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JORDAN DERIVATIONS ON RINGS

J. M. CUSACK

ABSTRACT.   I. N. Herstein has shown that every Jordan derivation on

a prime ring not of characteristic 2 is a derivation.   This result is extended

in this paper to the case of any ring in which   2x = 0   implies   x = 0  and

which is semiprime or which has a commutator which is not a zero divisor.

1. Introduction.   An additive mapping  D  of an (associative) ring into it-

self is a derivation if D (ab) = aDb + (Da)b  for all elements  a  and  b of the

ring.  For a ring  R  in which  2x = 0  implies  x = 0, an additive mapping D of

K  into itself is said to be a Jordan derivation if

D(a o b) = a o Db + (Da) ob

for all  a and  b in  K, where  x oy = xy + yx is the Jordan product of x  and

y  in   K.  Thus every derivation on  R  is a Jordan derivation, and the aim of

this paper is to extend  the class of rings for which it is known that the con-

verse of this is true.   This class contains all commutative rings in which

2x = 0  implies x = 0  and all rings K  with identity such that every Jordan

homomorphism of  R  is the sum of a homomorphism and an antihomomorphism

[4, Theorem 22].   I. N. Herstein [1, Theorem 3.1] showed that every Jordan

derivation on a prime ring not of characteristic 2 is a derivation, and it is

proved in [6, Theorem 3.3] that every continuous Jordan derivation on a semi-

simple Banach algebra is a derivation.  I shall extend these results to the

case of any ring in which   2x = 0  implies x = 0  and which is semiprime or

which has a commutator which is not a zero divisor.  In § 3 I shall give some

simple examples of Jordan derivations which are not derivations.

I am grateful to my research supervisor, Dr. A. M. Sinclair, for help and

encouragement.

2. Throughout this section  D  will denote a Jordan derivation on a ring

K  in which   2x = 0 implies x = 0  and d will be the mapping from   K    =

{(a, b): a, b £ R\ to  Ii defined by

d(a, b) = D(ab) - aDb - (Da)b.

The mapping  d is additive with respect to pointwise addition on   K     and is

zero if D is a derivation. I shall use the notation [a, b] = ab - ba, [a, b, c] = abc+ cba.
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The main results follow from the fact that [a, b] o dia, b)  and  [[a, b],

r, d(a, b)]  are zero for all  a, b and  r in  R.   This can be proved directly, but

is more easily obtained from the following analogous results for Jordan

homomorphisms proved in [2, pp. 48—49].  An additive mapping  /   of R  into

a ring  S (in which   2x = 0  implies  x- 0)  is a Jordan homomorphism if

J ia o b) = ija) oijb)  tor all  a and   b in   R.

Lemma 1.   Let }  be a Jordan homomorphism of R   into a ring S in which

2x = 0  implies  x - 0.   Then, for all a, b and r in  R,

(1) (Jiab) - ija)ijb))ijiba) - ija)ijb)) = 0,

(2) [Jiab) - ijb)ija), Jr, jiab) - ijaAijb)] = 0.

Lemma 2.   For all a, b  and r in  R,

(1) dia, b)[a, b] = 0 = [a, b\dia, b),

(2) [[a, b], r, dia, b)] = 0.

Proof.   Let  S be the ring obtained from   R     by defining the product of

ia, b)  and is, t)  to be ias, at + bs).  Then the mapping  /   from   R  into  S,

defined by  Ja = ia, Da), is a Jordan homomorphism.   By Lemma l(l),

(0, dia, b))i[b, a], Diba) - aDb - iDa)b) = 0,

and, therefore, dia, b)[a, b] = 0 for all a and b in R. Since D is also a

Jordan derivation on the ring obtained from R by reversing the product, it

follows that [a, b]dia, b) = 0.  Similarly, by Lemma 1(2),

[i[a, b], Diab) - bDa - (Db)a), (r,Dr), (0, dia, b))] = 0,

and, therefore, [[a, b], r, dia, b)] = 0  for all  a, b  and  r in  R.

The next lemma is similar to [2, Lemma 3-10].

Lemma 3.   Let  P   be a prime ideal in  R  (i.e.   aRbC P —> a £ P or

b £ P).   Then [a, r, b] = 0 for all r in  R  implies a £ P  or b £ P.

Proof.   Let  h  and  k be arbitrary elements of  R.   Then   ahakb + bhaka =

0  and, therefore, - 2ahbka = 0, since, akb + bka = 0 = bha + ahb.  But then

ahbRaC P for all  h  in   R, and if  a {.  P, then  aRb C P   and so  b € P.

The Baer lower radical, or prime radical, L  of  R  is the intersection of

all the prime ideals of  R.   For alternative definitions and properties of L

see [5, pp. 69—71] or [3, pp. 193 — 197].   R   is said to be semiprime it L = (0).

