Let
∆reachcount(x, y) = reachcount(y) − reachcount(x).

absorb(fi) := {o|start(o) < start(fi) < end(o) < end(fi)}

∆reachcount(start(fi), end(fi)) = |escape(fi)|−|absorb(fi)|
Thus the error introduced by this approximation is exactly
equal to the number of absorbed objects. From this we can
compute the error for the analyses. We use x∗ to denote the
approximate version of x.

|capture∗(fi)| = |capture(fi)| + |absorb(fi)|

|%capture∗(fi)| = |%capture(fi)| + |absorb(fi)|
|alloc(fi)|

|control∗(fi)| = |control(fi)| + |absorb(fi)| −∑

c∈children(fi)

|absorb(c)|

|%control∗(fi)| = |%control(fi)| +
|absorb(fi)| −

∑ |absorb(c)|
|alloc(fi)|

To mitigate some of this error, an implementation of JOLT

using these approximation algorithms can make use of a sim-
ple observation. Consider the case in which
∆reachcount(start(fi), end(fi)) = x. If every object al-
located in fi’s churn scope were captured, x = 0 (no more
objects are reachable at the end of fi than at the beginning).
On the other hand, if x < 0, at least x objects must have
been absorbed by fi, to account for the fact that the num-
ber of reachable objects has decreased. JOLT can thus put a
lower bound on the number of absorbed objects for any f i

whose ∆reachcount is negative, and use this lower bound,
for instance, by subtracting it directly from the approxima-
tion of capture, reducing the error.

This situation may arise infrequently, though, since ab-
sorbed can be masked by escaping objects. Now imagine
that reachcount were computed after every instruction m 1..k

in fi. Then, as in with the end of fi, if for any n ≤ k,
∆reachcount(start(fi), mn) = x where x < 0, at least
x objects must have been absorbed between the start of f i

and that instruction. Each instruction, then, provides an op-
portunity to place a lower bound on absorbed.

Of course, JOLT cannot calculate reachcount after every
instruction in fi, since that would require a very large num-
ber of GCs. However, it does have some existing GC data
points already being gathered, around the child calls that f i

makes, as described in Section A.2. Thus, JOLT can com-
pute ∆reachcount between the start of fi and each other
profiled point. If any of these deltas is negative, that places a
lower bound on absorbed(fi), which is then used to reduce
the error.

We measured absorbed objects with runtime instrumen-
tation on the SPECjbb2005 benchmark. For the functions
selected by JOLT for optimization, the ratio of absorbed ob-
jects to allocated objects was 1:8, indicating that the error is
likely to be low in practice for functions amenable to churn
optimization.

Multithreading. The black-box approach that leads to
the error in the escape approximation also introduces error
in another way. Consider the computation of alloc(f i). A
global allocation counter is kept, and the difference is taken
between this counter’s value at the end of f i and its value
at the beginning of fi. In a single-threaded program, this
result is exact, since any intervening allocations must have
occurred within fi and its children. However, if the program
execution has multiple threads, the global counter will be
incremented by any allocations that occur in other threads
that might have been run between the start and end of f i.
Similarly, liveness counts may be erroneously inflated or de-
flated by behavior in other threads. Of course, the magnitude

of this error is largely dependent on the specific behavior of
these threads.

One way to overcome this error is to discard obvious
outliers in the profile data. These outliers generally indicate
extra-thread behavior rather than anomalous function behav-
ior. (This intuition is supported by the very quick conver-
gence of profile data in the thread-local algorithms.) Once
outliers are discarded and the deviation in profile values is
low, it becomes possible to gauge the true behavior of sam-
pled functions, even in the presence of multiple threads.