Theorem 4.   Let D   be a Jordan derivation on a ring  R  in which 2x = 0

implies x = 0.   Then for all a and b  in  R, D (ab) - aDb - iDa)b  is in L, the

Baer lower radical of R.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Proof.   First let P be a prime ideal such that the quotient ring  R/P  is

not commutative.  By Lemma 2(2), [[a, b], r, d(a, b)] = 0 for all  r in  K  and

so, by Lemma 3, [a, b] {. P  implies  d(a, b) £ P.   Now suppose  [a, b] £ P

and that there exists an element r in   K   such that [a, r] ft P.  Then [a, b + r] /:

P  and so both  d(a, r)  and  d(a, b + r) ate in P. But then d(a, b) = d(a, b + r)-

d(a, r) £ P.   Finally, if  [a, r] £ P  for all  r in   R  and  [s, r] / P, then

[a + s, r] 4 P  implies  d(a + s, b) £ P.  But  [s, r] i P  implies  d(s, b) £ P

and so, again,  d(a, b) = d(a + s, b) - d(s, b) £ P.

If Q is a prime ideal such that R/Q is commutative, then R/Q is an

integral domain. By Lemma 2(1), d(a, b) o[a, b] = 0. Thus, since D is a

Jordan derivation,

d(a, b) o D([a, b]) + D(d(a, b)) ° [a, b] = 0,

and, therefore,  2d(a, b)D ([a, b]) £ Q.  It follows that either  2d(a, b) £ Q or

D([a, b]) eQ.  However,

2d(a, b) - D([a, b]) = D(ao b) - 2(aDb + (Da)b) £ Q,

so that, in either case, 2d(a, b) £ Q. Since L  is the intersection of all the

prime ideals of  R, we have  2d(a, b) £ L.  But  L   is a nil ideal [5, Theorem

4.21], and so there exists a positive integer n  such that  2"(d(a, b))" = 0.

The condition  2x - 0  implies x = 0  shows that  d(a, b) is nilpotent and,

therefore, contained in every prime ideal   0  such that   R/Q is commutative.

Thus  d(a, b) £ L for all  a and   b in   R.

Corollary 5.   //  K   is semiprime then   D   is a derivation.

ITieorem 6.   Let  R  be a ring where 2x = 0  implies  x = 0 and which has

a commutator which is not a zero divisor.   Then every fordan derivation on

R   is a derivation.

Proof.   By Lemma 2(2), for all  a, r, s, and   t in  R, [[s + a, t], r,

d(s + a, t)] = 0.   It follows that

[[s, t], r, d(a, t\] + [[a, t], r, d(s, t)] - 0,

and, on replacing t by  t + b, that

[Is, 1], r, d(a, 6)1 + [[s, 61, r, d(a, f)] + [[a, t], r, d(s, 6)1+ [[a, 6l, r, d(s, t)]= 0

for all a, b, r, s  and  /  in  R.  Let  s and  t  be elements of  K   such that

[s, t]z = 0 or z[s, t] = 0  implies z = 0.   Then by Lemma 2(1), d(s, /) = 0

and so the substitutions  a = s and 6 = t give, respectively, [[s, t], r, d(s, b)] = 0

and  [[s, t], r, d(a, /)] = 0.  But then, as in the proof of Lemma 3  (with h =

k = [5, t]), [s, t]2d(s, b)[s, t]2 .-. 0 and [s, t]2d(a, t)[s, t]2 = 0 and so d(s, b) = 0
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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and  dia, t) = 0 for all  a and  b  in   R.   Finally, [[s, t], r, dia, b)] = 0 and,

therefore, by the same argument, dia, b) = 0  for all   a and   b in   R, and  D is

a derivation.

3.  Jordan derivations which are not derivations.   Let  R  be a ring in

which  2x= 0  implies x= 0  and such that either

(1) R  has an element x such that axa = 0 for all  a  in  R, but axb / 0

for some  a and b, or

(2) a   = 0  for all  a in  R, but ab / 0 for some a  and b.

In the first case the mapping  Da = ax is a Jordan derivation, since

(a o b)x - a o (bx) - ax o b - -ibxa + axb) = -ia + b)xia + b) = 0,

but not a derivation since,  (flfe)x - aibx) - iax)b - - axb / 0.

In the second case every additive mapping of R  into itself is a Jordan

derivation, since the Jordan product is zero.   But the identity mapping, for

example, is not a derivation.  A ring of the second type is necessarily nil-

potent iabc = 0  for all   a, b, and  c in   R).  An example is the Banach algebra

obtained from  R     (with the Euclidean norm) by defining the product of a

and  b  in  R     to be their vector product, axb, projected onto one of the co-

ordinate axes.   The problem remains of finding reasonable necessary con-

ditions  that R  has Jordan derivations which are not derivations.
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